
22 April 2020, Preprint v2  ·  CC-BY 4.0 PREPRINT

Research Article

A nicotinic hypothesis for Covid-19 with
preventive and therapeutic implications

Jean-Pierre Changeux1, Zahir Amoura2, Felix Rey3, Makoto Miyara2

1. Centre National de la Recherche Scientifique, Rabat, Morocco; 2. Assistance Publique – Hôpitaux de Paris, Paris, France; 3. Pasteur

Institute, Paris, France

SARS-CoV-2 epidemics raises a considerable issue of public health at the planetary scale. There is a

pressing urgency to find treatments based upon currently available scientific knowledge. Therefore,

we tentatively propose a hypothesis which hopefully might ultimately help saving lives. Based on the

current scientific literature and on new epidemiological data which reveal that current smoking

status appears to be a protective factor against the infection by SARS-CoV-2 [1], we hypothesize that

the nicotinic acetylcholine receptor (nAChR) plays a key role in the pathophysiology of Covid-19

infection and might represent a target for the prevention and control of Covid-19 infection.

Symptomatic Covid-19 disease (as caused by SARS-CoV-2 virus) is observed in 2.5 percent of infected

individuals [2] indicating an individual variability in the clinical presentation. Among the

epidemiological and clinical features of Covid-19, the following features are of special interest for

understanding the patho-physiolology, namely: (1) in outpatients with favorable outcome :

neurological/psychiatric disorders, especially loss of sense of smell which is specific of the disease and

(2) in hospitalized older patients with a poor prognosis : systemic hyperinflammatory syndrome with

increased levels of circulating cytokines and atypical acute respiratory distress syndrome with loss of

neurological control of lung perfusion regulation and hypoxic vasoconstriction [3]. This raises the

issue of the basis of inter-individual variability for the susceptibility to infection.

The nAChR appears as a hypothetical clue for the main clinical manifestations of Covid-19. It is

accepted that the angiotensin converting enzyme 2 (ACE2), represents the principal receptor molecule

for SARS-CoV-2 [4-6]. ACE2 is expressed at the transcriptomic level in the lung, the small intestine

and colon, in the kidney, in the testis, in the heart muscle and in the brain, yet the protein is not

detected in the lung [7]. In the brain, ACE2 is expressed in both neurons and glia and particularly
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present in the brain stem and in the regions responsible for the regulation of cardiovascular functions,

including the subfornical organ, paraventricular nucleus, nucleus of the tractus solitarius, and rostral

ventrolateral medulla [8]. Additional receptors or co-receptors are, however, not excluded. The

relationship between nicotine and ACE2 has been explored in the framework of cardiovascular and

pulmonary diseases [9]. Accordingly, in the ACE/ANG II/AT1R arm, nicotine increases the expression

and/or activity of renin, ACE and AT1R, whereas in the compensatory ACE2/ANG-(1–7)/MasR arm,

nicotine down regulates the expression and/or activity of ACE2 and AT2R, thus suggesting a possible

contribution of acetylcholine receptors in ACE2 regulation. This possibility has not yet been explored

in the framework of viral neuroinfections.

There is strong evidence for a neurotropic action of SARS-CoV-2 infection. It has been demonstrated

that β-coronaviruses to which the SARS- CoV-2 belongs, do not limit their presence to the respiratory

tract and have been shown to frequently invade the CNS [10] . This propensity has been convincingly

documented for the SARS-CoV-1, MERS-CoV and the coronavirus responsible for porcine

hemagglutinating encephalomyelitis (HEV 67N). In light of the high similarity between SARS-CoV-1

and SARS-CoV-2, it is quite likely that SARS-CoV-2 also possesses a similar potential. Neuroinfection

has been proposed to potentially contribute to the pathophysiology and clinical manifestations of

Covid-19 [10] with the neuroinvasive potential of SARS-CoV-2 suggested to play a role in the

respiratory failure of Covid‐19 patients [11, 12]. Our nicotinic hypothesis proposes that the virus could

enter the body through neurons of the olfactory system and/or through the lung leading to different

clinical features with different outcome, and contrasts with the currently accepted view that ACE2 is

the principal receptor of SARS-CoV-2 for its entry into cells.

As mentioned, loss of sense of smell frequently occurs in Covid‐19 patients [13]. Furthermore, several

studies have reported that some patients infected with SARS‐CoV‐2 show neurologic signs such as

headache (about 8%), nausea and vomiting (1%) [11]. More recently, a study of 214 Covid‐19 patients

[14] further found that about 88% (78/88) of the severe patients displayed neurologic manifestations

including acute cerebrovascular diseases and impaired consciousness. Based on an epidemiological

survey on Covid‐19, the median time from the first symptom to dyspnea was 5.0 days, to hospital

admission was 7.0 days, and to the intensive care was 8.0 days [15]. Therefore, the latency period may

be adequate for the virus to enter the nervous system, invade the brain stem and affect the medullary

neurons of the respiratory centers. However, variability of the neurological signs was observed with

patients having anosmia, showing in general a mild evolution without pulmonary attack, in contrast
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with those without anosmia suggesting a diversity in the mode of proliferation and /or progression of

the virus.

