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Recognizing human emotions from body motion is a critical challenge in affective computing,

particularly in scenarios where facial expressions or speech are unavailable or unreliable. In this study,

we propose a novel framework for emotion recognition from skeletal motion data using a graph-based

and parallel multi-objective optimization approach. Skeletal motion sequences are represented as

graphs, where nodes correspond to joints and edges capture anatomical connections, enabling the

preservation of spatial structure and dynamic body patterns crucial for emotional expression. To

improve both feature quality and model performance, we employ two evolutionary algorithms in

parallel. A Genetic Algorithm (GA) is used to evolve the topology of the motion graphs, optimizing

structural characteristics that in�uence expressiveness. Simultaneously, Particle Swarm Optimization

(PSO) is applied to learn optimal joint-level weighting, enhancing the relevance of motion features in

the frequency domain. This dual optimization process balances competing objectives, such as

accuracy, graph complexity, and interpretability. After extracting graph-theoretic and frequency-

domain features from the optimized representations, we train a high-performing Gradient Boosting

classi�er as a teacher model. To reduce computational cost while retaining predictive power, we distill

this knowledge into a lightweight Decision Tree model using a hybrid of soft and hard labels. This

knowledge-distilled classi�er enables real-time and interpretable emotion recognition with minimal

performance degradation. Experiments conducted on a multi-class skeletal emotion dataset show that

our method signi�cantly improves recognition accuracy and model ef�ciency compared to traditional

pipelines. The proposed system offers a robust, interpretable, and scalable solution for emotion

recognition in human–computer interaction, healthcare, and behavioral analysis applications.
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1. Introduction

De�nition and Importance

Emotion recognition [1][2] is a key area in affective computing [1], enabling machines to interpret human

emotional states for improved interaction in domains like Human-Computer Interaction (HCI)  [3],

healthcare [4], education [5], and more. While facial [6] and vocal cues are commonly used, skeletal body

motion [2] offers a non-intrusive and language-independent alternative, especially valuable when other

signals are absent or unreliable. To effectively capture the structural and dynamic relationships in body

movements, skeletal data can be represented as graphs  [7][8], where joints and their anatomical

connections are modeled as nodes and edges  [9][10][11]. This research proposes a novel framework that

uses this graph structure along with parallel multi-objective optimization  [12][13][14]  using Genetic

Algorithms (GA)  [15]  and Particle Swarm Optimization (PSO)  [16]  to enhance feature representation and

classi�cation performance. By optimizing both the graph topology and joint-wise motion weighting, the

system achieves a balance between accuracy, complexity, and interpretability. Additionally, a high-

capacity Gradient Boosting Model (GMB)  [17]  is used to guide a lightweight Decision Tree (DT)  [18]  via

Knowledge Distillation (KD) [19], enabling ef�cient and real-time emotion recognition. This approach is

signi�cant for developing scalable, interpretable, and high-performing emotion recognition systems

based on human body motion.

Challenges

Despite its potential, emotion recognition from skeletal body motion presents several challenges. First,

body movements are highly variable across individuals, making it dif�cult to extract consistent and

generalizable features. Second, capturing the temporal and spatial dependencies between joints requires

a robust representation that can preserve the anatomical structure of the body. Traditional �at feature

representations often fail to capture these relationships effectively. Additionally, the high dimensionality

of motion data, combined with limited labeled datasets, increases the risk of over�tting and reduces

model interpretability. Optimization of graph structures and feature weights adds another layer of

complexity, as it requires balancing multiple con�icting objectives such as accuracy, model simplicity,

and computational cost. Finally, while deep learning models can achieve high performance, they are often
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resource-intensive and lack transparency. Deploying such models in real-time applications or on low-

power devices remains a major hurdle. These challenges necessitate the development of ef�cient,

interpretable, and generalizable frameworks, such as the one proposed in this study, that combine graph-

based modeling, evolutionary optimization, and knowledge distillation to address the limitations of

current approaches.

Body Motion

Human body motion is a complex process involving the coordinated movement of joints in three-

dimensional (3D) space, typically represented through both position and rotation of skeletal joints over

time. In motion capture systems, each joint's position is de�ned in Cartesian coordinates (X, Y, Z), while

its orientation is often described using Euler angles or quaternions to represent rotation around each

axis  [20][21][22]. This dual representation captures not only the spatial placement of each joint but also

how it turns or pivots, which is crucial for understanding nuanced gestures and emotional expressions.

