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ABSTRACT

Clinical trials in the modern era are characterized by their complexity and high costs and usually
involve hundreds/thousands of patients to be recruited across multiple clinical centres in many
countries, as typically a rather large sample size is required in order to prove the efficiency of a
particular drug.
As the imperative to recruit vast numbers of patients across multiple clinical centres has become
a major challenge, an accurate forecasting of patient recruitment is one of key factors for the
operational success of clinical trials. A classic Poisson-gamma (PG) recruitment model assumes time-
homogeneous recruitment rates. However, there can be potential time-trends in the recruitment driven
by various factors, e.g. seasonal changes, exhaustion of patients on particular treatments in some
centres, etc. Recently a few authors considered some extensions of the PG model to time-dependent
rates under some particular assumptions. In this paper, a natural generalization of the original PG
model to a PG model with non-homogeneous time-dependent rates is introduced. It is also proposed
a new analytic methodology for modelling/forecasting patient recruitment using a Poisson-gamma
approximation of recruitment processes in different countries and globally. The properties of some
tests on homogeneity of the rates (non-parametric one using a Poisson model and two parametric
tests using Poisson and PG model) are investigated. The techniques for modeling and simulation
of the recruitment using time-dependent model are discussed. For re-projection of the remaining
recruitment it is proposed to use a moving window and re-estimating parameters at every interim
time. The results are supported by simulation of some artificial data sets.

Keywords: Forecasting patient recruitment, Poisson-gamma model, Time-dependence, Clinical trial

1 Introduction

Contemporary late-phase clinical trials involve hundreds or even thousands of patients to be recruited across multiple
clinical centres in many countries as typically it is required to achieve a rather large sample size to prove the efficiency
of a particular drug. Citing Ken Getz, director, Tufts Center for Study of Drug Development, USA, patient recruitment
and retention are among the greatest challenges that the clinical research enterprise faces today, and they are a major
cause of drug development delays.

To address these challenges, novel approaches and predictive analytic techniques are required for efficient data analysis,
monitoring, and decision-making.

Consider typical multicentre clinical trials used in pharmaceutical industry where the patients are recruited by many
clinical centres in different countries and then randomized to different treatments.
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Recruitment forecasting using time-dependent Poisson-gamma model

Using Poisson models for modelling patient recruitment in clinical trials is a well-accepted approach. Several papers
use Poisson processes in different clinical centres with fixed recruitment rates (Carter et al., [19]; Senn [27, 28].

However, in real trials different centres typically have different capacity and productivity, and the recruitment rates
vary. To model this variation, Anisimov and Fedorov [1, 2] introduced a Poisson-gamma (PG) model, where the patient
arrival at clinical centres is modeled using Poisson processes with some rates and the variation in rates among different
centres is modeled using a gamma distribution.

This model can be described in the framework of the empirical Bayesian approach where the prior distribution of the
rates is a gamma distribution with parameters that are evaluated either using historical data or data provided by study
investigators. In [1] a maximum likelihood technique was proposed for estimating the parameters of the rates and the
Bayesian technique for adjusting the posterior distribution of the rates at any interim time using recruitment data in the
individual centres. Various applications to real trials are considered in [1, 3, 4, 5].

This technique was developed further to account for random delays and closure of clinical centres (Anisimov [3, 4, 5, 8])
and for modelling events in event-driven trials (oncology) (Anisimov [6, 8] and Anisimov et al. [11]).

Note that independently Gajewski et al. [20] considered later a similar approach to modelling recruitment as a Poisson
process with gamma distributed rate, however their model is applicable to only one clinical centre.

The PG model was also used in Mijoule et al. [24] to consider some extensions related to other distributions of
the recruitment rates and sensitivity analysis, in Minois et al. [25] to evaluate the duration of recruitment process
when historical trials are available, and in Bakhshi et al. [15] for the evaluation of parameters of a PG model using
meta-analytic techniques for historic trials. A survey on using mixed Poisson models is provided in a discussion paper
[7].

It is also worth mentioning the recent investigations devoted to centralized statistical monitoring and forecasting
recruitment performance and also forecasting patient recruitment under various restrictions and creating an optimal
cost-efficient recruitment design, Anisimov and Austin [9, 10, 12, 13].

There are also other approaches to recruitment modelling described in the literature, however, they are mainly dealing
with the analysis of the global recruitment and therefore have some limitations. These approaches typically require
rather large number of centres and patients and cannot be applied to predicting recruitment on centre/country level (see
survey papers by Barnard et al. [16]; Heitjan et al. [22], Gkioni et al. [21].

Currently, the originally developed PG model, [1, 5], gained world-wide recognition and in some recent papers is now
called "one of the most popular techniques" and an "industry-standard" model.

This model assumes that patient recruitment rates do not change over time. However, in real trials there can be some
time-trends, seasonal changes, and recruitment can be changing in some countries over time due to different reasons,
e.g. a slowdown in recruitment near the end of a trial, etc.

Therefore, to capture these situations, in some recent papers [18, 23, 26, 29, 30, 31], the standard PG model was
extended to the cases where the recruitment rates can be time-dependent.

Lan et al. [23] proposed a non-homogeneous Poisson process model that allows for staggered centre activation and
heterogeneity within centres is modeled by a gamma distribution and assumes that after a period of steady recruitment,
the centre mean recruitment rate gradually declines as a negative exponential with some coefficient. They calculate
the posterior distribution and consider some applications to real trials. Urbas et al. [31] proposed a more general
time-dependent PG model that allows for a wider range of recruitment rate functions. The model is fitted using a
maximum likelihood approach and is used to select the best model among a set of candidate models. Perperoglou et
al. [26] compared the performance of the standard PG model to two time-dependent models: the models proposed in
[23] and [31]. The study found that the time-dependent models outperformed the PG model in terms of prediction
accuracy, especially in trials with time-varying recruitment rates. Best et al. [18] considered a standard PG model
as the starting point and developed a more flexible version that introduces variation in rates over time as a function
of COVID-19-dependent covariates which is implemented in a fully Bayesian probabilistic framework. Turchetta et
al. [29] proposed a time-dependent PG model allowing recruitment rates to vary over time through B-splines that is
fitted using a Bayesian approach. The model is evaluated in a simulation study and found to perform well in a variety
of scenarios. In another paper, Turchetta et al. [30] consider predictive performance of the proposed technique in
forecasting the recruitment process of two HIV vaccine trials.

All six papers above contribute to the advancement of recruitment modelling in multicentre clinical trials by extending
the standard time-homogeneous PG model to accommodate time-dependent recruitment rates.
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Recruitment forecasting using time-dependent Poisson-gamma model

The flexibility of the original PG model allows for rather natural extension to model time-dependent rates on a centre
level. However, the main question here is: what type of time-dependence to use? Also, how to detect the time-dependent
behavior of the rates, and how to test for this dependence in real trials. Thus, the choice of a suitable time-dependent
model is trial specific.

In this paper, the authors consider a natural generalization of a PG model to a time-dependent model using a general
framework of a standard PG model [1, 5] which is similar to the way considered in [31]. The basic methodology of
using a PG model with time-dependent rates is developed by the first author in [14]. This paper extends some results
of [14], in particular, we investigate two new parametric criteria for testing the recruitment rates for homogeneity,
a Poisson criterion and a PG one in addition to a non-parametric Poisson criterion [14]. In [14] it is also proposed
a novel analytic methodology for modelling/forecasting patient recruitment using the recent results in [9] on a PG
approximation of the sums of PG processes in different centres that can be applied to modelling recruitment even in not
so large countries/regions, which is also described in this paper for completeness of presentation.

