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In this paper we present a brief study of the o-set-o-antiset duality that occurs in o-set theory and we
also present the development of the integer space 34 = <2A, 24" > for the cardinals |A| = 2, 3 together
with its algebraic properties. In this article, we also develop a presentation of some of the properties of
fusion of o-sets and finally we present the development and definition of a type of equations of one o-

set variable.

1. o-Sets and o-Antisets

As we have seen in [, an s -antiset is defined as follows:

Definition 1.1. Let A be a o-set, then B is said to be the o-antiset of A if and only if A ® B = &, where & is

the fusion of o -sets.

We must observe that given the definition of the fusion operator & in (!l it is clear that it is commutative

and therefore if B is an o-antiset of A, then it will be necessary that A is also the o-antiset of B. On the
other hand, following the Blizard notation, (21 p- 347, we will denote B the o-antiset of Aas B= A", in

this way wewillhave A = (47) .

Continuing with the development of the o-sets we have constructed three primary o -sets, which are:
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={1,2,3,
4,5,6,
7,8,9,
10,...

Natural Numbers

NO

= {1o, 20,
30,40,

0-Natural Numbers 50, 69,

70, 80,

90, 100,

={1",2,
3,4,
Antinatural Numbers 5, 6",
™8,
9*,10%,

where 1 = {a}, 19 = {@} and 1* = {w}, we must clarify that we have changed the letter 3 for the letter

w for symmetry reasons, we must also remember that:

L.Ea €1 €EQxEQ] €EQy...
and

L EWoEW 1 EWEW EwWg €.

where both e-chains have the linear e-root property and are totally different, i.e. they do not have a link-

intersection. These definitions can be found in ! Definition 3.13, 3.14 and 3.16.

On the other hand, we must remember the definition of the space generated by two o-sets A and

B which is:

Definition 1.2. Let A and B be two o -sets. The Generated space by A and B is given by
(24,25 = {z@y:z € 2* Ny € 2P},

where & is the fusion operator.
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Let us recall a few things about the fusion operator &. In this brief analysis, we must observe that given
z, y two o-sets, if {z} U {y} = & then it will be said that y is the antielement of  and z the antielement
of y, where the union of pairs U axiomatized within the theory of o-sets is used, in particular in the

completion axioms A and B, which we will call annihilation axioms from now on.
Notation 1.3. Let z be an element of some o-set, then we will denote by x* the anti-element of , if it exists.

Now we move on to define the new operations with o-sets which will help us define the fusion of o-sets

S.

Definition 1.4. Let A and B be two o -sets, then we define the x-intersection of A with B by
ANB={z € A:z* € B}.
Example 1.5. Let A = {1,2,3*,4} and B = {2, 3,4" } be two o -sets, then we have that:
ANB = {3*,4}
and
BNA = {3,4"},

it is clear that the *-intersection operator is not commutative.
Theorem 1.6. Let A be a o-set, then ANA = @.

Proof. Let A be a o-set, by definition we will have that
ANA={zcA:z" c A}

Suppose now that ANA # @, then there exists an € A such that z* € A, therefore we will have that

z,z* € A, which is a contradiction with Theorem 3.39 (Exclusion of inverses) from [ so if A is a o-set

then
ANA = @.

O

Example 1.7. Let A = {1,2,3*,4}, then
ANA = {1,2,3*,4}0{1,2,3",4},

ANA = {z € {1,2,3%,4} : «* € {1,2,3",4}},
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ANA = 2.
Regarding Theorem 1.6, we can observe that given a o-set A, the o-set theory does not allow the
coexistence of a o-element z and its o-antielement in the same o-set A, and this is because A is a o-set.
However, since o-set theory is a o-class theory, one can find the o-elements together with the o-
antielements coexisting without problems in what we call the proper o-class, in this way one will have

that {z,z*} is a proper o-class and not a o-set.
Theorem 1.8. Let A be a o-set, then AN@ = & and @NA = @.