The body’s kinematic structure is inherently hierarchical, with root joints (like the pelvis or spine)

in�uencing the movement of connected limbs in a parent-child relationship. This hierarchical nature

means that movement in one joint can propagate to others, requiring representations that preserve these

dependencies. Accurate modeling of body motion must consider both the temporal dynamics (how

positions and rotations evolve over time) and the spatial topology (how joints are connected

anatomically)1. Capturing these aspects is essential for tasks such as emotion recognition, where subtle

variations in posture, speed, and coordination can convey different emotional states. Therefore,

transforming this motion data into structured formats like graphs helps retain the anatomical

relationships while enabling advanced feature extraction and analysis.

Graph

A graph  [7][8]  is a mathematical structure composed of nodes (also called vertices) and edges that

represent relationships or connections between those nodes. In the context of human body modeling, a

skeleton graph is constructed by treating each joint of the body as a node and connecting these nodes

based on the anatomical structure of the human skeleton. For example, the elbow joint is connected to

the shoulder and wrist joints, forming edges that re�ect the natural linkage of limbs  [9][10][11]. This

graph-based representation captures both the topological structure of the body and the kinematic

dependencies between joints, enabling more accurate modeling of motion dynamics. Unlike �at feature
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vectors, graphs preserve the relational and hierarchical nature of the human body, which is especially

important when analyzing motion for tasks like emotion recognition. Additionally, graph structures

allow the use of specialized techniques such as graph-based feature extraction, spectral analysis, and

Graph Neural Networks (GNNs)  [7][8], which can uncover patterns related to posture, symmetry, and

movement intensity. Converting skeletal motion to a graph thus enables a powerful and �exible

framework for capturing the inherent spatial relationships in body movement, paving the way for more

interpretable and structurally aware machine learning models. Figure 1 depicts a sample of the body

graph mapped from our experiment.

Parallel Processing

Parallel processing2 is the simultaneous execution of multiple computations across multiple processors

or cores to improve ef�ciency and reduce runtime. In computational tasks that involve large datasets or

complex algorithms, such as evolutionary optimization or feature extraction in motion analysis, parallel

processing allows independent operations to run concurrently rather than sequentially. This is especially

bene�cial in frameworks like the one proposed in this study, where GA and PSO are executed in parallel,

using multi-core CPUs to accelerate the search for optimal solutions. By distributing workloads, parallel

processing signi�cantly enhances scalability and makes advanced methods feasible for real-time or

large-scale applications.

Figure 1. The body skeleton mapped to a graph (a sample from our experiment)
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Multi-Objective Optimization

Optimization is to �nd the best solution to a problem, maximizing gains or minimizing losses, within

given limits. It uses smart algorithms to ef�ciently search through possible choices, balancing speed,

accuracy, and cost while avoiding pitfalls like dead-end solutions. Whether in engineering, AI, or

logistics, it’s about making the most effective decision with the least waste  [23][24]. Multi-objective

optimization  [12][13][14]  involves simultaneously optimizing two or more con�icting objectives, rather

than focusing on a single performance metric. In many real-world problems, such as emotion

recognition from body motion, trade-offs must be made between goals like accuracy, model complexity,

and computational ef�ciency. Instead of �nding a single best solution, multi-objective optimization

seeks a set of Pareto-optimal solutions, where no objective can be improved without compromising

another. In this study, GA and PSO are used to balance such objectives, optimizing graph structure and

joint weighting, resulting in models that are not only accurate but also ef�cient and interpretable.

Knowledge Distillation

Knowledge Distillation (KD)  [19]  is a model compression technique where a smaller, simpler model (the

student) is trained to mimic the behavior of a larger, more complex model (the teacher). Instead of

learning only from hard labels, the student also learns from the soft outputs (probability distributions) of

the teacher, which carry rich information about class relationships. This approach enables the student

model to achieve competitive performance with signi�cantly lower computational cost. In this study,

knowledge distillation is used to transfer knowledge from a high-capacity gradient boosting model to a

lightweight decision tree, making both high accuracy and real-time inference possible.

Contribution

The main contribution of this study is the development of a novel framework for emotion recognition

from skeletal body motion using graph-based representation and parallel multi-objective optimization.

