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“Mathematics is the science of learning how not to compute”.

—Heinrich Maschke (1853–1908); see [[1], p. 667].

1. Introduction

There are very many papers and some books on the so-called Halting Probability  , also known as

Chaitin’s Constant or Chaitin’s Number. Our aim is to see if    de�nes a probability for the halting

problem. And if so, on what measure? What is the distribution of that probability? What is the sample

space? We will give a systematic understanding, with a very brief history, of this number and will

suggest some measures based on which a halting probability can be de�ned, with all the glory of

mathematical rigour. Let us observe right away that a real number cannot be called a probability if it is

just between   and  ; there should be a measure and a space for a probability that satis�es Kolmogorov

axioms (see e.g.  [2]): that    and  , where    is the sample space,    is an

arbitrary indexed family of pairwise disjoint subsets of  , and the partial function   is

the probability measure (de�ned on the so-called measurable subsets of  ).

The number   was introduced by Chaitin [[3], p. 337] in 1975, when it was denoted by  . The symbol 

 appears in Chaitin’s second Scienti�c American paper [4], where it was de�ned as the probability that
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“a completely random program will halt” (p. 80). This is sometimes called “the secret number”, “the

magic number”, “the number of wisdom”, etc. [[5], p. 178]; it is also claimed “to hold the mysteries of

the universe”  [6]. It was stated in  [7]  that, “The �rst example of a random real was Chaitin’s  ”

(p.  1411); but as Barmpalias put it in [[8], p. 180, fn. 9], “Before Chaitin’s discovery, the most concrete

Martin-Löf random real known was a  -quanti�er de�nable number exhibited [by] Zvonkin and

Levin” (in 1970).

Let us look at the formal de�nition of   rigorously.

De�nition 1 (binary code, length, ASCII code)

Let   be the set of all the �nite strings of the symbols (binary bits)   and  .

For a string  , let   denote its length.

Every program has a unique ASCII code [9] which is a binary string. This is called the binary code of

the program. 

Example 1 (binary code, length, ASCII code)

The object   is a binary string and its length is  .

The ASCII code of the symbol @ is 01000000 and 00100000 is the ASCII code of the blank space,

produced by the space bar in the keyboard. 

Example 2 (binary code of a program)

Let us consider the command

BEEP

in e.g. the BASIC programming language; it produces the actual “beep” sound through the sound card

of the computer hardware. The binary code of this command is the concatenation of the ASCII codes

of the capital letters B (which is 01000010), E (which is 01000101), E (the same), and P (which is

01010000), building together the �nite binary string  . 

For de�ning  , Chaitin gave the main idea as, “The idea is you generate each bit of a program by

tossing a coin and ask what is the probability that it halts.” [[10], p. 151}]. By “program”, Chaitin meant

an input-free program, and by “bit” of a program, he meant any of 0’s and 1’s in its binary (ASCII)

code.

Example 3 (Programs: Input-Free, Halting, and Non-halting)

Consider the following three programs over a �xed programming language, where the variables   and 

 range over the natural numbers.

Ω

2

Ω

{0,1}∗
0 1

σ ∈ {0,1}∗ |σ|

⋄

01001 |01001| = 5

⋄

01000010010001010100010101010000 ⋄

Ω

i

n
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Program 1 and Program 2 do not take any input, while Program 3 takes some input (from the user) and

then starts running. Program 1 never halts (loops forever) after it starts running, but Program 2 halts

eventually (when   reaches  ). Program 3 takes the input   and halts on some values of   (when  )

and loops forever on others (when  ). 

As Chaitin took “programs” for “input-free programs”, we will also use these terms interchangeably;

so, we disregard the programs that take some inputs and consider only input-free programs. The

number   was de�ned by Chaitin as follows:

What exactly is the halting probability? I’ve written down an expression for it: 

. [...] If you generate a computer program at random by tossing a coin for

each bit of the program, what is the chance that the program will halt? You’re thinking

of programs as bit strings, and you generate each bit by an independent toss of a fair coin

[[10], p. 150}].

Actually, for an arbitrary set   of binary strings, one can de�ne   as follows:

De�nitions 2 

For a set of binary strings  , let  . 

Example 4 

We have  ,  , and  . We also have 

. 