Proof. Let A be a o-set, by definition we will have that
Ao ={zc A:z* € o}

Now suppose that AN@ # &, then there exists an z € A such that z* € @, which is a contradiction,

hence AN@ = @. On the other hand, @NA C & thus we will have to NA = @. [

On the other hand, we will define the x-difference between o -sets, a fundamental operation to be able to

define the fusion between o -sets.

Definition 1.9. Let A and B be two o-sets, then we define the x-difference between Ay B by
A% B=A—(ANB),

where A— B={x € A:z ¢ B}.

Example 1.10. Let A = {1,2,3*,4} and B = {2, 3,4" }, then we have that:
ANB = {3*,4},
therefore
Ax B=A—(ANB) = {1,2,3",4} — {3*,4} = {1,2}
Ax B=1{1,2}.
We also have to
BNA = {3,4*}
therefore

Bx A= B— (BNA) ={2,3,4"} — {3,4*} = {2}
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Bx A={2}.

Corollary 1.11. Let Abe a o-set. Then A x A = A.

Proof Let A be a o-set, then by Theorem 1.6 we will have that ANA = & therefore
AxA=A—(ANA)=A—-2 = A.

O
Corollary 1.12. Let Abeaoc-set. Then A x @ = Aand o % A = @.

Proof. Let A be a o-set, then by Theorem 1.8 we will have that AN@ = @NA = & therefore
Axo=A-(ANQ)=A-o=A

and
GxA=0—-(2NA) =0 -2 =0.

O

Now after defining the *-intersection and the *-difference we can define the fusion of o-sets as follows:

Definition 1.13. Let A and B be two o -sets, then we define the fusion of A and B by
AeB={z:z2€c AxBVzec Bx A}

It is clear that the fusion of o-sets is commutative by definition. Now, let us show an example

Example 1.14. Let A = {1,2,3* 4} y B = {2, 3,4" }, then we have that:
A®B={z:z € AxBVzec Bx A},
A®B={z:z<c{l,2} vz e {2}},
Ae B={1,2},
therefore we have that
{1,2,3*,4} & {2,3,4*} = {2,3,4"} & {1,2,3*,4} = {1,2}.

Corollary 1.15. Let Abe a o-set,then A A = A.

Proof. Let A be a o-set, by definition we have that,

ApA={z:zc AxAVzec Ax A}
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Now by corollary 1.11, we have that
AdA={z:z€ AV e A},
A A={z:zc A},

therefore it is clear that A C A @ Aandthat A ® A C A, therefore Ad A = A.
U
Corollary 1.16. Let Abeao-set,then A @ = @ ® A = A.

Proof. First we will show that A @ @ = A. By definition we will have that,
Ao ={z:zc AxVzecoxA}
Now by the corollary 1.12, we will have that
Ao ={z:z€ AVzc o},
Ao o ={zx:zc A},

from thisitisclearthat A C A@ @andthat A® @ C A,inthisway A & @ = A.

Second, we will show that @ & A = A. By definition we will have that,
oo A={z:2coxAVrec Ax o}
Now by the corollary 1.12, we will have that
og@A={z:zc Ve A}
Ao ={z:z e A},

from thisitisclearthat A C @ @ Aandthat @ ® A C A,inthiswayg ® A = A.OJ

Theorem 1.17. Let X be a o -set, then for all A, B € 2%, we have that:
A® B=AUB,

where AUB={z:z € AVz € B}.

Proof. Let X beao-setand A, B € 2%. Then, by theorem 3.39 of 11 we have that

ANB = BNA =@,
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in this way
AxB=AANBxA=B.

FinalyA@ B={z:2€ AVe € B} =AUB.0

Example 1.18. Let X = {1,2,3}, A = {1,2} and B = {2,3}, it is clear that A, B € 2%. Now we apply the

fusion operator @.
A®B={z:z€ AxBVzec Bx A},
AeB={z:z€ AV € B},
A®B=AUB=1{1,2,3}.