We introduce a unique combination of GA and PSO, running in parallel to simultaneously optimize graph

topology and joint-level motion weighting, enhancing both feature relevance and structural

expressiveness. Furthermore, we extract rich frequency-domain and graph-theoretic features to capture

both spatial and temporal dynamics of emotional movements. To balance performance with ef�ciency,

we employ knowledge distillation, transferring the predictive power of a complex gradient boosting

classi�er to a lightweight decision tree model suitable for real-time and low-resource applications. This
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integrated approach not only improves classi�cation accuracy but also enhances model interpretability

and scalability, making it a practical solution for emotion-aware systems in healthcare, education, and

human–computer interaction.

Research Questions

We try to answer the following research questions. How can skeletal body motion be effectively

represented as a graph to preserve spatial and kinematic relationships for emotion recognition? What are

the bene�ts of applying parallel multi-objective optimization to both graph topology and joint-level

weighting in enhancing classi�cation performance? Can the combination of graph-theoretic and

frequency-domain features improve the discriminative power of emotion recognition models based on

body motion? How does knowledge distillation from a high-capacity model to a lightweight classi�er

impact accuracy, interpretability, and real-time performance? What trade-offs exist between model

complexity, accuracy, and computational ef�ciency when using evolutionary algorithms for feature and

structure optimization?

Paper Structure

The structure of this paper is organized as follows: Section 1 presents the introduction, highlighting

de�nitions, challenges, the motivation, and objectives of the study. Section 2 reviews related prior works.

Section 3 details the proposed method in detail. Section 4 provides the evaluation and results, discussing

the experimental setup, dataset, performance metrics, and comparative analysis. Finally, Section 5

concludes the paper with key �ndings, limitations, and directions for future work.

2. Related Works

Emotion Recognition by Body Motion

The research introduced in  [2]  explores the use of the neural gas algorithm to generate synthetic body

motion data aimed at enhancing emotion recognition systems. By creating arti�cial motion datasets, the

study seeks to address challenges related to data scarcity and variability in training models for

recognizing human emotions through body movements. The research demonstrates that synthetic data

produced via the Neural Gas network can effectively supplement real-world datasets, potentially

improving the accuracy and robustness of emotion recognition models. Also, the paper  [21]  surveys
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recent developments in recognizing human emotions through body posture and movement, an

increasingly explored and expressive modality. It outlines emerging techniques, key applications, and the

importance of movement segmentation in improving automatic emotion recognition. The study also

reviews notation systems used to describe body movement and highlights current challenges in the �eld,

offering future research directions to enhance emotion-aware human-computer interaction. Additionally,

the paper  [9]  introduces a novel approach to recognizing human emotions by analyzing skeletal body

movements. The authors propose a two-stream model that integrates spatial-temporal graph

convolutional networks with self-attention mechanisms to effectively capture both the spatial

con�gurations and temporal dynamics of skeletal joints. This method enhances the model's ability to

discern subtle emotional cues from body posture and movement. Experiments conducted on benchmark

datasets demonstrate that this approach achieves superior performance compared to existing methods,

highlighting its potential for applications in human-computer interaction and affective computing. This

research [20] presents a real-time emotion recognition system that analyzes body movements using both

low-level 3D posture data and high-level kinematic features. These features are processed with a random

forest classi�er, enhanced by a novel semi-supervised adaptive algorithm to improve robustness and

generalization. Trained on the MoCap UCLIC gesture dataset, the system achieved a 78% recognition rate.

Its adaptive design allows ef�cient classi�cation of continuous, unlabeled Kinect data, and tests show it

outperforms existing stream-based algorithms in both accuracy and computational ef�ciency. The paper

introduced in  [22]  presents a biologically inspired neural model designed to interpret emotional body

language. This model utilizes a hierarchy of neural detectors to analyze static body poses and effectively

distinguish between seven basic emotional states. The approach aims to mimic human visual processing

mechanisms, providing a foundation for developing systems that can recognize emotions based on body

posture. The study contributes to the �eld by offering insights into how emotional expressions can be

identi�ed through body pose analysis.

Body Skeleton Mapping to Graph

Research presented in [10] introduces a system that recognizes emotions in real-time by analyzing body

movements. It extracts postural, kinematic, and geometrical features from 3D skeleton sequences and

employs a multi-class Support Vector Machine (SVM) classi�er  [25]  to identify six basic emotions. The

system was evaluated using data from both professional optical motion capture systems and Microsoft

Kinect, achieving an overall recognition rate of 61.3%, comparable to human observers. Additionally, the
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authors developed interactive games to further test the system's effectiveness in real-world scenarios.