De�nitions 3 

Let    denote the set of the binary codes of all the input-free programs over a �xed programming

language.

n 9 i i i ⩾ 9

i < 9 ⋄

Ω

Ω = ∑p halts 2−|p|

S ΩS

( )ΩS

S ⊆ {0,1}∗ =ΩS ∑σ∈S 2−|σ| ⋄

( )ΩS

= 1/2Ω{0} = 3/4 =Ω{0,00} Ω{1,00} = 5/4Ω{0,1,00}

= 1Ω{1,00,010,0110,01110,011110,…} ⋄

(P, H)

P
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Over that �xed language, let   denote the set of the binary codes of all those input-free programs that

halt after running (eventually stop; do not loop forever). 

De�nition 4 (The Omega Number)

Let   the number   (see De�nitions 2 and 3). 

This �nishes our mathematical de�nition of the Omega Number. Let us notice that “the precise

numerical value of [ ] depends on the choice [of the �xed] programming language” [[11], 236].

2. Measuring Up the Omega Number.

The number    as de�ned in De�nition  4 may not lie in the interval    and so may not be the

probability of anything. As Chaitin warned,

there’s a technical detail which is very important and didn’t work in the early version of

algorithmic information theory. You couldn’t write this:  . It would give

in�nity. The technical detail is that no extension of a valid program is a valid program.

Then this sum   turns out to be between zero and one. Otherwise it turns

out to be in�nity. It only took ten years until I got it right. The original 1960s version of

algorithmic information theory is wrong. One of the reasons it’s wrong is that you can’t

even de�ne this number. In 1974 I redid algorithmic information theory with ‘self-

delimiting’ programs and then I discovered the halting probability,   [[10], p. 150].

De�nition 5 (Pre�x-Free)

A set of binary strings is pre�x-free when none of its elements is a proper pre�x of another element. 

Example 5 (Pre�x-Free)

The sets   and   are both pre�x-free, but their union   is not, since 0 is a pre�x of 00;

neither is the set  . The following in�nite set is also pre�x-free: 

 (see Example 4). 

The Omega of every pre�x-free set is non-greater than one. This is known as Kraft’s

Inequality [12] and will be proved in the following (Proposition 1).

De�nition 6 (binary expansion in base 2)

Every natural number has a binary expansion (in base 2) which is a �nite binary string that starts with 

; it is to say that every    can be written as  , where 

H

⋄

Ω ΩH ⋄

Ω

Ω [0, 1]

Ω = ∑p halts 2−|p|

Ω = ∑p halts 2−|p|

Ω

⋄

{0} {1,00} {0,1,00}

{0,00}

{1,00,010,0110,01110,011110, …} ⋄

1 n ∈ N n = (( … ) =xkxk−1 x2x1x0 )2 ∑k
i=0 xi2i
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, for  , and  .

Every real number    in the unit interval    has a binary expansion (in base 2) as 

, where  , for    (see  [2]). This expansion could

be �nite or in�nite. 

Example 6 (binary expansion in base 2)

We have  ,  ,  ,  , and 

. 

Remark 1 (Uniqueness)

Every natural number has a unique binary expansion, which is a �nite binary string. The in�nite

binary expansion of any real number in   is unique. 

De�nition 7 ( )

For a binary string  , let   be the interval  , which consists of all the

real numbers in   whose in�nite binary expansions after   contain   as a pre�x (cf. [2]).

Denote the Lebesgue measure on the real line by  . 

Example 7 ( )

We have  ,  ,  , and  . The Lebesgue

measures (lengths) of these intervals are  ,  ,  , and 

. 

Lemma 1 

Let   be �xed.

1. The interval   is a half-open subinterval of  , i.e.,  .

2. The length of   is  , i.e.,  .

3. If   is not a pre�x of   and   is not a pre�x of  , then  .

4. If   is pre�x-free, then  .

Proof:

(1) is trivial; for (2) notice that

∈ {0,1}xi i = 0, 1, 2, … , k−1 =1xk

α [0, 1]