Note that this analytic methodology is not reflected in the six papers mentioned above but is crucial as the country process
under general assumptions is not a PG process and also for a small number of centres a normal approximation for the total
recruitment process in general cannot be applied. Therefore, for using analytic tools for modelling/forecasting patient
recruitment on different levels instead of Monte Carlo simulation, we need to develop some analytic approximations of
country processes for time-dependent models similar to [9], as well.

The first author also proposed two new criteria, a non-parametric criterion and the parametric one using Poisson
assumptions for testing the recruitment rates for time-dependence, Section 4.1, and the fast algorithm of simulation of a
time-dependent model in R using discrete event simulation, Section 3.2, that is used in implementations.

The new parametric criterion for testing rates for time-dependence using assumptions of a PG model, Section 4.5,
is analyzed by the second author who also ran many simulated scenarios using Monte Carlo technique to test the
applicability of non-homogeneous PG model for prediction and interim re-projection of recruitment and compare with
using a classic PG model. Some examples are provided in Section 5. These results are briefly discussed in Section 6.

2 Poisson-gamma model with homogeneous rates

Consider a multicentre clinical trial which is designed to recruit n patients by N clinical centres. A standard PG model,
[1, 5], assumes that the recruitment rates in different centres are modeled as independent gamma distributed random
variables with some parameters that do not depend on time. Thus, the recruitment process in any interval where the
centre is active follows a time-homogeneous mixed Poisson process with gamma distributed rate (PG process).

First consider some definitions. Denote by Π(a) a Poisson random variable with parameter a, and by Πa(t) an ordinary
homogeneous Poisson process with rate a. This means, for any t > 0,

P(Πa(t) = k) = e−at (at)
k

k!
, k = 0, 1, . . .

Also denote by Ga(α, β) a gamma distributed variable with parameters (α, β) (shape and rate) and probability density
function

f(x, α, β) =
e−βxβαxα−1

Γ(α)
, x > 0, (1)

where Γ(α) =
∫∞
0

e−xxα−1dx is a gamma function.

2.1 The case of homogeneous rates

Consider first the basic definitions used in a standard PG model as some similar definitions will be used in PG model
with time-dependent rates. Let Πλ(t) be a doubly stochastic Poisson process where λ = Ga(α, β). According to
terminology in [17], this is a PG process with parameters (t, α, β). Denote it as PG(t, α, β) to reflect the dependence
on (α, β). Then for any k = 0, 1, . . . ,

P(PG(t, α, β) = k) =
Γ(α+ k)

k! Γ(α)

tkβα

(β + t)α+k
. (2)

For t = 1, Πλ(1) has the same distribution as Π(λ), which is a PG variable with parameters (α, β). For this case we
omit t = 1 and use the notation PG(α, β) instead of PG(1, α, β).
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Note that Πλ(t) has a negative binomial distribution and for any α > 0, β > 0, t > 0, the following relation is true: for
any k = 0, 1, . . . ,

P(PG(t, α, β) = k) = P(Nb(α, β/(β + t)) = k) (3)

where Nb(α, p) denotes a random variable which has a negative binomial distribution with size α and probability p:

P(Nb(α, p) = k) =
Γ(α+ k)

k! Γ(α)
pα(1− p)

k
, k = 0, 1, . . .

This relation is useful in calculations of a PG distribution using R, as there are standard functions pnbinom(), dnbinom().

Now consider modelling recruitment. Denote by ni(t) the recruitment process in centre i (the number of patients
recruited in time interval [0, t]), and by n(Ij , t) the recruitment process in some region with the set Ij of Nj clinical
centres. Also denote by ui the date of initiation of centre i.

Assume that the recruitment process in centre i during an active recruitment stage follows a homogeneous PG process
with rate λi which has a gamma distribution with parameters (αi, βi). Then the mean rate mi and the variance s2i are
calculated as mi = αi/βi, s2i = αi/β

2
i . Correspondingly, the instantaneous rate at time t is λi(t) = λiχ(ui < t),

where χ(A) is the indicator function of the event A.

Consider a more convenient representation via a cumulative rate. Denote x(t, u) = max(0, t−u) (the duration of active
recruitment at time t for a centre activated at time u). So, if centre i is active at time t > ui, then x(t, ui) = t− ui.

Then the cumulative rate of the process ni(t) is Λi(t, ui) = λix(t, ui). This means, if λi = Ga(αi, βi), ni(t) is a
PG process with parameters (x(t, ui), αi, βi), and the distribution of ni(t) can be calculated using (2) where in the
right-hand side we should use x(t, ui) instead of t, and parameters (αi, βi).

Correspondingly, for any region with a subset of centres Ij , the recruitment process n(Ij , t) in this region as a sum of
the recruitment processes in the centres from this region is a nonhomogeneous Poisson process with the instantaneous
rate λ(Ij , t) =

∑
i∈Ij

λi(t) and, in distribution, n(Ij , t) = Π(Λ(Ij , t)), where the region cumulative rate has the form

Λ(Ij , t) =
∑
i∈Ij

Λi(t, ui).

Note that in general a sum of gamma distributed variables with different parameters doesn’t have a gamma distribution,
therefore, in general, the process n(Ij , t) is not a PG process. The technique for the approximation of n(Ij , t) by a PG
process was developed in [9].

3 Non-homogeneous PG model

Consider now an extension of the classic PG model to time-dependent rates. Assume that the recruitment rates can
proportionally change over time according to some non-negative function r(t), t ≥ 0.

A realistic type of dependence can be a piecewise linear dependence: linear increase in some initial interval, then a
constant rate in some larger interval in the middle of recruitment, and then linear decrease in the last interval closer to
the end of recruitment. Another opportunity for function r(t) can be an exponential decay starting from 1 until some
proportion, say, 50%, at the end of recruitment.

Of course the main question can arise - how to define the form of function r(t). However, this question is for separate
investigation, and potentially the form of function r(t) can be chosen using similar historic trials, or monitoring the
data for the current study and use some extrapolations of the rate dependence up to the interim point for the remaining
interval.

Assume also for simplicity that the function r(t) is the same for all centres, that means, time-dependence is defined
only by the duration of the recruitment in the trial. However, in general, this assumption can be relaxed and we can
assume different dependence in different regions, though regional type dependence would be harder to extract from
historic trials. Therefore, a non-homogeneous PG model can be defined according to [14] as follows.

Assume that if a centre i is active at time t, then the recruitment rate has the form

λir(t) (4)

where λi is some baseline rate which has a gamma distribution with parameters (αi, βi), and r(t) is some non-negative
function. Then, if a centre i is initiated at time ui, the instantaneous rate at time t is λi(t) = λir(t)χ(ui < t).
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Define the cumulative proportional change in the rate for centre i in the interval [a, b] as

Ri(a, b, ui) =

∫ b

a

r(x)χ(ui < x)dx

In particular, if no change in time, r(x) ≡ 1, and Ri(a, b, ui) is just a duration of recruitment window in the interval
[a, b].