More than 20 years ago, Mohammed, Norrby & Kristensson [16], in a pioneering study,  showed with a

broad diversity of viruses (Poliovirus, Herpes simplex virus, West Nile virus , Vesicular Stomatitis

Virus, influenza H1N1 virus [17]), that viruses enter the olfactory epithelium and progress first

through the olfactory pathway   in an anterograde direction and then in a retrograde manner to the

reticular neurons projecting to the olfactory bulbs, the median raphe neurons (serotoninergic) and the

ventral and horizontal diagonal band (cholinergic) [16, 18]. This olfactory infection route scheme [18]

has been recently extended to Covid-19 infection [2, 11]. To further investigate the molecular aspects

of Covid-19 propagation in the brain and its pharmacology, we have been aided by abundant studies

on rabies virus (RABV) a negative polarity, single-strand RNA virus that is distinct from the

coronaviruses [18-20]. nAChRs were shown to be the first receptors for RABV [21]. Structural studies

further revealed that a short region in the ectodomain of the rabies virus glycoprotein shows sequence

similarity to some snake toxins [20, 22] that were initially used to isolate the nAChR from fish electric

organs [23]). These snake toxins [24] are known to bind with high affinity and exquisite selectivity to

the peripheral muscle receptor, while also to some brain receptors [25, 26]. The neurotoxin-like

region of the rabies virus glycoprotein inhibited acetylcholine responses of α4β2 nAChRs in vitro, as

did the full length ectodomain of the rabies virus glycoprotein [20]. The same peptides significantly

altered a nAChR elicited behaviour in C. elegans and increased locomotor activity levels when injected

into the CNS of mice [20]. The nAChR thus plays a critical role in the host-pathogen interaction in the

case of the RABV. Furthermore, a broad variety of nAChR oligomers are distributed throughout the

brain, including the reticular core neurons and the spinal cord, with the 𝛼4𝛽2 and 𝛼7 nAChR

oligomers being the most frequent [27]. The hypothesis we wish to explore is to what implications

these data may hold for SARS-CoV-2 infection and we suggest a strong role of nAChR in the disorder.

The nAChR pathway is hypothesized to be engaged in the Covid-19 inflammatory syndrome. The

nervous system, through the vagus nerve, can significantly and rapidly inhibit the release of

macrophage TNF, and attenuate systemic inflammatory responses [28]). This physiological

mechanism, termed the ‘cholinergic anti-inflammatory pathway’ has major implications in

immunology and in therapeutics. The cytokine production of macrophages - one of the main cell types

found in the bronchoalveolar fluid - is under the physiological control of  auto/paracrine acetylcholine

through their nAChRs [29]. Following dysregulation of macrophage nAChRs, the profile of cytokines
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massively secreted include Il1, Il6, TNF et Il18. This cytokine profile shows striking analogies with the

cytokine storm syndrome, leading to the hyperinflammatory syndrome described in a subgroup of

Covid-19 patients [30]; Systemic coagulopathy with venous and arterial thrombosis is one of the

critical aspects of the morbidity and mortality of Covid-19. In line with our hypothesis, one should

note that hematopoietic 𝛼7-nAChR deficiency increases platelet reactive status, which could explain

the thrombogenic presentation of Covid-19 [31].

Although selective cytokine blockers (eg, IL1-receptor antagonist anakinra or anti-IL6 tocilizumab)

have been proposed for the control of Covid-19 cytokine storm, their efficacy is still to be explored.

Interestingly, 𝛼7 agonists, including nicotine, have proven to be effective in reducing macrophage

cytokine production and inflammation in animal models of pancreatitis [32] and peritonitis [33]. In

this setting, a nicotinic treatment that might possibly antagonize the blocking action of SARS-CoV-2

on the AChR through a possible modulation of the ACE2 – nAChR interaction, would act earlier than

anti-cytokine therapies. nAChR modulation by Covid-19 might tentatively account for the

hyperinflammatory features observed in a subgroup of Covid-19 patients, mimicking bona fide the

macrophage activation syndrome.