α = ((0 ⋅ …) =x1x2x3 )2 ∑∞
i=1 xi2−i ∈ {0,1}xi i = 1, 2, 3, …

⋄

9 = ((1001))2 26 = ((11010))2 41 = ((101001))2 1 = ((0 ⋅ 111…))2

9/32 = ((0 ⋅ 01001) = ((0 ⋅ 01000111…))2 )2 ⋄

(0, 1] ⋄

, ℓIσ

σ ∈ {0,1}∗ Iσ (((0 ⋅ σ) , ((0 ⋅ σ111…) ])2 )2

(0, 1] 0⋅ σ

ℓ ⋄

, ℓIσ

= (0, 1/2]I{0} = (1/2, 1]I{1} = (0, 1/4]I{00} = (9/32, 5/16]I{01001}

ℓ( ) = 1/2I{0} ℓ( ) = 1/2I{1} ℓ( ) = 1/4I{00}

ℓ( ) = 1/32I{01001} ⋄

( ∖{1} ⊆ (0, 1), ℓ ( ) = , ∩ , ℓ ( ) =  for prefix-free S)Iσ Iσ 2−|σ| Iσ Iσ′ ∪σ∈S Iσ ΩS

σ, ∈ {0,1σ ′ }∗

Iσ (0, 1] ⊆ (0, 1]Iσ

Iσ 1/2|σ| ℓ( ) =Iσ 2−|σ|

σ σ ′ σ ′ σ ∩ = ∅Iσ Iσ′

S ⊆ {0,1}∗ ℓ( ) =⋃ς∈S Iς ΩS
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  .

(3) If  , then we have   and  , where the sequences 

  and    are not all 0. Thus, by Remark  1, the identity 

  implies that either   should be a pre�x of   or   should be a

pre�x of  .

(4) We have   since  ’s are pairwise disjoint by item (3). The result follows now

from item (2) and De�nition 2. ◻

Proposition 1 (Kraft’s Inequality, 1949)

For every pre�x-free  , we have  .

Proof:

By Lemma  1, item (4), we have  , and    holds by item (1) of Lemma  1.

Therefore,  . ◻

For an alternative proof of Proposition 1, see e.g. [[5], Thm. 11.4, pp. 182-3]. Let us notice that the converse

of Kraft’s inequality is not true, since as we saw in Examples  4 and  5,  , but the set 

 is not pre�x-free.

One way to ensure that the set of all the programs becomes pre�x-free is to adopt the following

convention.

Convention 1 (Pre�x-Free Programs).

Every program ends with the “END” command (see [[13], p. 3]). This command can appear nowhere else in the

program, only at the very end. 

Every other sub-routine may start with “begin” and �nish with “end”, just like the programs of

Example 3.

Example 8 (Pre�x-Free Programs)

The Program   in the following table is a pre�x of Program   (and is a su�x of Program  ).

ℓ( )Iσ = ((0 ⋅ σ111…) − ((0 ⋅ σ))2 )2

= ((0 ⋅ 111…)0… 0
  
|σ|-times

)2

= ∑∞
j=1 2−(|σ|+j)

= 2−|σ|

α ∈ ∩Iσ Iσ′ α = ((0 ⋅ σ …)x1x2x3 )2 α = ((0 ⋅ …)σ ′y1y2y3 )2

{xi}i>0 {yi}i>0

((0 ⋅ σ …) = ((0 ⋅ …)x1x2x3 )2 σ ′y1y2y3 )2 σ σ ′ σ ′

σ

ℓ( ) = ℓ( )⋃ς∈S Iς ∑ς∈S Iς Iς

S ⊆ {0,1}∗ ⩽ 1ΩS

= ℓ( )ΩS ⋃σ∈S Iσ ⊆ (0, 1]⋃σ∈S Iσ

⩽ ℓ(0, 1] = 1ΩS

= 3/4 < 1Ω{0,00}

{0,00}

⋄

i ii iii
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With Convention 1, the programs should look like the following.

Program I is not a pre�x of Program II (though, even with the above convention, Program I is a su�x

of Program III, which is not a problem). 

From now on, let us be given a �xed programming language by Convention 1. A question that comes to

mind is:

Question 1 (Is   a Probability?)

Why the number    can be interpreted as the probability that a randomly given binary string 

 belongs to  ? Even when   is a pre�x-free set. 

Let us repeat that the number    could be greater than one for some sets    of �nite binary strings

(Example 4); but if the set   is pre�x-free, then   is a number between   and   (Proposition 1). Let us

also note that   satis�es Kolmogorov’s axioms of a measure:   for every family   of

pairwise disjoint sets; thus  . But it is not a probability measure. Restricting the sets to the

pre�x-free ones will not solve the problem, as they are not closed under unions (Example 5). Now that

by Convention 1, all the programs are pre�x-free, a special case of Question 1 is:

Question 2 (Is   a Halting Probability?)