Also, the paper  [11]  introduces an explainable approach to emotion recognition using body movements.

The authors represent human skeletal joints as graphs and employ Graph Convolutional Networks

(GCNs) [7][8] enhanced with spatial attention mechanisms focused on speci�c body parts, arms, legs, and

torso, to improve emotion classi�cation. Their method not only achieves accurate performance on

challenging datasets but also provides interpretability by identifying which body parts contribute most

to the emotion recognition process, highlighting the signi�cant role of arm movements in conveying

emotions. Furthermore, the research [9] introduces a novel approach to emotion recognition by analyzing

human skeletal movements. The authors propose a two-stream model that processes both joint positions

and bone orientations using self-attention enhanced Spatial-Temporal Graph Convolutional Networks

(ST-GCNs). This architecture allows the system to capture both local and global dependencies in body

movements, improving the accuracy of emotion classi�cation. Experiments conducted on the IEMOCAP

dataset demonstrate that this method outperforms existing models, highlighting the potential of

incorporating skeletal data into multimodal emotion recognition systems. Also, the paper introduced

in [26] introduces a novel approach to modeling dynamic human skeletons using Spatial-Temporal Graph

Convolutional Networks (ST-GCN). This method represents human joints as nodes and their natural

connections as edges in a graph, enabling the model to capture both spatial con�gurations and temporal

dynamics of skeletal movements. By applying graph convolutions over this structure, the ST-GCN

effectively learns patterns for action recognition tasks. Experiments demonstrate that this approach

outperforms traditional methods, showcasing its potential for applications in human action recognition

and related �elds.

Body Motion Optimization

This study [27] utilizes the Elitist Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to model hind-

limb kinematics. By combining global optimization with local search techniques, the approach

effectively estimates joint angles and limb widths, enhancing the accuracy of biomechanical models.

This comprehensive analysis  [28]  explores various nature-inspired metaheuristic algorithms, including

the Aquila Optimizer, Marine Predators Algorithm, Slime Mold Algorithm, and Whale Optimization

Algorithm, for human activity recognition and fall detection using wearable sensors. These algorithms

enhance feature selection and classi�cation accuracy in motion data analysis. This paper [29] presents an

unsupervised framework for human activity discovery in 3D skeleton sequences. It employs a hybrid PSO
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with Gaussian Mutation and K-means clustering to identify activity patterns, achieving higher accuracy

compared to state-of-the-art methods. This study  [30]  introduces a Hierarchical Multi-Swarm

Cooperative PSO (H-MCPSO) for tracking full-body articulated human motion from multi-view video

sequences. The approach addresses challenges like particle diversity loss and demonstrates superior

performance compared to other methods on datasets like Brown and HumanEvaII. This

research  [31]  introduces a generative method for reconstructing 3D human motion from monocular

image sequences. It utilizes a hierarchical annealed genetic algorithm to address challenges in pose

estimation and tracking, demonstrating effective viewpoint-invariant 3D pose reconstruction. The

study  [32]  proposes a method for extracting keyframes from motion capture data using a multiple

population genetic algorithm. The approach aims to minimize reconstruction errors and optimize

compression ratios, facilitating ef�cient storage and processing of motion data.

Knowledge Distilled Classi�cation

This paper [33] surveys various knowledge distillation strategies for classi�cation tasks and implements a

set of techniques that claim state-of-the-art accuracy. The authors highlight reproducibility challenges

and emphasize the importance of appropriately tuned classical distillation combined with data

augmentation. This study  [34]  explores the use of knowledge distillation for learning compact and

accurate models that enable classi�cation of animal behavior from accelerometry data on wearable

devices. A deep convolutional neural network (ResNet) serves as the teacher model, and its knowledge is

distilled into simpler student models like Gated Recurrent Units (GRU) and Multi-Layer Perceptron (MLP).