The cumulative rate for centre i in the interval [a, b] is Λi(a, b, ui) = λiRi(a, b, ui). Correspondingly, the recruitment
process ni(t) in interval [0, t] is again a doubly stochastic PG process with cumulative rate Λi(0, t, ui). Then,

E[Λi(0, t, ui)] = miRi(0, t, ui), Var[Λi(0, t, ui)] = s2iR
2
i (0, t, ui)

Consider now the recruitment process in some country s with the set of centres Is. Then a country process

n(Is, t) =
∑
i∈Is

ni(t)

has a cumulative rate
Λ(Is, t) =

∑
i∈Is

Λi(0, t, ui)

Note that n(Is, t) is a mixed Poisson process but in general not a PG process.

Denote the mean and variance of Λ(Is, t) as

E(Is, t) =
∑
i∈Is

miRi(0, t, ui),

S2(Is, t) =
∑
i∈Is

s2iR
2
i (0, t, ui)

(5)

Assuming that S2(Is, t) > 0, let us introduce the variables

A(Is, t) = E2(Is, t)/S
2(Is, t), B(Is, t) = E(Is, t)/S

2(Is, t) (6)

The following statement is an extension of the result in [9] to the case where the rates are gamma distributed with
different parameters.

Lemma 3.1 The distribution of n(Is, t) can be well approximated by the distribution of a PG random variable
PG(A(Is, t), B(Is, t)).

In [9] it is shown using numerical calculations that this approximation provides a very good fit even for a small
number of centres, N = 2, 3, and with a larger number of centres the difference between the exact and approximative
distributions is decreasing to a negligible value around 10−4 or less.

This result can be used to create the approximate values of the mean and predictive bounds for the recruitment process
n(Is, t) at any time point t.

Indeed, by definition,
E[n(Is, t)] = E(Is, t) (7)

and P -confidence predictive bounds can be calculated using a quantile function of the negative binomial distribution

qnbinom(P,size=M^2/S2,prob=M/(M+S2))

where at time t we set M = E(Is, t), S2 = S2(Is, t).

To create predictions for the global recruitment we just need to use in relation (5) the sum by all active centres.

This technique allows for creation of analytic predictions of the recruitment process n(Is, t) over time with mean and
predictive bounds assuming that the type of time dependence, function r(t), is known.
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3.1 Estimation at the interim stage

The technique for estimating parameters using interim data may depend on the form of time-dependence.

Using an assumption of a standard PG model [1, 5], where it is assumed that the parameters (αi, βi) of the rates are the
same for all centres, and also assuming that the function r(t) is known, for estimating parameters (α, β) we can use the
same maximum likelihood technique developed in [1, 5] where in calculations of the likelihood we need to use the
values Ri(0, t, ui) instead of recruitment windows vi. The posterior distribution of the rates can be calculated similarly
as in [1, 5].

If the function r(t) depends on some additional parameters, then the technique of estimation will depend on the form of
the function r(t). In this case we can write a likelihood expression similarly as in [1, 5] and use 2 + d optimisation,
where d is the number of parameters used in the definition of the function r(t).

Note that for time-dependent models, to closely capture the dependence on time, it can be recommended to use a
moving window including data only for the last several months. The choice of the length of the window is trial specific,
but as a general recommendation, the number of centres and the number of patients recruited during this window should
be large enough to apply a maximum likelihood technique in the framework of a PG model. In applications to late-stage
clinical trials, the length of the window can be chosen as 2,3,4 months.

3.2 Simulation of non-homogeneous PG-model

In general, it is preferable to use an analytic technique described in Section 3, Lemma 3.1. However, there can be
different restrictions on the recruitment, or it can be required to evaluate different metrics related to recruitment
performance. For example, to evaluate the probability that the recruitment process will fall into some region, say,
within 20% bounds from the predicted mean during a particular number of months, and it’s hard to develop the analytic
relations for these situations. Therefore, in these cases, Monte Carlo simulation can be the most appropriate way. In
addition, simulation can serve also as a useful tool to verify different analytic approaches.

Here we describe the technique of simulation which is based on a discrete event simulation approach and used directly
in applications.

3.2.1 Algorithm of simulation using R

Consider a trial with N centres. Assume that for a centre i the time of initiation is ui. Denote vecu = (u1, . . . , uN ).

Consider also a given interval of simulation, [0, T ], which should be large enough to ensure that for nearly all simulated
trajectories the stopping point will be reached. T can be evaluated as the upper predictive bound of the recruitment time
using some analytic expressions, similar to [5].

Define vectors of parameters:
veca = (α1, . . . , αN ), vecb = (β1, . . . , βN ).

1. Create a sequence vecr = r(1 : T ) using function r(t)

2. Generate a vector of gamma distributed rates in centres:
vecla = rgamma(N , shape = veca, rate = vecb)

3. Define an output matrix for one run:
outmat = matrix(nrow = N , ncol = T )

4. Use a loop by the number of centres N :

– For a centre i, create the vector
veclaik = vecla[i]*vecr
of the rate in centre i for each day

– Update this vector by setting
veclaik[k] = 0 for k < vecu[i]

– Simulate the numbers of recruited patients in each day k = 1, . . . , T using vector of rates and Poisson
distribution,
vecptsday = rpois(T , veclaik)

– Use cumsum(vecptsday) to generate a cumulative number of patients in centre i over time

– Save outmat[i, ] = cumsum(vecptsday)
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Now as the output in one simulation run, we get a matrix outmat of the simulated trajectories of the recruitment in
each centre.

Depending on the purpose, we can use matrix calculations to calculate country or global trajectories and calculate
different characteristics, e.g. time to reach a total sample size, time to reach country targets, etc.

By repeating this step many times, say, 104 simulation runs, we can calculate different summary statistics.

A computing time is quite small. To calculate the trajectories of the mean, median and predictive bounds for the global
recruitment over time using 104 runs, it takes seconds for N ≤ 100. For these cases, the predictions using analytic
expressions or simulation practically coincide.

4 Testing the recruitment rates for homogeneity

Consider a trial with N centres initiated at different times {ui, i = 1, . . . , N} and during the recruitment period consider
two disjoint intervals [a, b] and [c, d] (in months) where a < b < c < d. Define the observed number of patients in each
interval n[a, b] and n[c, d] and denote the total number of patients n[a, b, c, d] = n[a, b] + n[c, d].

For a given centre, define the duration of the active recruitment window in the interval [y, z] if the centre is initiated at
time u as the following function:

u(y, z, u) =

{
z − y if u < y
u− y if y ≤ u < z
0 if u ≥ z

(8)

Denote by U [a, b] and U [c, d] the total durations of recruitment windows in each interval, that means,

U [a, b] =
∑
i

u(a, b, ui); U [c, d] =
∑
i

u(c, d, ui) (9)

and put U [a, b, c, d] = U [a, b] + U [c, d].

4.1 Poisson-type test

Let us propose a non-parametric test using Poisson assumptions. Assume here a Poisson recruitment model.

Consider testing the hypothesis:

H0: The mean recruitment rates in both intervals are the same.

Lemma 4.1 Given the total number of patients n([a, b, c, d]) and hypothesis H0, the number of patients n([a, b]) has
a binomial distribution Bin(n([a, b, c, d]), p(a, b)) where

p(a, b) =
U [a, b]

U [a, b, c, d]

Proof. Under our assumptions, the numbers of patients n([a, b]) and n([c, d]) recruited in intervals [a, b] and [c, d],
respectively, are independent Poisson random variables with rates mU [a, b] and mU [c, d]. Therefore, the proof follows
from the known fact for Poisson variables. Indeed, consider two independent Poisson variables Π(a1) and Π(a2) with
parameters a1 and a2. Then the conditional distribution of Π(a1), given Π(a1) + Π(a2) = n, is a binomial distribution
Bin(n, p) with p = a1/(a1 + a2).