Why the number    can be said to be the halting probability of the randomly chosen �nite binary

strings? 

Unfortunately, many scholars seem to have believed that the number    is the halting probability of

input-free programs; see e.g. [6][14][15][7][5][16][11][17]. Even though the   of pre�x-free sets are non-

greater than one,   is not a probability measure, even when restricted to the pre�x-free sets, as those

sets are not closed under disjoint unions. Restricting the sets to the subsets of a �xed pre�x-free set

⋄

ΩS

ΩS

σ ∈ {0,1}∗ S S ⊆ {0,1}∗ ⋄

ΩS S

S ΩS 0 1

Ω =Ω⋃i Si
∑i ΩSi

{Si}i

= 0Ω∅

Ω

Ω

⋄

Ω

Ω

Ω
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whose    is 1 (such as    in Example 4) can solve the problem. But

for the input-free programs, even with Convention 1, we do not have this possibility:

Lemma 2 ( )

.

Proof:

Find a letter or a short string of letters (such as X or XY, etc.) that is not a pre�x of any command, and

no program can be a pre�x of it. Let    be its ASCII code, and put  . The set    is still

pre�x-free, and so Kraft’s inequality (Proposition 1) is applicable:  . Since  ,

then we have  . ◻

For making   a probability measure, we suggest a two-fold idea:

1. we consider sets of input-free programs only, and

2. we divide their Omega by   to get a probability measure.

De�nition 8 ( )

For a set   of input-free programs, let   

It is easy to verify that this is a probability measure: we have  ,  , and for every indexed

family   of pairwise disjoint sets of input-free programs, we have  .

2.1. Summing Up

Let us recapitulate. The number    (De�nition  4) was meant to be “the probability that a computer

program whose bits are generated one by one by independent tosses of a fair coin will eventually halt”

[[11], p. 236]. But the fact of the matter is that if we generate a �nite binary code by tossing a fair coin bit

by bit, then it is very probable that the resulted string is not the binary code of a program at all. It is

also highly probable that it is the code of a program that takes some inputs (see Example 3). Lastly, if

the generated �nite binary string is the binary code of an input-free program, then we are allowed to

ask whether it will eventually halt after running. After all this contemplation, we may start de�ning or

calculating the probability of halting.

The way    was de�ned works for any pre�x-free set of �nite binary strings (De�nition  2). Kraft’s

inequality (Proposition 1) ensures that the number  , for every pre�x-free set  , lies in the interval 

. But why on earth can    be called the probability that a randomly given �nite binary string

belongs to  ? (Question  1). The class of all pre�x-free sets is not closed under disjoint unions

Ω {1,00,010,0110,01110,011110, …}

≠ 1ΩP

< 1ΩP

X = P ∪ {X}P ′ P ′

+ = ⩽ 1ΩP 2−|X| ΩP ′ > 02−|X|

< 1ΩP

Ω

ΩP

℧S

S ⊆ P = .℧S

ΩS

ΩP

⋄

= 0℧∅ = 1℧P

{ ⊆ PSi }i =℧⋃i Si
∑i ℧Si

Ω

Ω

ΩS S

[0, 1] ΩS

S
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(Example 5) and there is no sample space for the proposed measure: the   of all the binary codes of the

input-free programs is not equal to   (Lemma 2), even though that set is pre�x-free by Convention 1.

Summing up, there is no measure to see that   is a halting probability of �nite binary string, and the

answer of Question 2 is a big “no”.

Even though   satis�es Kolmogorov’s axioms of a measure, it is not a probability measure as some

sets get measures bigger than one. Restricting the sets to the pre�x-free ones will not solve the

problem, as they are not closed under union. Restricting the sets to the subsets of a �xed pre�x-free

set whose   is   can solve the problem by making   a probability measure; so can restricting the sets

to the subsets of a �xed pre�x-free set (such as  ) and then dividing the  ’s of its subsets by the   of

that �xed set (just like De�nition 8).

This was our proposed remedy. Take the sample space to be  , the set of the binary codes of all the

input-free programs. Then, for every set    of (input-free) programs ( ), let 

  (De�nition  8). This is a real probability measure that satis�es Kolmogorov’s axioms.