This paper [35]  introduces an innovative image classi�cation technique utilizing knowledge distillation,

�t for a lightweight model structure. The approach enhances classi�cation performance while

maintaining computational ef�ciency. This research  [36]  investigates how different dataset properties

affect the ef�cacy of knowledge distillation in deep convolutional neural networks. The study

systematically explores the relationship between dataset complexity and the performance of knowledge-

distilled models. This paper  [37]  proposes a novel self-paced knowledge distillation framework, termed

Learning From Multiple Experts (LFME), to address the challenges of long-tailed data distributions in

classi�cation tasks. The method aggregates knowledge from multiple expert models to train a uni�ed

student model effectively.
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3. Proposed Method

Employed Data Type

We used the BioVision Hierarchy (BVH) data type3 in our experiments. The BVH �les are a standard

format used to store motion capture data for humans and other �gures. These �les encapsulate

movement data by de�ning a hierarchical skeleton structure composed of joints, along with the

animation data specifying the motion of each joint. Each joint is de�ned by its name, position in 3-D

space, and rotation (typically in degrees), which dictates how the joint moves relative to its parent joint in

the hierarchy. The structure of a BVH �le is split into two main sections: the hierarchy section and the

motion section. The hierarchy section de�nes the skeletal structure, detailing the connections between

joints (such as 'Hip', 'Knee', 'Ankle') and their initial positions and channels of rotation (e.g., 'Xrotation',

'Yrotation', 'Zrotation'). The motion section contains frame-by-frame animation data, specifying the

rotation of each joint and the position of the root joint at each point in time4. Figure 2 illustrates different

samples of the dataset.

Figure 2. Samples of different emotions from the dataset (walking)

Mapping Body Motion on Graph

Let the input body motion data be de�ned as:

M = {( , ) ∣ i = 1, … , N; t = 1, … , T}pi
t ri

t
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Where:

 is the full motion capture dataset extracted from a BVH �le.

 indexes the joints,   is the total number of joints.

 indexes time frames,   is the total number of frames.

 is the position vector of joint   at time  :

 is the rotation quaternion of joint   at time  :

We now map   into a graph structure:

Where:

: set of joints (nodes).

: set of bones (edges), de�ned by the BVH joint hierarchy (parent-child structure).

: matrix of 3D joint positions at time  .

: matrix of joint orientations (quaternions) at time  .

Parallel Multi-Objective Optimization

Given the mapped body motion graph:

: set of nodes representing joints,

: edges representing connections,

: 3D positions of each node  , where  ,

: quaternion rotations of each node  , where  .

Step 1: Represent Candidate Solutions

Each candidate solution   encodes adjusted graph features:

M

i N

t T

∈pi
t R

3 i t

= [ , , ]pi
t xi

t y i
t zi

t

∈ri
t R

4 i t

= [ , , , ]ri
t qi

t ri
t si

t wi
t

M

= (V , E, , )Gt Xt Qt

V = { , , … , }v1 v2 vN

E ⊆ V × V

= ∈Xt [ , , … , ]p1
t p2

t pN
t

⊤
R

N×3 t

= ∈Qt [ , , … , ]r1
t r2

t rN
t

⊤
R

N×4 t

G = (V , E, X, Q)

V = { , , … , }v1 v2 vn

E ⊆ V × V

X = ∈[ , , … , ]x1 x2 xn
T

R
n×3 vi = ( , , )xi xi yi zi

Q = ∈[ , , … , ]q1 q2 qn
T

R
n×4 vi = ( , , , )qi wi qxi

qyi
qzi

s

s = [ , ] ∈X
′

Q
′

R
n×7
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where    and    represent modi�ed positions and rotations, respectively, i.e., the variables subject to

optimization.

Step 2: PSO Optimization on s

For each particle   at iteration  :

Position vector:   (�attened  )

Velocity vector: 

Velocity update:

where

: personal best solution of particle  ,

: global best solution across all particles,

: hyperparameters,

.

Position update:

The updated    is reshaped into  , representing the updated

graph features for particle  .

Step 3: GA Optimization on s

GA maintains a population   of candidate graph features.

Each generation involves:

Selection: Choose parent solutions based on �tness.

Crossover: Combine parts of parents'   and   to generate offspring.

Mutation: Randomly perturb positions   and rotations  .

Evaluation: Compute �tness on modi�ed  .

Step 4: Multi-Objective Fitness Evaluation

For any candidate  , de�ne objective functions:

X
′

Q
′

i t

(t) ∈xi R
7n s

(t) ∈vi R
7n

(t + 1) = ω (t) + ( (t) − (t)) + (g(t) − (t))vi vi c1r1 pi xi c2r2 xi

(t)pi i

g(t)

ω, ,c1 c2

, ∼ U(0, 1)r1 r2

(t + 1) = (t) + (t + 1)xi xi vi

(t + 1)xi (t + 1) = [ (t + 1), (t + 1)]si X
′

i Q
′

i

i

P(t) = { (t)}sj
M

j=1

X
′

Q
′

X
′

Q
′

(t + 1)sj

s = [ , ]X
′

Q
′
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where   represents:

Classi�cation accuracy of emotion recognition using the adjusted graph,

Smoothness or physical plausibility of motion,

Computational cost,

Step 5: Parallel Execution and Exchange

PSO and GA run concurrently on separate computational threads/processors.