4.2 Criterion for testing hypothesis H0

Define two P -values:
Upper P -value

PUpp(a, b, c, d) = P(Bin(n([a, b, c, d]), p(a, b)) ≥ n([a, b])) (10)

Lower P -value
PLow(a, b, c, d) = P(Bin(n([a, b, c, d]), p(a, b)) ≤ n([a, b])) (11)

Consider some critical level, say, δ = 0.1. Then:
1) If PUpp(a, b, c, d) ≤ δ, with high probability the number of patients n([a, b]) is unusually large and it is likely that
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the mean recruitment rate in interval [a, b] is larger compared to interval [c, d].
2) Otherwise, the mean rate in interval [a, b] is smaller.

Correspondingly, we can detect intervals where the hypothesis H0 is not true. This allows us to detect intervals with
rather high or rather low recruitment rates.

Note that this test is non-parametric as it does not include the rate m which is beneficial.

The proposed approach is exact, it does not require estimation of the parameters, and can be used for any number of
centres and any number of recruited patients in any intervals.

As the next stage, we are coming to the following question. How many centres do we need to detect a particular
proportional difference in rates with a given confidence?

4.2.1 Dependence of P -values on the number of centres and duration of the intervals.

Let us analyze the dependence of the P -values defined in (10),(11) on the durations of active recruitment windows and
the number of centres for a time-dependent model.

Suppose that the rates for each centre in each interval [a, b] and [c, d] are the same and are equal to m1 in interval [a, b]
and m2 in interval [c, d], respectively. Let us analyze the dependence of PUpp on the values of rates and U [a, b] and
U [c, d].

This will allow to evaluate the number of centres needed for testing a particular difference in the rates m1,m2.

For simplicity of notation, let us use index j to define a particular interval (j = 1 corresponds to [a, b], j = 2 corresponds
to [c, d]). Correspondingly, denote by Uj the total duration of recruitment windows in interval j defined in (9).

Then the number of recruited patients nj in interval j is a Poisson random variable, πj = Π(mjUj), and the expression
for upper P -value can be written as

PUpp = P(X ≥ 0) (12)
where X = Bin(π1 + π2, p)− π1, p = U1/(U1 + U2).

Then the mean of X is calculated as:

E[X] = E[Bin(π1 + π2, p)]−E[π1] = E[π1 + π2]p−E[π1]

= m1U1(p− 1) +m2U2p =
U1U2

U1 + U2
(m2 −m1)

(13)

To calculate the variance, note that π1 and π2 are independent. Then, using the formula of total variance, we get

Var[X] = E[Var[X | n1, n2]] +Var[E[X | n1, n2]]

= E[(n1 + n2)p(1− p)] +Var[n1(p− 1) + n2p]

= (m1U1 +m2U2)p(1− p) +m1U1(p− 1)2 +m2U2p
2

=
U1U2

U1 + U2
(m1 +m2)

(14)

Note that in the real trials, the expressions for the mean and the variance of X are typically rather large as U1 and U2

are large. Therefore, we can consider a normal approximation for X in the form

X ≈ E[X] +
√
Var[X]Z (15)

where Z = N (0, 1) is a standard normal random variable. Then

PUpp = P(X ≥ 0) ≈ P

Z ≥
U1U2

U1+U2
(m1 −m2)√

U1U2

U1+U2
(m1 +m2)


= P

(
Z ≤

√
U1U2

U1 + U2

m2 −m1√
m1 +m2

) (16)

Note that if m1 > m2, then PUpp → 0 as U1, U2 → ∞. Likewise, if m1 < m2, PUpp → 1 as U1, U2 → ∞.

We investigate the properties of this test when m1 > m2 (the rate is decreasing).
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Figure 1: Dependence of the number of centres/sites N on the proportion q in the rates. Analytic results are shown by a
blue line and simulation results by a red one.

Note that the relation PUpp = δ can be approximated by the relation√
U1U2

U1 + U2

m2 −m1√
m1 +m2

= zδ (17)

where zδ is a δ-quantile of a standard normal distribution.

This relation has a general form and includes the total durations of recruitment windows U1, U2. To analyze the
dependence on the number of centres and durations of intervals, consider a specific case when all centres are active in
each interval, and there are Nj active centres in interval j.

In this case Uj = LjNj , j = 1, 2. Correspondingly,

E[X] =
N1L1N2L2

N1L1 +N2L2
(m2 −m1),Var[X] =

N1L1N2L2

N1L1 +N2L2
(m1 +m2) (18)

and the relation (17) has the form √
N1L1N2L2

N1L1 +N2L2

m2 −m1√
m1 +m2

= zδ (19)

In particular, if N1 = N2 = N , L1 = L2 = L and m2 = qm1 for q ∈ (0, 1) (the rate has decreased from interval 1 to
interval 2), then relation (19) implies

N =
2z2δ
m1L

· 1 + q

(1− q)2
(20)

Thus, N = O(1/(1 − q)2), and detecting small differences in rates requires many clinical centres, or we need to
increase the duration of the interval L.

Consider a numerical example. Let’s put δ = 0.1, m1 = 0.04 (patients per centre per day), L = 90 (days) and
q ∈ (0.5, 0.9]. Figure 1 shows how many centres are required to detect the proportion in the rates q with confidence
level 90% (PUpp ≤ 0.1). If q is closer to 1, the number of centres is growing as 1/(1− q)2.

In Figure 1, analytic results based on the normal approximation are shown by a blue line. The curve for the number of
centres obtained by using Monte Carlo simulation which is performed according to Section 4.3.1 is shown by a red line.
Note that both curves nearly coincide. That means, for evaluating the performance of Poisson test we can use analytic
results based on simpler relation (20).

4.3 The power of a Poisson test

The power of a Poisson test can be evaluated using Monte Carlo simulation. We consider here a special case where
N1 = N2 = N , L1 = L2 = L and m2 = qm1 for q ∈ (0, 1).

9
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P -values are defined as in (10), (11) and for our case have the form

PUpp = P(Bin(n, p) ≥ n1)

PLow = P(Bin(n, p) ≤ n1)
(21)

where n = n1 + n2, nj is the number of recruited patients in interval j, and p = N1L1/(N1L1 +N2L2).

Criterion using P -values:
For a given confidence level δ,
if PUpp ≤ δ, we assume that m1 > m2;
if PLow ≤ δ, we assume that m1 < m2.

Let us investigate the dependence of these quantities as random variables depending on the observed data (n1, n2).

Consider the approach for testing both hypotheses and analyzing the properties of this test and its power.

Consider first the upper P -value and given some hypothesis H define a statistic

TH = TH(n1, n2) = PH(Bin(n1 + n2, p) ≥ n1 | (n1, n2)) (22)

where PH() is P -value but now it is considered as a random function depending on (n1, n2).

Consider testing two hypotheses
1. H0: m1 = m2 = m
2. H1: m2 = qm1 where q ∈ (0, 1)

Define the probability of a Type I error δ (usually it is denoted as α, but α is already reserved for the shape parameter of
a gamma distribution).