Now, the new halting probability is  . Dividing    by a computable real number ( )

does make it look like more of a (conditional) probability, but will not cause it to lose any of the non-

computability or randomness properties. Our upside-down Omega,  , should have most (if not all) of

the properties of   established in the literature.

3. The Source of Error

Let us see what possibly went wrong by reading through one of Chaitin’s books:

let’s put all possible programs in a bag, shake it up, close our eyes, and pick out a

program. What’s the probability that this program that we’ve just chosen at random will

eventually halt? Let’s express that probability as an in�nite precision binary real

between zero and one. [...] You sum for each program that halts the probability of getting

precisely that program by chance:  . Each  -bit self-

delimiting program   that halts contributes   to the value of  . The self-delimiting

program proviso is crucial: Otherwise the halting probability has to be de�ned for

programs of each particular size, but it cannot be de�ned over all programs of arbitrary

size. [[18], p. 112, original emphasis]

We are in partial agreement with Chaitin on the following matter.

Ω

1

Ω

Ω

Ω 1 Ω

P Ω Ω

P

S S ⊆ P

= /℧S ΩS ΩP

℧℧ = = Ω/℧H ΩP Ω ΩP

℧℧

Ω

Ω = ∑program p halts 2−(size in bits of p) k

p 1/2k Ω
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Lemma 3 (Halting Probability of Input-Free Programs with a Fixed Length)

The halting probability of all the input-free programs with a �xed length   is equal to 

Proof:

Fix a number  . The probability of getting a �xed binary string of length   by tossing a fair coin (whose

one side is ‘0’ and the other ‘1’) is  , and the halting probability of the input-free programs with

length   is 

since there are    binary strings of length    (see  [2]). Thus, the halting probability of programs with

length   can be written as  . ◻

De�nition 9 ( )

Let   denote the number of halting input-free programs of length   ([17]). 

So,   can be written as  ; see [[17], p. 1]. By what we quoted above from [18], according to

Chaitin (and almost everybody else), the halting probability of programs with length   is equal to 

; and so, the halting probability is  ! Let

us see why we believe this to be an error.

Theorem 2 (Halting Probability of Input-Free Programs with Length   )

For su�ciently large  ’s, the halting probability of all the input-free programs with length   is not equal

to  ; it is indeed less than  .

Proof:

The halting probability of programs with length    is in fact 

  Note that    for each  , and for a su�ciently large  ,    holds; thus, 

 for every  . By  , and   for each  , we have 

Now,   implies  , and so by (*) and   for every  , we have 

l .∑|p|=l

p halts 2−|p|

l l

1/2l

l

= ,
the number of halting programs with length l

the number of all binary strings with length l

#{p ∈ P : p halts & |p| = l}

2l

2l l

l ∑|p|=l

p halts 2−|p|

N(l)

N(l) l ⋄

Ω N(l)∑∞
l=1 2−l

⩽ N

N(l) =∑N
l=1 2−l ∑|p|⩽N

p halts 2−|p| N(l) = (= Ω)∑∞
l=1 2−l ∑p halts 2−|p|

⩽ N

N ⩽ N

∑|p|⩽N

p halts 2−|p| (2/3)∑|p|⩽N

p halts 2−|p|

⩽ N

= .
the number of halting programs with length ⩽ N

the number of all binary strings with length ⩽ N

N(l)∑N
l=1

∑N
l=1 2l

N(l) ⩾ 0 l > 0 M > 2 N(l) > 0∑M

l=1

N(l) > 0∑N
l=1 N ⩾ M = − 2∑N

l=1 2l 2N+1 N(l) ⩾ 0 l > 0

= ⩽ = ( + ) . (*)
N(l)∑N

l=1

∑N
l=1 2l

N(l)∑N
l=1

− 22N+1

2N

− 22N+1
∑
l=1

N N(l)

2l

1

2

1

− 22N+1
∑
l=1

N N(l)

2l

M > 2 + <1
2

1

−22M+1

2
3

N(l) > 0∑N
l=1 2−l N ⩾ M

< = ,
N(l)∑N

l=1

∑N
l=1 2l

2

3
∑
l=1

N N(l)

2l

2

3
∑

p halts

|p|⩽N

2−|p|
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for all  . ◻

Corollary 1 (Asymptotic Halting Probability  )

Proof. 