Each periodically shares the current best candidate solutions   and  .

Shared solutions seed the other method's population or swarm to enhance convergence.

Step 6: Output - Improved Graph Features

After   iterations:

PSO returns 

GA returns 

The �nal improved mapped graph    is obtained by selecting or merging these

solutions based on Pareto dominance or weighted criteria. PSO modi�es the graph features by adjusting

particle positions and velocities, representing joint positions and rotations. GA evolves a population by

crossover and mutation of these features. Both run in parallel, optimizing multiple objectives and

returning an improved body motion graph that better suits downstream classi�cation tasks.

Knowledge-Distilled Classi�er

The input is the optimized graph output from PSO and GA:

Where:

: nodes (joints)

: edges (bones)

: optimized 3D positions

: optimized rotations (quaternions)

F(s) = ( (s), (s), … , (s))f1 f2 fm

fj

(t)gPSO (t)gGA

T

= [ , ]s∗
PSO

X∗
PSO Q∗

PSO

= [ , ]s∗
GA

X∗
GA Q∗

GA

= (V , E, , )G∗ X∗ Q∗

= (V , E, , )G∗ X ∗ Q∗

V = { , , … , }v1 v2 vn

E ⊆ V × V

∈X ∗
R

n×3

∈Q∗
R

n×4
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To feed   into classi�ers:

This feature vector   is what goes into the teacher and student models.

Let:

Teacher T: Gradient Boosting Classi�er (GB)

Student  : Decision Tree Classi�er (DT)

Ground truth label: 

Soft teacher prediction: 

Student prediction: 

Distillation temperature: 

We soften the teacher's output:

Where   and   are logits before softmax.

Total Loss Function

: cross-entropy loss between student prediction and true label

: KL-divergence between teacher and student soft outputs

: balancing factor

Final Output

After training: the student model   is used for classi�cation.

This yields the �nal classi�cation report using  .

Figure 3 depicts the �owchart of the proposed method.

G∗

f =  Flatten  ([ ∣ ]) ∈ →X ∗ Q∗
R

n×7
R

7n

f

S

y ∈ {1, … , C}

= T (f)ŷT

= S(f)ŷS

τ

= Softmax( )   and   = Softmax( )ŷ
(τ)
T

zT

τ
ŷ

(τ)
S

zS

τ

zT zS

= α ⋅ (y, ) + (1 − α) ⋅ ( ∥ )Ltotal  LCE ŷS LKL ŷ
(τ)
T ŷ

(τ)
S

LCE

LKL

α ∈ [0, 1]

S

ŷS
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Figure 3. The �ow chart of the proposed method.

4. Evaluation and Results

Data Processing and Features

The data processing pipeline begins with reading BVH (Biovision Hierarchy) motion capture �les, from

which raw joint data is extracted for each frame. For every joint   at time  , both 3D positional data 

  and rotational data in quaternion form    are parsed. These values are

structured into a graph-based representation  , where nodes    correspond to body

joints, edges    follow the skeletal hierarchy, and matrices    and    contain joint positions and

orientations, respectively. Each motion sample undergoes feature extraction, combining temporal and

spatial aspects. From the motion signal, 24 FFT-based features are computed per joint, capturing

frequency domain characteristics like dominant frequency and energy. In addition, 6 handcrafted graph-

based features are extracted per graph snapshot, including degree centrality, edge density, and spectral

energy  [20]. These features are concatenated to form a combined feature vector of 30 dimensions per

frame. The resulting features are normalized to ensure consistent scaling and are used as input for the
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subsequent optimization and classi�cation pipeline. This preprocessing step preserves essential motion

dynamics and structural patterns critical for accurate recognition.