Then, using the hypothesis H0, we need to define a significance level a(δ) (critical region) such that for a given δ,

P(TH0
(n1, n2) ≤ a(δ)) = δ (23)

It is known that under hypothesis H0, for a continuous distribution, P -value has a uniform distribution, and this is also
confirmed by simulations for our model. Therefore, as the initial approximation we can choose a(δ) = δ. However, in
our case we have a discrete distribution, thus, a more precise evaluation of the value a(δ) can be done using Monte
Carlo simulation with up to 106 runs.

Consider now the hypothesis H1 and define the power of the test as

P(TH1(n1, n2) ≤ a(δ)) = 1− ε (24)

where ε is a probability of a Type II error, known as a "false negative". The value 1− ε is a probability of correctly
rejecting the null hypothesis H0 given H1.

Consider now the behavior of the power for some cases of mi, Ni and Li using Monte Carlo simulation. Note that
E[TH1

(n1, n2)] = PUpp as defined in (21). Therefore, when we use the criterion

PUpp ≤ a(δ) (25)

to detect a difference in rates, if the relation (25) holds, this does not mean that with high probability

TH1
(n1, n2) ≤ a(δ) (26)

This is confirmed later based on a large number of Monte Carlo simulations. Thus, in general the test in the form (25)
does not guarantee a high power of this test and this depends on the variance of TH1

(n1, n2).

4.3.1 Simulation results

In Figure 1, the calculation of the number of centres is based on the normal approximation using (20). However, the
required number of centres can be calculated nearly exactly using Monte Carlo simulation of 106 runs.

For this purpose we need to evaluate by simulation for every
q = 0.5, 0.55, . . . , 0.85, 0.9, the minimal N such that in (26)

E[TH1
(n1, n2)] ≤ δ

10
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Table 1: P -values and Power for different proportions of mean rates m1, m2

Proportion-q Sites-Number Bound_Type-I-error Pvalue_H0 Pvalue_H1 Power

0.5 7 0.093 0.540 0.088 0.729
0.55 8 0.096 0.537 0.101 0.697
0.6 11 0.098 0.532 0.092 0.722
0.65 14 0.092 0.528 0.097 0.695
0.7 19 0.094 0.524 0.099 0.695
0.75 28 0.097 0.519 0.098 0.704
0.8 44 0.099 0.516 0.099 0.705
0.85 78 0.092 0.512 0.101 0.685
0.9 179 0.096 0.508 0.1 0.694

Then the calculated nearly exact numbers of centres needed to detect the difference using criterion (25) are (7, 8, 11, 14,
19, 28, 44, 78, 179), as reflected in Figure 1. It’s interesting to note that when we use these numbers, the power of test
defined in (24) varies in the range 0.7-0.73, so, not so large.

Correspondingly, to get a larger power, say, 80%, the number of centres should be increased. This will be explored
further in the next part.

4.3.2 Analysis of the power of the test PUpp ≤ δ

Consider now the analysis of the power of the test PUpp ≤ δ using relation (24). Consider the same scenario as above,
m1 = 0.04 (patients per centre per day);
m2 = qm1; L1 = L2 = L and L = 90 (days); δ = 0.1.

Let us evaluate the power of the test PUpp ≤ δ for any given q = 0.5, 0.55, . . . , 0.85, 0.9, using a corresponding number
of centres N(q) from the vector (7, 8, . . . , 78, 179) calculated as shown above using Monte Carlo simulation.

Consider Monte Carlo simulation using 106 independent runs of three different vectors:
vector vec.n1 of the number of patients n1 in the 1st interval with mean rate m1,
vector vec.n2,H0

of the number of patients n2 in the 2nd interval for hypothesis H0 (simulation when m2 = m1),
and vector vec.n2,H1

for hypothesis H1, when m2 = qm1.

As the result, we get three independently simulated vectors, vec.n1, vec.n2,H0 , vec.n2,H1 .

First, we evaluate the value a(δ) in the relation (23) using data set vec.n1, vec.n2,H0
related to H0.

Then, using the part of simulated data set related to H1, vec.n1, vec.n2,H1 , we evaluate the power of the test
P(TH1

(n1, n2) ≤ a(δ)) (27)

Table 1 shows that for every q the evaluated value a(δ) in the column "Bound_Type-I-error" is very close to δ = 0.1, as
expected. The P -value for hypothesis H0 is about 0.5 and the P -value for hypothesis H1 is about 0.1, which is also
expected.

Nevertheless, the power of this test is about 0.7 for all values q. It is also expected that the power can be less than
1− δ = 0.9.

Therefore, this raises another question of interest. What should be the minimal number of centres required to reach a
particular level of the power? Let us consider a numeric solution to this problem for the case when required power is
80%.

Then, for any given q = 0.5, 0.55, . . . , 0.85, 0.9, according to (24), using Monte Carlo simulation with 106 runs, we
need to find a minimal N(q, 2) such that the probability

P(TH1
(n1, n2) ≤ a(δ)) ≥ 80% (28)

where the values (n1, n2) are simulated for a given scenario under H1, so we use vectors vec.n1 and vec.n2,H1 .

Table 2 shows the results, where the column "Sites-Number" provides the required number of centres/sites to get power
80%.

Here we can see again that the P -value for hypothesis H0 is about 0.5 as expected, however, the P -value for hypothesis
H1 is now lower and is about 0.06. This is also expected as the number of centres is larger compared to the previous
case, thus, given hypothesis H1, the P -value should be less.

11
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Table 2: The optimal number of centres/sites to reach power 0.8 for different proportions of mean rates m1, m2

Proportion-q Sites-Number Bound_Type-I-error Pvalue_H0 Pvalue_H1 Power

0.5 9 0.097 0.535 0.059 0.821
0.55 11 0.099 0.531 0.063 0.810
0.6 15 0.094 0.527 0.057 0.821
0.65 19 0.095 0.525 0.062 0.806
0.7 26 0.097 0.521 0.064 0.804
0.75 38 0.100 0.517 0.064 0.808
0.8 62 0.092 0.513 0.061 0.803
0.85 111 0.094 0.510 0.063 0.803
0.9 249 0.096 0.507 0.065 0.801

Table 3: Comparing the number of centres/sites to get Upper Pvalue ≤ 0.1 and to reach Power=0.8 for different
proportions of mean rates m1, m2

Proportion-q 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

N-sites-Pvalue test 7 8 11 14 19 28 44 78 179
N-sites-Power-0.8 9 11 15 19 26 38 62 111 249

Table 3 shows the comparison of the number of centres for using P -value test and for using power of the test 80% using
columns "Sites-Number" from tables 2 and 3. This is also shown visually in Figure 2.

Note that for a not so high proportion q, say q ≤ 0.8, these values don’t differ much, though of course the numbers of
centres required to reach a higher power are visibly larger.

Nevertheless, when using test (21), in practice if the test does not show a difference in rates, which means, P -value is
not a small value, we should not expect non-homogeneity in the rates.

However, if P -value is small, say ≤ 0.1, according to power calculations, with a reasonable probability which can be
even around 70%, we may expect that the mean rates in these two intervals are different.