Corollary 1.19. Let X be a o-set, then for all A € 2%, we have that:

A X =X.
Proof. Let X bea o-setand A € 2. Then by theorem 1.17 we have that

A X=AUX.

Nowas A C X, then AU X = X, therefore

A X =X.

O

Example 1.20. Let X = {1,2,3,4} and A = {1,2,3}, it is clear that A € 2%X. Now we apply the fusion

operator @.
Ao X={z:zc AxXVzeXxA}
AdB={z:z€ AVzc X},
AdX=AUX={1,2,3,4} = X.

As we said before, the fusion of o-sets & is commutative by definition but as we demonstrated in 3l

[4] this operation is not associative.

Example 1.21. Let A = {1*,2*}, B = {1,2} y C = {1}, then

(A@B)@#C=2aC=C
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and
A®(BoC)=A® B=0,
therefore we have that

(AeB)oC #A® (Ba O).

2. Generated space

As we have already indicated in the definition 1.2 we will have that the space generated by two o-sets

Aand Bis:
(24,28 = {z@y:z c2* nyc 2P}

Now taking into account the duality o-set, o -antiset we could consider the following example.

Example 2.1. We consider the o-set A = {1,2,3} and its o-antiset A~ = {1*,2*,3*} then we obtain the

integer space 34 where,
34 = <2A,2A’>.
Is important to observe that
24 = {2, {1}, {2}, {3},{1,2},{1,2}, {2,3}, 4}
and
24 ={o" {U'} {2} 3L {1 2 {127, {2534 )
Also is important to observe that & = @~ which is very important for the construction of 34.

Now considering the definition of generated space,
34 = <2A,2A’> —{X®Y:Xc2 Ay e24 },

where the operator & is the fusion of o -sets, we will obtain the following matrix:
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[ & [ @ {1} 2} BY | (L2 | (L3 | {3 | 4 |
0- 03 {1,2} {1,3} {2,3} A
{1} i {172} {1*,3} {17,2,3} | {2,3}
{27} {1,27} H {2*,3} {1,3}
{37} {1,3*} {2,3*} 03 {1,2,3%} {1,2}
{1*,2*} || {1%,2"} {1*,2%,3} 03 {2%,3} {1%,3}

{1%,3*} || {1%,3*} {2,3*} 03 {1%,3}

{2,3*} || {2%,3*} | {1,2%,3*} {1,3*} {1,2*} s
A~ A~ {2%,3*} {1*,3*} {1*,2*} 07

Table 1. Integer Space.

It is important to note that from the perspective of o-sets we have that @ = o~ = @j. with

i €{0,1,2,3,4,5,6,7} and j € {0,1,2,3}, where the difference of the o-emptysets ®§ is given by

annihilation, which comes from equation A ® A~ = .

From the matrix representation of the integer space 34, we can present another representation of the

same integer space. This representation of the integer space 34 is a graphical representation which we

show in figure 1.
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Figure 1. Integer Space 34,

Finally, as a theoretical result, we have a cardinal theorem:
Theorem 2.2. Let A = {1, 2,3}, then '3A| = ‘ <2A, 24" > } =33 =2
Proof. Let A = {1, 2, 3}, the proof is the same fusion matrix for this o-set. (]

We should also note that we have obtained other cardinal results for the integer space 34 with

|A] € {0,1,2,3,4,5}. The cardinal results are as follows:
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o-Set o-Antiset Generated Cardinal
A=o A =g <2A,2A’> 30 -1
A={1} A ={17} <2A,2A’> 3l =3
A=1{1,2} A ={1,2°} <2A,2A*> =9
A=1{1,2,3} A ={1",2",3"} <2A,2A’> 3 =27
A=1{1,2,3,4} A ={17,2",3", 4%} <2A,2A'> 31— g1
A=1{1,2,3,4,5} A ={17,2",3",4",5"} <2A,2A’> 35 — 243