The Dataset

We used a dataset called Edin  [38], as it is recorded by Edinburgh University5. The dataset used in this

framework is a large-scale motion capture collection speci�cally curated for deep learning-based human

motion synthesis and animation. It combines multiple publicly available motion capture sources,

including the CMU MoCap dataset, and is augmented with internally captured sequences. All motion data

is retargeted to a consistent skeleton structure with uniform bone lengths and scale. The resulting

dataset contains approximately six million high-quality frames sampled at 120 frames per second. For

training purposes, it is subsampled to 60 FPS and converted to 3D joint positions in a local body

coordinate system. Each sample includes position, global velocity, rotational velocity, and foot contact

labels, normalized by mean and standard deviation. This comprehensive preprocessing enables robust

learning of motion patterns and supports a wide range of applications such as locomotion, punching, and

style transfer. We selected 64 samples in four emotions, which means 16 samples per emotion.

Metrics and Classi�ers

For the classi�cation stage, a gradient boosting classi�er was employed as the teacher model. Gradient

boosting is an ensemble method that builds a sequence of weak learners, typically decision trees, where

each tree attempts to correct the errors of the previous ones, resulting in a highly accurate predictive

model. The student model was a decision tree classi�er, which is a lightweight, interpretable algorithm

that recursively partitions the feature space based on feature thresholds to minimize classi�cation error.

It is well-suited for distilled learning due to its fast inference and low computational overhead. Several

metrics were used to evaluate classi�cation performance. Accuracy measures the proportion of correctly

predicted samples over the total number of samples, offering a general sense of model correctness.

Precision determines how many of the predicted positive instances are actually correct, helping assess

the model's exactness in identifying target classes. Recall measures how many of the actual positive

instances were correctly predicted, indicating the model's ability to capture all relevant cases. F1-score is

the harmonic mean of precision and recall, balancing both metrics to provide a single robust measure of

performance, especially under class imbalance [39].
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Experiments and Results

A total of 64 samples from the Edin dataset are selected, which means 16 samples per emotion. Emotions

are angry, depressed, neutral, and proud. Normally, in walking or fast walking, and even side-by-side

walking, samples are taken. In the experimental setup, the dataset was divided using a 60-40 train-test

split, with a �xed random seed (42) to ensure reproducibility. The gradient boosting, serving as the

teacher model, was con�gured with 150 estimators, a learning rate of 0.02, a maximum depth of 8, and a

subsample rate of 0.9. These values were selected to balance learning capacity and generalization

performance while maintaining training stability. For the decision tree classi�er, both in standalone and

distilled con�gurations, the maximum depth was limited to 5, with a minimum of 5 samples required to

split an internal node and a minimum of 3 samples per leaf. The knowledge distillation process used a

soft label temperature of 3.0 and an interpolation factor 𝛼=0.5 to combine soft labels from the teacher

with one-hot encoded hard labels. These hyperparameter choices make a controlled trade-off between

knowledge transfer and structural simplicity in the student model, supporting fair and interpretable

performance comparisons.

The performance of the proposed emotion recognition framework was evaluated across four emotion

categories: Angry, Depressed, Neutral, and Proud, using three classi�ers: gradient boosting, Standalone

decision tree, and the Knowledge-Distilled Decision Tree (KD-DT). The results demonstrate meaningful

differences in classi�cation effectiveness across models and emotion classes. The gradient boosting

classi�er, acting as the teacher model, achieved the highest overall performance with an accuracy of 85%

and a macro-average F1-score of 0.86. It classi�ed Depressed and Proud emotions with perfect or near-

perfect recall. Speci�cally, it achieved 1.00 F1-score on Depressed, indicating both precision and recall

were �awless on the minority class (n=4). This high performance is attributed to GBM’s ensemble nature

and its capacity to learn complex decision boundaries by combining multiple shallow learners. Angry was

the most challenging emotion for GBM, with a recall of 0.67, suggesting confusion with similar motion

patterns, likely due to overlapping body dynamics with Proud or Neutral classes. In contrast, the

standalone decision tree exhibited a lower overall performance with an accuracy of 73.08% and macro-

average F1-score of 0.75. While it maintained perfect performance on Depressed (F1-score: 1.00), it notably

underperformed on Proud with an F1-score of 0.46, indicating dif�culty in capturing the complexity of

this emotion’s body dynamics. This degradation is expected, as a single decision tree lacks the

hierarchical error correction and depth provided by ensemble methods like GBM. The precision and recall

drops for Proud (0.50 and 0.43, respectively) further emphasize the model’s struggle with generalizing to
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more nuanced emotional gestures in limited samples. Interestingly, the Knowledge Distilled Decision

Tree (KD-DT), trained using soft labels from GBM, achieved the same accuracy (73.08%) and nearly

identical F1-scores to the standalone DT, including the low performance on Proud (F1-score: 0.46). While

knowledge distillation typically helps student models approximate the teacher’s decision boundaries

more closely, in this case, the distilled DT did not surpass the standalone DT. This is likely due to the

limited dataset size (n=26) and the small depth of the student tree, which constrained the student’s

capacity to meaningfully absorb the teacher’s softer probabilistic structure. The Depressed emotion still

received perfect scores across all classi�ers, reinforcing the consistency of its distinct motion cues.