In this case it can be recommended to consider a Poisson-gamma test described in Section 4.5 which is based on
calculating P -values using a Poisson-gamma recruitment model.
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Figure 2: Comparing the number of centres/sites required to get PUpp ≤ 0.1 (blue line) with the number of centres/sites
required to reach Power=0.8 (red line) for different proportion of mean rates m1, m2.
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4.4 Poisson parametric test

Let us consider another approach which is based on using estimated rates for a Poisson model in the total interval of
observations for calculating P -values for any given sub-interval.

Consider again two disjoint intervals J1 = [a, b] and J2 = [c, d] of length L1 and L2 with the number of active centres
in these intervals N1 and N2. Assume for simplicity that the centres are active during each interval. Then the duration
of the total recruitment window in interval Jj is Uj = NjLj , j = 1, 2.

Assume Poisson model assumptions. Suppose the rates for each centre in these intervals are m1 and m2 (per centre
per day), respectively. That means, the number of recruited patients nj in interval Jj is a Poisson random variable,
πj = Π(mjUj).

Consider testing a hypothesis H0 that m1 = m2 = m.

Denote the observed data (number of recruited patients) in each interval by n1 and n2 and put n = n1 + n2.

Then for a Poisson model, given H0, the estimated rate m̂ in the union of the intervals J1 ∪ J2 is

m̂ =
n1 + n2

U1 + U2
=

n

U
(29)

where U = U1 + U2. Correspondingly, define for interval J1 the lower and upper P -values as
PUpp = P(Π(m̂U1) ≥ n1)

PLow = P(Π(m̂U1) ≤ n1)
(30)

These relations can be re-written in the form
PUpp = P(Π(np) ≥ n1)

PLow = P(Π(np) ≤ n1)
(31)

where
p =

U1

U1 + U2

It’s interesting that for the previous non-parametric test, P -values have a similar form given in (21) where a binomial
distribution is used instead of a Poisson one. Note also that for a given n,

Var[Bin(n, p)] = np(1− p) < Var[Π(np)] = np

Therefore, it is expected that the first non-parametric test is more powerful (requires lower number of centres to detect a
difference in means).

Note also that the approach in this section uses the estimated mean rate, and this is another reason to expect that the first
non-parametric test is more powerful. This is supported by calculations below.

4.4.1 Analysis of P -values

Let us now investigate the dependence of P -values in (31) on mj , Nj and Lj assuming the general case of possibly
different m1,m2. This will allow us to evaluate the number of centres needed for testing a particular difference in the
rates m1,m2 and compare with the first test.

Note that
PUpp = P(Π(np) ≥ n1) = P(Π(np)− n1 ≥ 0)

Consider now the expression X2 = Π((π1 + π2)p)− π1. Then the calculations below follow similar steps as in Section
4.2.1. As E[πj ] = mjUj ,

E[X2] = E[Π((π1 + π2)p)]−E[π1] = E[π1 + π2]p−E[π1]

= E[π1](p− 1) +E[π2]p =
U1U2

U1 + U2
(m2 −m1)

(32)

Note that Var[Π((π1+π2)p) | π1, π2] = (π1+π2)p, Var[πj ] = mjUj . Therefore, the formula of total variance gives
Var[X2] = E[Var[X2 | π1, π2]] +Var[E[X2 | π1, π2]]

= E[(π1 + π2)p] +Var[π1(p− 1) + π2p]

= (m1U1 +m2U2)p+m1U1(p− 1)2 +m2U2p
2

=
1

U2

(
m1U1(U1(U1 + U2) + U2

2 ) +m2U1U2(2U1 + U2)
) (33)

13
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If to compare the expressions above for E[X2] and Var[X2] with the expressions (13) and (14) for E[X] and Var[X]
in the first Poisson test, one can see that the mean is the same, however, it’s easy to calculate that

Var[X2]−Var[X] =
1

U2
(U3

1m1 + U2
1U2m2) > 0

Denote
D =

√
m1U1(U1(U1 + U2) + U2

2 ) +m2U1U2(2U1 + U2) (34)

Now consider an approximation for X2 by a normal distribution similar to (15):

X2 ≈ E[X2] +
√
Var[X2] · Z

=
U1U2

U1 + U2
(m2 −m1) +

D

U1 + U2
· Z

Then

PUpp ≈ P(X2 ≥ 0) = P

(
Z ≥

U1U2

U1+U2
(m1 −m2)√
Var[X2]

)
(35)

and similarly for PLow.

Note that for m1 > m2, as Var[X2] > Var[X], the value PUpp in (35) above is greater than PUpp in the first Poisson
test, see (16). That means, using a parametric test we need to increase the values U1 and U2, or correspondingly,
increase the number of centres N , to reach the same level δ compared to a non-parametric test.

Consider now a particular case when L1 = L2 = L and N1 = N2 = N . Then using similar calculations we get the
relation for N required to reach a particular confidence level δ:

N =
3z2δ
m1L

· 1 + q

(1− q)2
(36)

Here it is clearly visible that N required for a parametric test is greater compared to (20) for a non-parametric one.

4.5 Poisson-gamma test

Consider an approach for testing the hypothesis H0 that parameters (α, β) of the PG model are the same for two disjoint
intervals [a, b] and [c, d]. Assume there is possibly a different number of centres in these intervals.

Consider combining data in both intervals. Then, estimate parameters (α, β) of a PG model using this data and
maximum likelihood technique described in [1, 5]. In each interval, using estimated parameters (α̂, β̂) and active
recruitment windows, we can create the predictive PG distribution.

Suppose we have some schedule of centre initiations for N centres given by (u1, . . . , uN ). Then we have N1 centres
active in interval [a, b], and N2 centres active in interval [c, d] (not necessarily N1 = N2). For each interval, say, [a, b],
define the duration of the active recruitment window for centre i using (8), as vi = u(a, b, ui), and correspondingly for
interval [c, d].

Denote the pools of active centres as I1 and I2 for intervals j = 1, 2, [a, b] and [c, d], respectively. Then in interval j we
have the data (ki, vi), the number of patients recruited and the centre’s active recruitment window.

Now, for every centre combine data from intervals j = 1, 2 to get data (ki, vi), i ∈ I1 ∪ I2, the total number of patients
and total active recruitment window which is the sum of windows on both intervals (for simplicity keep the same
notation ki, vi for the total patients and sum of windows).

We can use this data to estimate parameters of a PG model, e.g. using maximum likelihood technique and numerical
optimisation (assuming we have a suitable amount of data). For data of N centres, {(ki, vi), i = 1, . . . , N}, the
log-likelihood L(α, β) has the form, [1, 5]:

N∑
i=1

[ln Γ(α+ ki) + α lnβ − ln Γ(α)− (α+ ki) ln(β + vi) + ki ln vi − ln(ki!)]

Now, given estimated parameters (α̂, β̂) using the union of the intervals, denote m = α̂/β̂, s2 = α̂/β̂2.
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In interval j with pool of active centres Ij , consider the country mean and variance of the cumulative rate. So we have

E(Ij) = m
∑
i∈Ij

vi, S2(Ij) = s2
∑
i∈Ij

v2i

Introduce the variables

A(Ij) = E2(Ij)/S
2(Ij), B(Ij) = E(Ij)/S

2(Ij)

In [9] it was proved that the number of recruited patients nj in interval j can be approximated by a PG vari-
able PG(A(Ij), B(Ij)) with parameters (A(Ij), B(Ij)), where PG(A,B) is a mixed Poisson variable with the rate
Ga(A,B). Now we can define the upper and lower P -values in interval j as

PUpp(Ij) = P(PG(A(Ij), B(Ij)) ≥ nj)

PLow(Ij) = P(PG(A(Ij), B(Ij)) ≤ nj)
(37)

where nj =
∑

i∈Ij
ki is the total number of patients recruited in the pool of centres Ij in corresponding interval j.