From these calculations made with the fusion matrix we can obtain the following conjecture.
Conjecture 2.3. Let A be a o-set such that | A| = n, then |34| = ‘ <2A, 24" > ‘ =3

On the other hand, as we have already said, we are going to change the notation of 1¢ to 1, in this way

we will have the o-set of 0-natural numbers defined as follows:

1o = {o}
20 ={2,10}
30 = {@,10,20}

40 = {®510720730}

and so on, forming the 0-natural numbers
NO - {]-Oa 207 307 407 503 607 707 807 907 1007 .. ‘}a

where one of the important properties of this o-set is that it does not annihilate with the natural
numbers N nor with the antinatural numbers N7, in this way we can consider the following example for

the generated space.

Example 2.4. We consider the o-sets A ={1,20} and B = {1,2}, therefore the space generated by

A@® Band A ® B~ will be:

<2A@B’2A®B*> —{z@y:ac 2408 \yc 2405 )

geios.com doi.org/10.32388/FWQK6T.2
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<2A®B7 2A@B?> = {®7 {10}’ {1}’ {1*}7 {20}’ {2}’ {2*}7 {107 20}’ {107 1}7 {107 1*}7
{]-Uv 2}7 {107 2*}7 {20: 1}7 {207 1*}7 {207 2}’ {20, 2*}7
{1’ 2}’ {17 2*}a {1*’ 2}7 {1*7 2*}7 {10a 1, 2}a {10a 1, 2*}’ {107 1*a 2}7 {107 1*a 2*}7
{20a 1, 2}’ {207 1, 2*}7 {20a l*a 2}7 {20a 1*,2*}7 {10a 2o, 1}: {107 29, 1*}’ {]'Oa 29, 2}a
{10,20,2"},{10,20,1,2},{10, 20,1, 2" },{10,20,1%,2},{10,20,1%,2"}}

In this case, the generated space becomes a meta-space generated by A = {1¢,2¢} and B = {1, 2} which can

be ordered graphically as shown in figure 2.

[ P fla.fa. 1
" # %,
;, Il'.!-\ll.l- :-l' 3 -].‘._Ji:- - - 'j'-l:' 1.::‘
o F
-~
1s,0.2°} o [ o [ - 2s.1.2"}
“ /? F"\
%,
s fig te, 1°.2 -
La, 2 lg. 0k ik par o o, - e |
b =
[ e I lgal.2 o = L faw. 1
o
w w7} o e Bom f P R fdg, )
e 17 ap 5% % L R
L
o
o £
= = 1] 1. 2F
-\.:.Ill :.'
" o
1=, I}

Figure 2. Meta-space <2A@37 9A®B" >
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Now, if we count the number of elements that the meta-space generated by A = {1y,2} and
B ={1,2} has, we will find that they are 36, where the prime decomposition of this number is
36 = 22 . 32 which is equivalent to the following multiplication of cardinals 36 = 214! - 315/ from where

we can obtain the following conjecture:
Conjecture 2.5. Forall A € 2’ and B € 2V, then ‘<2A@B, 2408" >‘ = 2l . 3lB,

Example 2.6. We consider A = {1¢} and B = {1, 2}, then we obtain that

(257,27 ) — {5, {10}, {1}, {1}, {21, {2} {10, 1},
{107 2}5 {105 1*}7 {107 2*}7 {]-a 2}a {17 2*}7 {1*7 2}3
{1*7 2*}a {105 ]-a 2}5 {107 ]-a 2*}7 {10, 1*5 2}7 {10) 1*a2*}}

Thus, we have that |A| = 1 and |B| = 2 and ‘<2A€BB,2A@B*>’ =2Ml. 3Bl = 21 .32 = 18.