By taking limits from (*) in the proof of Theorem 2, we get

◻

Therefore, there is no reason to believe that the halting probability of programs with length    is 

, or, for that matter, that the halting probability (of “all programs of arbitrary size”) is 

. As pointed out by Chaitin, the series   could be greater than  , or may

even diverge, if the set of programs is not taken to be pre�x-free (what “took ten years until [he] got it

right”). So, the fact that, for pre�x-free programs, the real number    lies between   and 

 (by Kraft’s inequality, Proposition 1) does not make it a probability of �nite strings.

Let us see one of the most recent explanations as to why   is considered to be the halting probability

of input-free programs.

Given a pre�x-free machine  , one can consider the ‘halting probability’ of  , de�ned

by    The term ‘halting probability’ is justi�ed by the following

observation: a pre�x-free machine   can be naturally extended to a partial functional

from  , the set of in�nite binary sequences, to  , where for  ,   is de�ned

to be    if some    is a pre�x of  , and    otherwise. The pre�x-

freeness of    on �nite strings ensures that this extension is well-de�ned. With this

point of view,    is simply  , where    is the uniform probability

measure (a.k.a. Lebesgue measure) on  , that is, the measure where each bit of    is

equal to 0 with probability   independently of all other bits. [[19], p. 1613] 

See [[5], p. 207] for a similar explanation. So, the expression “halting probability” refers to the

probability of some real numbers, not of �nite binary strings. Let us consider a randomly given real

number  . The probability that   is less than   is of course  , since the length of   is 

. The probability that    is rational is 0. Let us calculate the probability that the �nite string 

N ⩾ M

⩽
Ω
2

⩽ .limN→∞

N(l)∑N
l=1

∑N
l=1 2l

Ω

2

:

⩽ = N(l) = .lim
N→∞

N(l)∑N
l=1

∑N
l=1 2l

1

2
lim

N→∞
∑
l=1

N N(l)

2l

1

2
∑
l=1

∞

2−l Ω

2

⩽ N

∑|p|⩽N

p halts 2−|p|

(= Ω)∑p halts 2−|p| ∑p halts 2−|p| 1

∑p halts 2−|p| 0

1

Ω

M M

= .ΩM ∑M(σ)↓ 2−|σ|

M

2ω 2<ω X ∈ 2ω M(X)

M(σ) σ ∈ dom(M) X M(X) ↑

M

ΩM μ{X ∈ : M(X) ↓}2ω μ

2ω X

1/2

α ∈ [0, 1] α 1/4 1/4 [0, 1/4)

1/4 α
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  is a pre�x of the unique in�nite binary expansion after    of    (see De�nition 6). If    is like

that, then    for some bits  . This means that    belongs to the

interval   (see De�nition 7); so the probability is   (see Example 7).

Lemma 4 (Probability of Some Events on Real Numbers)

1. The probability that a randomly given real   has a �xed �nite binary string   as a pre�x in its

in�nite binary expansion after   is  .

2. The probability that a randomly given real   has a pre�x from a �xed set of �nite binary strings 

 in its in�nite binary expansion after   is  .

Proof:

(1) Every such   belongs to the interval   (see De�nition 7). So, the probability is  ; cf. [2]. Item (2)

follows similarly. ◻

Corollary 2 (Omega Numbers as Probabilities of Real Numbers)

1. The probability that a randomly given real   has a pre�x from a �xed pre�x-free set of �nite

binary strings   in its in�nite binary expansion after   is  .

2. Chaitin’s    is the probability that the unique in�nite binary expansion after    of a randomly given

real   contains a �nite binary strings as a pre�x that is the binary code of a halting input-free

program.

Proof:

(1) follows from Lemma  4(2) and Lemma  1(4). Item (2) is a special case of (1) when    (see

De�nition 3). ◻

After all,   is the probability of something, an event on real numbers.

3.1. Some Suggestions

De�nition 10 (integer code,  )

Every �nite binary string    has an integer code de�ned as  , illustrated by the

following table.

binary string

integer code

01001 0⋅ α α

α = ((0 ⋅ 01001 …)x1x2x3 )2 , , , ⋯x1 x2 x3 α

I{01001} 1/32

α ∈ [0, 1] σ

0⋅ ℓ( )Iσ

α ∈ [0, 1]

S ⊆ {0,1}∗ 0⋅ ℓ( )⋃σ∈S Iσ

α Iσ ℓ( )Iσ

α ∈ [0, 1]

S ⊆ {0,1}∗ 0⋅ ΩS

Ω 0⋅

α ∈ [0, 1]

S = H

Ω

H

σ ∈ {0,1}∗ ((1σ) − 1)2

0 1 00 01 10 11 000 001 010 011 ⋅ ⋅ ⋅

1 2 3 4 5 6 7 8 9 10 ⋯
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Let   be the set of the integer codes of all the strings in   (see De�nition 3). 