To calculate these P -values, we can use the cumulative probability function of a negative binomial distribution in R via
the relation:

P(PG(A(Ij), B(Ij)) ≤ k) = pnbinom
(
k, size =

E2(Ij)

S2(Ij)
, prob =

E(Ij)

E(Ij) + S2(Ij)

)

4.5.1 Some analytic considerations

To analyze the dependence on the number of centres consider a particular case when all centres are active during
the whole intervals. Define by L1 and L2 the durations of intervals. Then E(Ij) = mNjLj , S2(Ij) = s2NjL

2
j , so

A(Ij) =
m2

s2 Nj , B(Ij) =
m

s2Lj
, and

PUpp(Ij) = P

(
PG
(
m2

s2
Nj ,

m

s2Lj

)
≥ nj

)
PLow(Ij) = P

(
PG
(
m2

s2
Nj ,

m

s2Lj

)
≤ nj

) (38)

Now consider the behavior of values in (38) when hypothesis H0 is not true. That means we may have different
parameters of a PG model (mj , s

2
j ) in different intervals. Note that the parameters (m, s2) in the relations above are

estimated using data in the union of intervals assuming H0. Now, as E[Πλ(t)] = E[λ]t, using the method of moments
estimates, approximately,

m ≈ n1 + n2

N1L1 +N2L2
=

n1

N1L1

N1L1

N1L1 +N2L2
+

n2

N2L2

N2L2

N1L1 +N2L2
(39)

Note that nj is a PG variable with parameters (Aj , Bj), where Aj =
m2

j

s2j
Nj , Bj =

mj

s2jLj
and E[nj ] = mjNjLj . Then,

mj ≈ nj

NjLj
, and from (39),

m ≈ m1
N1L1

N1L1 +N2L2
+m2

N2L2

N1L1 +N2L2
(40)

So, if m1 > m2, then the estimated value m using a union of intervals satisfies the relation m1 > m > m2.

However, under H0, E[PG(A(Ij), B(Ij))] = mNjLj . Thus, if j = 1 in (38) for PUpp, using the means of the left and
right-hand side parts under the sign of probability we have

E[PG(A(I1), B(I1))] = mN1L1 < E[n1] = m1N1L1.

Thus, as N1 → ∞, N2 → ∞, the right-hand side has a higher order of tendency to ∞, thus PUpp → 0, and we can use
this test to detect the case when m1 > m2.
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Figure 3: Dependence of the number of centres needed to detect the difference in rates by Monte Carlo simulation.

4.6 PG criterion power testing

We follow the same methodology and scenario as given in Section 4.3. Again, consider a scenario where:
m1 = 0.04 (patients per centre per day);
m2 = qm1; L1 = L2 = L and L = 90 (days); δ = 0.1.
Also, consider the shape parameter α = 1/1.22 for all centres in both intervals (recall that we are assuming N1 =
N2 = N ).

Now, using Monte Carlo simulation we need to find the minimal N such that E[TH1
(n1, n2)] ≤ δ. For a given value

of q, this is calculated numerically by using a sequence of N and selecting the smallest N so that this inequality is
satisfied. In calculation of P -values for the PG test, we use maximum likelihood approach for estimation of parameters
over the joint intervals.

For each run of Monte Carlo simulation, interval data is generated using a Poisson-gamma process where N gamma
variables vecla = (λ1, . . . , λN ) are simulated for N different centres. Then, in the first interval, we generate N Poisson
variables using recruitment rates vecla. In the second interval, for hypothesis H0, we generate data using the same
rates. For hypothesis H1, in the second interval we use rates q × vecla to account for changing rate parameters.

For values q = 0.5, 0.55, . . . , 0.85, 0.9, Figure 3 demonstrates the dependence of N on q for this particular scenario.
Note that these values are close to exact values and will be even closer given a larger simulation number > 105.

4.6.1 Analysis of the power of the test PUpp ≤ δ

Consider the same scenario as above. Let us evaluate the power of the test PUpp ≤ δ for the vector of q values
(0.5, 0.55, . . . , 0.85, 0.9), using a corresponding number of centres N(q) from the vector (34, 45,. . . , 440, 1030)
calculated as shown above by simulation.

Now we use Monte Carlo simulation with 105 runs by simulating the number of patients in the first interval using rates
vecla. In the second interval, use rates vecla and q × vecla, corresponding to hypotheses H0 and H1 respectively. As
the result we get three simulated vectors, vec.n1, vec.n2,H0

, vec.n2,H1
, which are the vectors of the number of patients

recruited in each site.

First we evaluate the value a(δ) in the relation P(TH0(n1, n2) ≤ a(δ)) = δ using data set vec.n1, vec.n2,H0 related to
H0.

Then, using the part of simulated data set related to H1, vec.n1, vec.n2,H1
, we evaluate the power of the test

P(TH1
(n1, n2) ≤ a(δ)). Table 4 shows the results.

We can also provide a solution of this problem for the case of power equal to 80%. For this case, we must find
minimal N such that P(TH1

(n1, n2) ≤ a(δ)) ≥ 1 − ε with ε = 0.2. Table 5 shows the results, where the column
"Sites-Number" provides the required number of centres/sites to get 80% power.
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Table 4: P -values and Power for different proportions of mean rates m1, m2

Proportion-q Sites-Number Bound_Type-I-error Pvalue_H0 Pvalue_H1 Power

0.5 34 0.066 0.517 0.098 0.657
0.55 45 0.061 0.517 0.098 0.647
0.6 59 0.063 0.514 0.099 0.655
0.65 76 0.066 0.513 0.101 0.653
0.7 109 0.066 0.512 0.099 0.663
0.75 157 0.068 0.509 0.100 0.665
0.8 251 0.070 0.507 0.100 0.669
0.85 440 0.072 0.504 0.102 0.664
0.9 1030 0.074 0.502 0.100 0.679

Table 5: The optimal number of centres/sites to reach power 0.8 for different proportions of mean rates m1, m2

Proportion-q Sites-Number Bound_Type-I-error Pvalue_H0 Pvalue_H1 Power

0.5 85 0.069 0.512 0.055 0.810
0.55 107 0.066 0.511 0.057 0.799
0.6 138 0.068 0.507 0.059 0.800
0.65 179 0.067 0.510 0.060 0.793
0.7 246 0.068 0.509 0.061 0.794
0.75 352 0.072 0.506 0.060 0.801
0.8 570 0.074 0.504 0.060 0.805
0.85 1002 0.073 0.504 0.061 0.799
0.9 2000 0.073 0.503 0.067 0.782

Here we can see that the number of centres is much larger in order to obtain a power of 80%, and the P -value for
hypothesis H1 is now much lower and is about 0.06. Table 6 shows the comparison of the number of centres for both
approaches. Note that the difference in values differs quite a bit, with more than 50 extra centres needed for power of
80%. This is also shown visually in Figure 4.

As this test involves estimating parameters, it can be oriented to trials with quite large number of centres and patients
recruited. The properties of this test can be evaluated using Monte Carlo simulation. Correspondingly, to detect the
proportional difference in the mean rates, it is required more centres compared to Poisson test.