Of note, our hypothesis could explain the high prevalence of obesity and diabetes mellitus observed in

severe forms of Covid19. The diminished vagus nerve activity previously described in these two

illnesses could be potentiated by the Covid-19 elicited nicotinic receptor dysregulation, leading to a

hyperinflammatory state often reported in obese patients [29].

nAChRs are present in the lung epithelium. The non-neuronal cholinergic system contributes to the

regulation of cell functions such as cell-cell interaction, apoptosis, and proliferation and it is well

established that human bronchial epithelial cells contain nAChRs. The airway epithelium expresses

𝛼3, 𝛼4, 𝛼5, 𝛼7, 𝛼9, 𝛽2, and 𝛽4-nAChRs subunits [34-37] and their contribution has been discussed in

the framework of airway epithelial basal cell proliferation-differentiation and their alteration in lung

cancers [38]. These nAChRs are mentioned here as possible targets of Covid-19 infection of the lung,

which would take place concomitantly with, and/or as a consequence of, the neuro-infection. 

Additionally, nAChRs are involved in lung perfusion regulation, which seems to be disrupted in the

atypical acute respiratory distress syndrome reported in Covid-19 patients [3].

A potential protective effect of smoking and of nicotine on SARS-CoV-2 infection has been noted.

Until recently [39], no firm conclusions could be drawn from studies evaluating the rates of current

smokers in Covid-19. All these studies [40-48], although reporting low rates of current smokers,
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ranging from 1.4% to 12.5%, did not take into account the main potential confounders of smoking

including age and sex. In the study that two of us are reporting [1],   the rates of current smoking

remain below 5 % even when main confounders for tobacco consumption, i.e. age and sex, in- or

outpatient status, were considered. Compared to the French general population, the Covid-19

population exhibited a significantly weaker current daily smoker rate by 80.3 % for outpatients and by

75.4 % for inpatients. Thus, current smoking status appears to be a protective factor against the

infection by SARS-CoV-2. Although the chemistry of tobacco smoke is complex, these data are

consistent with the hypothesis that its protective role takes place through direct action on various

types of nAChRs expressed in neurons, immune cells (including macrophages), cardiac tissue, lungs,

and blood vessels.

Mechanisms engaged in Covid-19 as nAChR disease might be tentatively suggested. There is structural

evidence supporting the hypothesis that SARS-CoV-2

virus is a nicotinic agent. The recently reported X-ray structure of the RABV glycoprotein (G)

ectodomain [49] shows that the region corresponding to the neurotoxin-like peptide is exposed at the

G surface, in agreement with the fact that this region is part of the major antigenic region II of RABV

[50]. The recently published cryo-EM structure of the trimeric SARS-CoV-2 spike (S) protein [51, 52]

revealed an insertion with respect to that of SARS-CoV-1, in a loop that is disordered in the reported

structure, and which has a polybasic sequence that corresponds to a furin site. Importantly, this

exposed loop of the SARS-CoV-2 S protein also contains a motif that is homologous to that of snake

neurotoxins and to the RABV neurotoxin-like region (Figure). This observation supports the

hypothesis that SARS-CoV-2 virus itself is a nAChR blocker.
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Figure:  The neurotoxin motifs. Amino acid sequence alignment of the motifs found in toxins from snakes

of the Ophiophagus (cobra) and Bungarus genera, in G from three RABV strains and in S from SARS-CoV-2

Nicotine may be suggested as a potential preventive agent against Covid-19 infection. Both the

epidemiological/clinical evidence and the in silico findings may suggest that Covid-19 infection is a

nAChR disease that could be prevented and may be controlled by nicotine. Nicotine would then

sterically or allosterically compete with the SARS-CoV-2 binding to the nAChR. This legitimates the

use of nicotine as a protective agent against SARS-CoV-2 infection and the subsequent deficits it

causes in the CNS. Thus, in order to prevent the infection and the retro-propagation of the virus

through the CNS, we plan a therapeutic assay against Covid-19 with nicotine (and other nicotinic

agents) patches or other delivery methods (like sniffing/chewing) in hospitalized patients and in the

general population

In conclusion, we propose, and try to justify, the hypothesis that nAChRs play a critical role in the

pathophysiology of SARS-CoV-2 infection and as a consequence propose nicotine and nicotinic

orthosteric and/or allosteric agents as a possible therapy for SARS-CoV-2 infection. Interestingly,

ivermectin, which has been recently shown to inhibit the replication of SARS-CoV-2 in cells in vitro

[53], is a positive allosteric modulator of a7 nAChR [54]. The nicotinic hypothesis might be further

challenged by additional clinical studies and by experimental observations determining whether

SARS-CoV-2 physically interacts with the nAChR in vitro, for instance by electrophysiological

recordings, high resolution EM and by animal model studies. Further work should also specify the still

enigmatic relationships between ACE2 and nAChRs in the nervous system.
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One should not forget that nicotine is a drug of abuse [55] responsible for smoking addiction. Smoking

has severe pathological consequences and remains a serious danger for health. Yet under controlled

settings, Nicotinic agents could provide an efficient treatment for an acute infection such as Covid-19.
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