Example 9 (integer code)

The integer code of the binary string   is 40, and the �nite binary string with the integer code 25

is   (see Example 6). 

Chaitin’s   has many interesting properties that have attracted the attention of the brightest minds

and made them publish papers in the most prestigious journals and collection books. Most properties

of  , which we proved not to be a probability of random strings, are also possessed by 

 (see [[6], p. 33]). This number is in the interval  , so it can be a halting probability,

with a good measure: for a set of positive integers  , let  . Then all the

probability axioms are satis�ed:    and    for every pairwise disjoint 

. One question now is: why not take this number as a halting probability? Notice that this has

some non-intuitive properties: if   is the set of all the even positive integers and   is the set of all the

odd positive integers, then the probability that a binary string has an even integer code becomes 

, and the probability that a binary string has an odd integer code turns out to be 

, twice the evenness probability!

For  , the geometric distribution (see e.g.  [2]) is in play; with the parameter  . Why not take

other parameters, such as    and then de�ne a halting probability as    (or 

)? Note that  , and the number    could be a probability that a

randomly chosen   is the code of a program that halts; notice that Kraft’s inequality applies here

too:    for every pre�x-free set  . Or, why not Poisson’s distribution (see

e.g.  [2]), with a parameter  ? Then, a halting probability could be  . One key relation in

de�ning    is the elementary formula  . Let    be any sequence of positive real

numbers such that  . Then one can de�ne a halting probability as  . Most, if not

all, of the properties of   should be possessed by these new probabilities.

The most natural de�nition, we believe, for a halting probability (if a randomly chosen binary string is

the binary code of an input-free program that eventually halts after running) is the asymptotic

probability (cf.  [20][16]): for every  , count    the number of halting programs which have

integer codes less than or equal to  . Then de�ne the halting probability to be   if it exists.

Note that   is not computable, so the limit, if any, does not look like a computable number. Note also

that    (see Theorem  2) is a subsequence of    (when    is the number of all the binary

H H ⋄

01001

1010 ⋄

Ω

Ω

K = ∑n∈H 2−n (0, 1)

S ⊆ N
+ p(S) = ∑n∈S 2−n

p( ) = 1N
+ p( ) = p( )⋃iSi ∑i Si

{ ⊆Si N
+}i

E O

p(E) = = 1/3∑n∈E 2−n

p(O) = = 2/3∑n∈O 2−n

Ω p = 1/2

p = 1/3 ∑σ∈H 3−|σ|

2 ⋅∑n∈H 3−n 2 ⋅ = 1∑n>0 3−n ∑σ∈H 3−|σ|

σ ∈ Σ∗

⩽ 1∑sσ∈S 3−|σ| S ⊆ {0,1}∗

λ ∑n∈H
e−λλ−n

n!

K = 1∑n>0 2−n {αn}n>0

= 1∑n>0 αn ∑n∈H αn

Ω

n ∈ N
+ ℏn

n limn→∞
ℏn

n

ℏn

N(l)∑N
l=1

∑N
l=1 2l

ℏn

n
n
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strings with length  ). Thus, if    exists, so will  , and they will be

equal. Thus, the (asymptotic) halting probability will be this number, which we showed to be non-

greater than half of Chaitin’s    (see Corollary  1). Or, one can let    be the number of (input-free)

programs with integer codes less than or equal to  . Then the conditional halting probability can be

de�ned as  , which is equal to  , the ratio of “the probability of

being a halting program” to “the probability of being a program”, if the limits exist. This seems like a

wild, open area to explore.

4. The Conclusion

Chaitin’s   number is not the probability that a randomly given �nite binary string is the binary code

of a halting input-free program. It is the probability that the unique in�nite binary expansion after 

 of a randomly given real number in the unit interval has a pre�x that is the binary code of a halting

input-free program. There is no unique halting probability of �nite binary strings, and one can get

di�erent values for it by di�erent probability measures (over a �xed pre�x-free programming

language). 
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