Example 2.7. We consider A = @ and B = {1, 2}, then we obtain that

3% = {o, (1}, {1}, {2}, {2}, {1, 2}, {1, 2"}, {1, 2}, {1, 2*}}

Thus, we have that |A| = 0 and | B| = 2 and ‘<2A®B,2A@Bf>‘ =2l . 318l = 20.32 — 9

3. Algebraic structure of integer space 34

With respect to the algebraic structure of the Integer Space 34 for all A € 2V we think that these

structures are related with structures called NAFIL (non-associative finite invertible loops)

Theorem 3.1. Let A = {1, 2}, then (34, ®) satisfies the following conditions:

1. (VX,Y € 34) (X @Y € 34),

2.3z e3) (VX e3)(Xoo =00 X = X),

3.VX e3)AX e (XX =X X =02),
(

4L (VXY €3 (XY =Y @ X).

Proof. Let A = {1,2}, then we quote the fusion matrix represented in table 2 for 3{1:2}.

From here it is clearly seen that conditions (1), (2), and (3) of theorem 3.1 are satisfied, where the

condition (4) is obvious by definition.

We must clarify that since o-set @ = @, and also @ = @) = &} = @7 = @3, from here we have
condition (2) and the difference is in another dimension, the dimension of annihilation. Here we must
clarify that the fusion operation @ is not associative. Let X = {1*,2*}, Y = {1,2} and Z = {1} then we

will have that ({1*,2*} @ {1,2}) @ {1} = o @ {1} = {1}
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on the other hand
{1n27}e ({1,2t @ {1}) ={1", 2"} {1,2} =0
therefore we have that

(XoY)eZ+Xa (Y Z),

which shows that the structure (34, @), is non-associative.

e @ {1} {2} {1,2}
ca 25 {1} {2} {1,2}
{1} {1} <h {1, 2} {2}
{2} {2} {1,2°} o {1}
{12} {1,2°} {2} {1} 25

Table 2. Integer Space 3{1:2}

|
We now present a new conjecture.

Conjecture 3.2. Let A € 2N then (34, @) satisfies the following conditions:

1. (VX,Y € 34 (XY € 34),

2.z esh)(vX ed)(Xoo =00 X = X),

3.VX e3)@AX e (XX =X X =09),
(

4 (VXY €3) (XY =Y @ X).

4. o-Sets Equations

Continuing with the analysis of the o-sets, we now have the development of the equations of o-sets of a
o -set variable, equations that play a very important role when solving a o-set equation, now let’s define

and go deeper into the o-sets variables.

We must remember that for every o-set A and B, the fusion of both is defined as:
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AeB={z:z2€c AxBVzec BxA}

Definition 4.1. Let A be a o-set, then A is said to be an entire o-set if there exists the o -antiset A™.

Example 4.2. Let A = {1, 20, 30}, then this o-set is not an integer, since A~ does not exist, on the other hand

the o-set A = {1,2, 3,4}, is an integer o-set since A~ = {1*,2*,3*,4*} exists which is the o -antiset of A.

It is clear that if a o-set A is integer, then by definition there exists the integer space 34. We should also
note that if A is an integer o-set, then [A U A™] is a proper o-class, for example, consider A = {1, 2},
then [AU A~] = [1,2,1*,2*], is a proper o-class. We must observe that o-set theory [l is a theory of o-
classes, where o-sets are characterized by axioms. We must also note that a proper o-class is a o-class
that is not a o-set. This difference is essential to give rise to the existence of antielements along with

their respective elements.

Definition 4.3. Let A be a integer o-set such that | A| = n, then X is said to be a o-set variable of 34, if and

only if
X = {1‘1,232,1133,- . ,$m},

where m < n and z; a variable of the proper class [A U A~ ].

Example 4.4. Let A ={1,2,3} be a o-set, it is clear that A is an entire o-set since there exists

A~ = {1*,2*,3*} and therefore 34, in this way we will have that
X =0,
X = {a},
X ={z1,22},
X = {z1, 29,23},

are o-sets variables of 34, where z, z1, z9, 23 € [1,2,3,1*,2*,3%].

