
Peer Review

Review of: "(Research Conclusion) Performance of Semiconductor Nanowires for (Element Determination) and LOC/Bio Nanosensors"

Veronica Salazar¹

1. Technology, University of Roma "Tor Vergata", Italy

These types of biosensors (environmental detection) can often be used to detect bacteria or viruses. First, a carbon nanotube is functionalized with antibody conjugates. When a bacterium or virus binds to the antibody, the nanotube's conductivity changes. In another method, the nanotube is connected to a metal and a voltage is passed through it. When a bacterium or virus binds to the nanotube, the current changes and a signal is generated. This method is a rapid method for detecting bacteria.

(Research Conclusion) Performance of Semiconductor Nanowires for (Element Determination) and LOC/Bio Nanosensors

The semiconductor nanowires of this device are used to develop LOC / Bio sensors that are capable of determining a molecule. In these sensors, when the molecule to be analyzed is placed on the oscillator (cantilever) of the tweezers, a change is created in the resonant frequency of the cantilever. Coating the cantilever with receptor molecules such as antibodies that can specifically bind to bacteria, viruses, or some biomolecules increases the efficiency of the system . Cantilevers are spring platforms in nano and micro sizes and operate based on the deflection of the platform or the change in the resonant frequency produced on the cantilever surface .

[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18]

[19][20][21]

References

- ^Afshin Rashid. (2023). Review of: "Propagation of Oligophenylene vanillin nanowires by focused ion beam (FIB) nanolithography method (below 1 · · nm − 1 · nm range)". Qeios. doi:10.32388/whhfa8.
- 2. Afshin Rashid. (2023). Review of: "Oligophenylene vanillin (silicon/germanium) structured nanowires an d cylinders for possible applications in electronic energy". Qeios. doi:10.32388/i5wrmf.
- 3. [△]Afshin Rashid. (2023). <u>Review of: "High speed (doping) nMOS graphene transistor in p- and n-doping elect ronic circuits (positive and negative)".</u> Qeios. doi:10.32388/jreu5m.
- 4. Afshin Rashid. (2023). Review of: "(Field effect nano transistors) Nano transistor electronic quantity and io nization potential)". Qeios. doi:10.32388/464lq7.
- 5. Afshin Rashid. (2025). <u>Functions in Nanotransmitter TN and Nanoreceiver RN in Nanocommunication</u>. d oi:10.22541/au.174837061.11749312/v1.
- 6. △Afshin Rashid. (2025). <u>Theory of Protection of Nano-Telecommunication Communications in Emergency</u>

 <u>Situations (Noise or Random Oscillation)</u>. doi:10.22541/au.174837049.96930313/v1.
- 7. Afshin Rashid. (2025). <u>Electronic Nano Strip Antennas (Graphene-Based Nano Antennas)</u>. doi:10.22541/au.174231280.05480193/v1.
- 8. ^Afshin Rashid. (2025). Micro-vibrations in Current Nanocommunication Signals ... doi:10.22541/au.174197 377.70598198/v1.
- 9. ^Afshin Rashid. (2025). (<u>MIM Nanoantennas</u>) Have Wide-Angle Absorption Capabilities in The infrared a <u>nd Visible Frequency Range.</u>. doi:10.22541/au.174172819.95124406/v1.
- 10. △Afshin Rashid. (2025). <u>Definition of (Nanocommunication): Communication Between Two Nanoparticles</u>

 <u>Through Chemical Signaling</u>. doi:10.22541/au.174102452.21676638/v1.
- 11. △Afshin Rashid. (2025). (Nanocommunications) Short pulse modulation techniques in the time domain. SS RN Journal. doi:10.2139/ssrn.5193992.
- 12. [△]Afshin Rashid. (2025). <u>Definition of (Nanocommunication): Communication Between Two Nanoparticles</u>

 <u>Through Chemical Signaling.</u> SSRN Journal. doi:10.2139/ssrn.5193996.
- 13. △Afshin Rashid. (2025). <u>Nanocommunications</u>) <u>Antennas used at the nanoscale of about a few tens of terah</u>

 <u>ertz, including wavelengths in the region (infrared, visible, and ultraviolet.</u> SSRN Journal. doi:10.2139/ssrn.51

 93987.
- 14. [△]Afshin Rashid. (2025). <u>Micro-vibrations in Current Nanocommunication Signals.</u> SSRN Journal. doi:10.213 9/ssrn.5198940.

15. Afshin Rashid. (2025). "Nanocommunications" (noise) Low-frequency random oscillations in many nanoc

ommunications devices, including nanoelectronics. SSRN Journal. doi:10.2139/ssrn.5198944.

16. Afshin Rashid. (2025). Optical Nanoantennas (a Practical Solution With High Efficiency Compared to Othe

r Technologies). SSRN Journal. doi:10.2139/ssrn.5206746.

17. Afshin Rashid. (2025). Difference between nanotube antennas and classic antennas (wave speed in nanot

ubes is about one hundred times slower than the speed of light). SSRN Journal. doi:10.2139/ssrn.5206742.

18. Afshin Rashid. (2025). The Tasks of The Nano Transmitter TN and Receiver RN are Operational Such as (P.

erforming Baseband Processing, Frequency Conversion, Filtering, and Amplifying Waves). SSRN Journal. do

i:10.2139/ssrn.5223968.

19. Afshin Rashid. (2023). Review of: "Nano wire immersion method (structure and function)". Qeios. doi:10.32

388/0od0ql.

20. ^Afshin Rashid. (2024). Review of: "Normally, the length of nanowires is more than 1000 times greater tha

n their diameter. This huge difference in ratio (length to diameter) compared to nanowires is often referred

to as 1D materials". Qeios. doi:10.32388/xapduf.

21. ^Afshin Rashid. (2024). Review of: "Nano Fullerenes with The Ability to Store Electrostatic Energy That can

be Used as Nano Supercapacitors With Very High Capacity". Qeios. doi:10.32388/0ubhl5.

Attachments: available at https://doi.org/10.32388/FOGLJU

Declarations

Potential competing interests: No potential competing interests to declare.