11 December 2024 · CC-BY 4.0

Peer Review

Review of: "DEeR: Deviation Eliminating

and Noise Regulating for Privacy-

preserving Federated Low-rank

Adaptation"

Yu Wu1

1. Jiangnan University, Wuxi, China

This article proposes a novel privacy-preserving federated fine-tuning framework, DEER, which adapts pre-trained base

models to downstream medical tasks by combining Low-Rank Adaptation (LoRA) and Federated Learning (FL). The article

provides an in-depth analysis of aggregation bias and noise amplification problems in existing methods and proposes

corresponding solutions. The theoretical analysis is relatively rigorous, and the experimental section is comprehensive.

However, there are still areas for further improvement.

The article offers detailed theoretical insights into aggregation bias and noise amplification issues, with a clear proof

process for the theorems presented. However, some of the proofs are complex and may be difficult for readers without a

strong mathematical background to understand. It is suggested to include intuitive explanations or examples to aid

comprehension.

The overall structure of the article is clear and logically coherent. However, some paragraphs are quite lengthy. It is

recommended to split these paragraphs appropriately to improve readability. Additionally, the generalization ability of the

DEER framework across different tasks and datasets, as well as its performance in various hardware environments, could

be explored further.

In summary, this article introduces an innovative federated fine-tuning framework, DEER, which achieves robust privacy

protection and fine-tuning performance by addressing key challenges associated with LoRA in federated learning. While

there are areas for improvement, the article holds significant academic value and promising application prospects.

**Declarations** 

Potential competing interests: No potential competing interests to declare.