Lemma 4.5. Let A be an integer o-set and X a o-set variable of 34, then A® X = AU X, with

ACAUXand X C AUX.
Proof.

Let A be an integer o-set and X a o-set variable of 34, then

Ao X={r:zcAxXVzecXxA}

geios.com doi.org/10.32388/FWQK6T.2
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Now we have that
AxX=A
and
XxA=X
since X is a o-set variable, therefore we will have that
Ao X={r:zcAvee X} =AUX.

We can also observe that A N X = @ since X is a o-set variable, therefore A C AU Xand X C AU X.O

Example 4.6. Let A = {1,2,3}, and X be a o-set variable of 34, that is,
X=0
X = {z},
X = {21, 22},
X = {z1, 22,23},
are o-sets variable of 34, where z, x1, x2, z3 € [1,2,3,1*,2*%, 3*]. then
Ad X ={1,2,3},
Ad X =1{1,2,3,z},
A X =1{1,2,3,z1,z2},
A X =1{1,2,3,z1,z2,23}

After the lemma 4.5 we proceed to analyze some equations of a o -set variable and their solutions

Let A be an integer o-set, X a o-set variable and M and N two o-sets of the integer space 34, then an

equation of a o-set variable will be
X®M=N.
Now if M = N, then the equation becomes

XoM=M,

geios.com doi.org/10.32388/FWQK6T.2

16


https://www.qeios.com/
https://doi.org/10.32388/FWQK6T.2

and by the corollary 1.19 we have that the solutions are all X € 2, where we naturally count X = &,

hence we have an equation of a o -set variable with multiple solutions.
Now consider M # N, then the o-set equation becomes:
X®M=N,

We must remember that the structure in general is not associative, therefore we cannot freely use this
property, so to find the solution to the equation we must develop a previous theorem. To develop this
theorem we will assume that for every integer o-set A the generated space is <2A, 2A7> = 34, and also

that 34 satisfies conjecture 3.2.

Theorem 4.7. Let A be an integer o-set, X be a o-set variable of 34 and M € 34. Then
(XeMeM =X

Proof Let A be an integer o-set, X be a o-set variable of 34 and M ¢ 34, then by lemma 4.5 we have that

XeM=XUMwithXNnM=2.
Therefore we have that
XoMeM ={a:ac(XOM)xM VaeM % (X M)}
={a:ac (XUM)x M Vae M % (XUM)}
o)
(XUM)s M~ =(XUM)— (XUM)NM~ = (XUM) - M = X,
and
M- %(XUM)=M -M NXUM)=M~ -M =2.
Now replacing these calculations in (®) we will have that
(XeM)eM ={a:a€XVacg}
(XeM)eoM ={a:ac X},
XeMeoM =X
|

Now, after theorem 4.7 has been proved, we can solve some o-set equation for the integer o-set

A = {1,2}, since the generated space is effectively equal to 34, that is, <2A, 2A7> =34 andalso 34 isa
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non-associative abelian loop.

Let A = {1,2} be an integer set and M, N € 34, with MN\N = @, then the equation
X®M =N,
has the following solution
XeM=N<oM",
(XeM)eM =No M-,
then by theorem 4.7 we will have that
X=NeM .

Let us now show a concrete example for A = {1, 2}.

Example 4.8. Let A = {1,2} be an integer o-set, M = {1,2*} and N = {1}, with MO\N = @, then the

equation of a o-set variable
Xo{1,2} = {1}
has the following solution.
X@{1,2"} = {1} « &{1%, 2},
(Xeo{1,2'}) @ {12} = {1} ® {1%,2},
X ={2}.
Here we can see that the equation has as solution the o-set 51 = {2}, since
(2ye (1,2} = {1},

but like the equation X & M = M, this one does not have a unique solution since the o-set Sy = {1,2}, is also

a solution for the equation of a o-set variable,

{1,2} @ {1,2"} = {1}.