Overall, these results con�rm the superiority of Gradient Boosting in modeling complex emotional

expressions from body motion, while also highlighting the trade-offs of using interpretable, lightweight

classi�ers. Figure 4 depicts the bar plot of the acquired results.

Figure 4. The bar plot of the acquired results

Discussion

To address the �rst research question that how skeletal body motion can be effectively represented as a

graph, our results demonstrate that encoding joint positions and rotations from BVH motion data into a

graph structure G = (V, E, X, Q) successfully preserves both spatial dependencies and kinematic dynamics

essential for emotion recognition. By explicitly modeling joints as nodes and bones as edges, and

including both position and quaternion rotation information, we capture temporal and structural

characteristics crucial for accurate classi�cation. In response to the second question about the bene�ts of
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applying parallel multi-objective optimization, our use of PSO for joint-level weighting and GA for graph

feature evolution, executed in parallel, signi�cantly improved the expressiveness of motion features, as

evidenced by the superior performance of the Gradient Boosting model (85% accuracy). This approach

allowed us to optimize both the graph structure and its parametrization without sacri�cing

computational feasibility. The third question explored whether combining graph-theoretic and

frequency-domain features enhances discriminative power, and our experimental pipeline con�rms this:

concatenating FFT-based motion descriptors with topological graph features yielded richer feature

representations, enabling improved class separability, particularly in complex emotions such as Proud

and Angry. The fourth research question concerned the impact of knowledge distillation from a high-

capacity model to a lightweight student classi�er. Although the distilled Decision Tree did not exceed its

standalone counterpart in this study, it maintained comparable performance while offering increased

interpretability and lower computational overhead, supporting its suitability for real-time or embedded

systems where model simplicity is critical. Finally, regarding the trade-offs between model complexity,

accuracy, and ef�ciency, our �ndings suggest that while evolutionary optimization increases

preprocessing costs, it offers long-term gains in model accuracy and robustness. However, simpler

models like decision trees bene�t less from these enhancements unless combined with additional tuning

strategies, highlighting the delicate balance between algorithmic power and resource constraints in

applied emotion recognition. You can �nd the implementation of the research in my GitHub repository6.

5. Conclusion

In conclusion, this study presents an end-to-end framework for emotion recognition from skeletal body

motion using graph-based representation, parallel evolutionary optimization, and knowledge

distillation. By mapping BVH motion data into graph structures that preserve spatial and rotational

dynamics, and applying Particle Swarm Optimization and Genetic Algorithms in parallel to re�ne joint-

level importance and feature structure, the system effectively enhances classi�cation performance. The

combination of graph-theoretic and frequency-domain features further enriched the input space,

allowing the Gradient Boosting classi�er to achieve strong results. Although the distilled Decision Tree

model did not signi�cantly outperform its non-distilled counterpart, it retained comparable accuracy

with reduced complexity, validating its potential for lightweight, interpretable deployment. Looking

ahead, future work should explore integrating temporal graph neural networks to better capture motion

sequences over time and assess the framework on larger and more diverse emotion datasets.
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Additionally, tuning the knowledge distillation process, such as varying temperature, adaptive alpha, or

using intermediate representation distillation, may improve student performance. Finally, extending the

optimization to dynamically learn graph edge weights or explore multi-modal fusion with audio or

physiological signals could cause further improvements in emotion recognition accuracy and

generalization across contexts.
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Footnotes

1 https://www.cs.cityu.edu.hk/~howard/Teaching/CS4185-5185-2007-SemA/Group12/BVH.html

2 https://www.ibm.com/think/topics/parallel-computing

3 https://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html

4 https://mathematica.stackexchange.com/questions/60292/how-to-build-a-bvh-a-motion-capture-�le-

format-player-in-mathematica

5 http://mocap.cs.cmu.edu/

6 https://github.com/SeyedMuhammadHosseinMousavi/Graph-Based-Parallel-Multi-Objective-

Optimization-of-Skeletal-Body-Motion-Data
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