Note that the Poisson test is more conservative as the random variation in the number of recruited patients is larger for a
PG model. Therefore, it can be the case when Poisson test shows time-dependence, but in reality this is just explained
by random fluctuations. In this case it is recommended to apply a PG test as the next step. However, if Poisson test
doesn’t show time-dependence, there is no need to additionally use a PG test.

5 Simulation example using non-homogeneous rates

Consider simulating some artificial data in R using time-dependent rates as outlined in Section 3.2.1. We compare a
moving window approach with the classic approach using all data, where rate estimation is performed using a maximum
likelihood technique. We also apply the Poisson and Poisson-gamma rate tests to the artificial data.

Table 6: Comparing the number of centres/sites to get upper P -value ≤ 0.1 and to reach power 0.8 for different
proportions of mean rates m1, m2

Proportion-q 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

N-sites-Pvalue test 34 45 59 76 109 157 251 440 1030
N-sites-Power-0.8 85 107 138 179 246 352 570 1002 2000

17



Recruitment forecasting using time-dependent Poisson-gamma model

0.5 0.6 0.7 0.8 0.9

0
50

0
10

00
15

00
20

00

Comparison of the minimum number of sites needed for delta<0.1 and Power = 80%

Proportion q

N
um

be
r o

f S
ite

s

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

34 45 59 76 109 157
251

440

1030

85 107 138 179 246
352

570

1002

2000

Figure 4: Comparing the number of centres/sites required to get Upper P -value ≤ 0.1 (blue line) with the number of
centres/sites required to reach Power of 0.8 (red line) for different proportion of mean rates m1, m2.

Consider the following parameters of simulation:

– 200 centres where each centre has mean rate 0.02 and coefficient of variation of 1.2. So, for each centre i,
αi = 1/1.22 and βi = αi/0.02

– Centres activated within 4 months using uniform grid
– In each centre i, the rate λir(t) has the following form:

Exponential decrease over 400 days from 2.5× (the mean rate) to 0.2× (the mean rate) (shown in Figure 5)
– Recruitment target of 1000 patients to be recruited in 400 days

Then, a time-dependent PG process can be simulated using technique described in Section 3.2 and we can perform rate
testing at some interim time, specifying some intervals and interval width to test on.

Consider simulating data for 400 days, ensuring recruitment target is reached, and then consider an interim time of 200
days.

We can look at the average global rate over time. If each centre i has simulation rate parameters (αi, βi) and rate
function ri(t), then the mean rate at time t is αi

βi
ri(t). Then we can average over all centres at time t, as shown in

Figure 5. In the following simulation, ri(t) and parameters (αi, βi) are the same across all centres.

The simulated trajectory of recruitment is shown in Figure 6. Note that the global target of 1000 was reached on day
384.

Given an interim time of 200 days, we can perform rate testing on two adjacent, disjoint intervals of 60 days. Both
Poisson and Poisson-gamma tests were able to detect a declining rate between days 80-140 and 140-200 using the
simulated data.

Now, given a detected rate change, we can use a moving window approach, where we use only the latest 60 days of data
and maximum likelihood technique for estimating rate parameters for future prediction.

Consider two approaches for prediction: using all data from the start and using only the latest 60 days of data.

The results using all data were an estimated mean completion date on day 269 with lower and upper bounds of 263 and
274. This gave a probability of success of 1. The results using only the most recent 60 days of data gave an estimated
mean completion date on day 287, with lower and upper bounds of 279 and 295, and also a probability of success of 1.
Lower and upper bounds are calculated with 80% confidence interval.

The results are shown visually in Figure 7 using all data, and Figure 8 using the moving window approach.

It can be seen that using a moving window approach after rate-testing detects a change can give slightly more accurate
prediction and is better suited to recent data. This approach is an improvement upon the standard approach when rates
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Figure 5: Average global rate function with exponential decay.
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Figure 6: Simulated trajectory of recruitment in all centres with time in days.

are declining steadily. However, if rates continue to decline then predictions can be poor as future time-dependence and
rate decline is not considered.

Note that using a smaller window of data may improve prediction, but rate tests may not be able to successfully detect a
changing rate using small intervals for testing. Also, rate estimation in a small window may give unreliable estimates
when the amount of data is small.

A more advanced approach can be to use the methodology outlined in Section 3. First, assuming the rate function r(t)
is known, we can apply a maximum likelihood approach as in Section 3.1. For our simulated data, this gave a estimated
mean completion data on day 391 with lower and upper bounds of 363 and 425. Here, the probability of success to
complete recruitment in 400 days was 0.645.

The results are shown visually in Figure 9. It is clear that the approach when r(t) is known yields superior predictions
over the previous approaches. However, in reality the function r(t) is not known, so the main task is to suitably
approximate the rate function and estimate the form of the function through the use of previous data.

Similar scenarios can also be considered, where recruitment is coming from centres in countries with different rate
parameters and forms of rate function r(t). The conclusions will be similar to the above.

19



Recruitment forecasting using time-dependent Poisson-gamma model

0 50 100 150

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Remaining trajectory with predictive curves

Remaining time

E
nr

ol
le

d 
su

bj
ec

ts

Figure 7: Reprojection at 200 days using all data and maximum likelihood technique. Reprojected mean and bounds in
blue, global target in red.
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Figure 8: Reprojection at 200 days using most recent 60 days of data and standard maximum likelihood technique.
Reprojected mean and bounds in blue, global target in red.
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Figure 9: Reprojection at 200 days using time-dependent maximum likelihood technique, assuming r(t) is known.
Reprojected mean and bounds in blue, global target in red.

6 Implementations

To verify how the technique for modelling and forecasting non-homogeneous patient recruitment in clinical trials is
working, there were considered different case studies using artificial data and exhaustive Monte Carlo simulation.

At the initial stage when we only have planned rates and some schedule of centre initiation, a few specific forms of
function r(t) including piece-wise linear dependence and exponential decay over time were considered. Recruitment
was simulated using technique proposed in Section 3.2 and prediction of the recruitment was created using the analytic
technique proposed in Section 3. The results shows a perfect coincidence of the analytically calculated mean and
predictive bounds with the results of simulation even for not so large number of clinical centres.

At the interim stage, first it is recommended to test the recruitment rates on time-dependence using two previous
time-intervals and the developed Poisson and PG criteria. If the tests do not show any time-dependence, for predicting
future recruitment we can use a standard PG model and the techniques developed in [5].

However, if the tests show time-dependence, there can be different options. One way can be to use a window of the
most recent data, e.g. 3 months, and create predictions using the same technique as in [5]. In this case, the recruitment
rates will use only the latest 3-months of data and will be adjusted to the time-trend by repeating this procedure at every
interim time in the future. Results from simulation show that when rates are changing monotonically, this approach is
an improvement over the techniques in [5] .

Another more advanced opportunity can be to assume some particular time-dependence, say, linear or exponential
function r(t). Then, we can estimate parameters of the rates and of the function r(t) using data in moving window
and maximum likelihood technique, and then use these parameters for predicting future recruitment using the analytic
technique proposed in Section 3.

The results of simulation of several scenarios show that if the rate is steadily changing over time (linear or exponential
increase/decrease), both approaches show improved results compared to using a standard PG model, where the second
approach is also outperforming the first one.
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