In this way we have two solutions for our equation of a o-set variable which are:

§ = {518} = {{2},{1,2}}.
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Note that if MNN = & then the o-set equation has a solution, but otherwise the o-set equation has an

empty solution.

Example 4.9. Let A = {1,2} be an integer o-set, M = {1*} and N = {1}, with MAN = {1*}, then the

equation of a o-set variable
Xo {1} = {1}
There is no solution.
Xo{'} = {1}~ of1},
Xe{rhe{1}={1}e {1},

X = {1},

which is a contradiction, because
{te{r"} = {1},

o ={1}.

Definition 4.10. A o-set equation X @& M = N is said to be fusionable if MNN = &.

With this in mind, let us conclude with a bounded theorem to find some solutions of the o-set equation.

Theorem 4.11. Let A be an integer o-set, X a o-set variable of 34, and M, N c 34, then two possible

solutions S = {S1, S2} of the fusionable equation
X®M =N,

areS;=N®R and S, = R~ ,where R:=M & N~
Proof. For the first solution .S; we have that

Si=N&R
=No(MoN~)
=No(NeM)
=NeM-,

where S; = (M @ N~) = N & M~ because of the result iteration seen above. Hence both results are
actually a fusion solution for X @ M = N, where S; = R~ is an exact solution and S; = N @ R~ is an
intersected rest solution. Because of MNN = @ (Definition 4.10) as the equation X M = N is

fusionable, both S; & M and S2 & M will be fusionable into another o-set V. [J
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As we looked above, the solution space is reduced such that the solutions are indeed NV & M —, being by

consequence possible solutions for the fusionable equation X & M = N.

Example 4.12. Let A = {1,2,3,4,5,6} be an integer o-set, M = {1,2,3*,4*,5,6*} and N = {1,2}, then

the equation of a o-set variable
X®{1,2,3",4%,5,6"} = {1,2},

which is fusionable because MON = {1,2,3*,4*,5,6*}1{1,2} = @.
Now, by using Theorem 4.11, let us first obtain

R =M&N")
=({1,2,3",4%,5,6"} @ {1,2} ")
= (
= (

{1,2,3",4°,5,6"t ® {1%,2°})"
{3%,4",5,6"})"
= {37 47 5*7 6}7
sowe get St =N®R ={1,2,3,4,5%,6} and Sy = R~ = {3,4,5%,6}, which can be easily proved that
both solutions gives SiteM=5e&M=N as a resulting o-set. Hence

S =1{{1,2,3,4,5*,6},{3,4,5*,6}} is a solution set for the fusionable equation X & M = N.

5. Conclusions

One of the first conclusions we can draw is that the fusion operator & for osets is equivalent to the union
operator for sets within the context of the set of parts 24, which allows us to deduce that the fusion of o'~

sets is an extension of the union for the generated space.

The fact that the integer space 34 presents a cardinal of power 3, is very important for the development
of the theory of transfinite numbers, since in general the power set 24 that goes to the power of 2 is used;

in this way our results can serve as an impetus for the development of the theory of transfinite numbers.

We can also conclude that the algebraic structure of the integer space 3%? is a loop, which leads us to
conjecture that the integer space in general has a loop structure. This fact is relevant to o-set theory
since, if it were so, it would show that the fusion operator & is not associative which is relevant for

solving set equations.

As a final conclusion, we can state that we can generate o-set equations given the existence of inverses

for the fusion operator @ in the integer space, but in the general case, solutions are not given, so a
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condition must be imposed on the o -sets of the equation. We have not yet conducted a detailed study on

the number of solutions to each set equation, leaving this study for future research.

To see more works in which antisets or o-antiset are used or in which equation A U B = & is described,

visit the references [4B151116]
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