
4 December 2024, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

Star-Agents: Automatic Data

Optimization with LLM Agents for

Instruction Tuning

Hang Zhou1,2, Yehui Tang1, Haochen Qin1, Yujie Yang1, Renren Jin2, Deyi Xiong2, Kai Han1, Yunhe

Wang1

1. Huawei Noah’s Ark Lab; 2. College of Intelligence and Computing, Tianjin University, China

The efficacy of large language models (LLMs) on downstream tasks usually hinges on instruction

tuning, which relies critically on the quality of training data. Unfortunately, collecting high-quality

and diverse data is both expensive and time-consuming. To mitigate this issue, we propose a novel

Star-Agents framework, which automates the enhancement of data quality across datasets through

multi-agent collaboration and assessment. The framework adopts a three-pronged strategy. It initially

generates diverse instruction data with multiple LLM agents through a bespoke sampling method.

Subsequently, the generated data undergo a rigorous evaluation using a dual-model method that

assesses both difficulty and quality. Finaly, the above process evolves in a dynamic refinement phase,

where more effective LLMs are prioritized, enhancing the overall data quality. Our empirical studies,

including instruction tuning experiments with models such as Pythia and LLaMA, demonstrate the

effectiveness of the proposed framework. Optimized datasets have achieved substantial

improvements, with an average increase of 12% and notable gains in specific metrics, such as a 40%

improvement in Fermi, as evidenced by benchmarks like MT-bench, Vicuna bench, and WizardLM

testset. Codes will be released soon1.

Corresponding authors: Deyi Xiong, dyxiong@tju.edu.cn; Kai Han, kai.han@huawei.com

1. Introduction

The research and development of natural language understanding and generation have been

dramatically accelerated with the emergence and prevalence of LLMs[1][2][3]. These models have been

Qeios

qeios.com doi.org/10.32388/FZGMPF 1

mailto:dyxiong@tju.edu.cn
mailto:kai.han@huawei.com
https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

extensively applied in a wide range of scenarios, e.g., question answering and text generation,

significantly enhancing downstream task performance due to their exceptional ability to follow

instructions[4][5][6][7][8]. Such an instruction-following capability is primarily acquired through a process

known as instruction tuning[9][10][11], where LLMs are fine-tuned on instruction data. It is hence widely

acknowledged that the quality of instructions plays a pivotal role[11][12][13][14].

Historically, the creation of instruction data for training LLMs has heavily relied on the expertise of

human annotators, as evidenced by substantial scholarly contributions[15][16][17][18][19][20][21].While

expert-driven data generation assures the production of high-quality instructions, the enormous volume

of data necessary for effective training renders this method economically untenable. In response, recent

efforts have shifted towards the utilization of LLMs to automatically generate instructions, thereby

mitigating the reliance on costly human annotation[22][23][24][25]. Concurrently, there is a growing

emphasis on the generation and selection of challenging examples, grounded in the belief that more

complex and difficult instructions can substantially elevate model capabilities[26][27].

Despite the clear advantages of using LLMs for data generation, several challenges persist in this

strategy. Primarily, previous efforts often depend on a single LLM, resulting in data that may lack stylistic

variety[28] and encompass a limited range of difficulty levels , which may not be ideal for all models.

Additionally, there is a trend towards the creation of exceedingly complex instructions[29][24][25], which

may surpass the operational capabilities of models with small parameter scale, thereby hindering their

ability to fully capitalize on the data’s potential for performance enhancement.

To address the aforementioned challenges, we propose the Star-Agents framework, an advanced

automatic data optimization system specifically designed to learn and refine instruction samples with

suitable complexity and diversity for target LLMs. The framework consists of three main components.

First, to increase the diversity of generated data, an instruction data rewriting process involving multiple

advanced LLM agents is proposed. This process samples different LLM agents for rewriting instructions

and responses separately (referred to as agent-pairs). Next, to select high-quality samples, the generated

data undergo a dual-model evaluation function with appropriate complexity as the selection metric.

Finally, to balance data diversity and quality, the sampling probability of agent-pairs is adjusted and

evolved based on the composite scores of the selected data, identifying agent-pairs that generate high-

quality data.

qeios.com doi.org/10.32388/FZGMPF 2

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

Extensive experiments are conducted to evaluate instruction-following capabilities of LLMs on a variety

of benchmark datasets, including MT-bench[30], Vicuna-bench[30], and the WizardLM testset[24].

Instruction tuning experiments with LLMs such as Pythia and LLaMA, demonstrate the effectiveness of

the Star-Agents framework. LLMs trained on data generated by Star-Agent outperform those (the same

LLMs) trained on the Evol-Instruct dataset[24] or data selected according to the Instruction-Following

Difficulty (IFD) metric[12]. Significantly, the optimized datasets have resulted in an average performance

improvement of 12%, with some metrics such as Fermi demonstrating gains of over 40%.

2. Related Work

Our work is related to both instruction data generation and selection. We briefly review these topics

within the constraint of space.

Instruction Data Generation

Datasets like Dolly[31] and OpenAssistant[32] are built from human-generated instruction data. The

ShareGPT dataset, built from conversations between humans and ChatGPT, has been effectively used to

improve the instruction-following performance of fine-tuned models[33]. Both Self-Instruct[34] and

Alpaca[35] leverage the generation capabilities of GPT-3 to expand seed instructions. The generated

instructions undergo filtering to eliminate low-quality instructions while the kept instructions are used

to fine-tune the model to enhance the model’s ability to respond to instructions. Baize[36] proposes a

self-dialogue framework, using questions from popular Q&A websites as starting topics, then having

LLMs converse with themselves. CAMEL[37] introduces a role-playing framework where LLMs discuss a

given topic when playing a role as either “user” or “assistant”. UltraChat[38] uses real-world named

entities combined with various text-writing tasks to generate diverse and high-quality multi-turn

dialogues for LLMs. Lion[39] introduces the concept of adversarial distillation, using the Imitation-

Discrimination-Generation stages to iteratively generate data, refine existing instructions, and produces

more complex and diverse instructions to expand the capabilities of the student model. Evol-

Instruct[24] uses five manually designed prompts to explicitly guide LLM in rewriting existing simple

instructions into more complex ones. The WizardLM model, trained with Evol-Instuct, ranks highly on

MT-Bench[30], highlighting the importance of data quality in training effective LLMs.

qeios.com doi.org/10.32388/FZGMPF 3

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

Instruction Data Selection

With the aforementioned methods, it is not difficult to use LLMs to generate large instruction tuning

datasets at low cost. However, for instruction-tuned language models, data quality is more crucial than

quantity. In this aspect, ALPAGASUS[11] evaluates the effectiveness of instruction data by leveraging

ChatGPT. INSTAG[40] automatically generates tags for instruction samples with ChatGPT and keeps

diversity by selecting subsets with more tags.

Figure 1. The diagram of the Star-Agents Framework. Step 1 is designed to gather diverse instructions and

responses as shown in Appendix A.3. Step 2 focuses on selecting high-quality, tailored data from the data

collected in Step 1. Finally, Step 3 aims to enhance the effectiveness and efficiency of the data generation

process by evolving the Star-Agents framework.

Cherry LLM[12] pioneers the self-guided approach, using the IFD metric to measure the difficulty for an

LLM to learn an instruction sample. This allows to select instruction samples that significantly enhance

qeios.com doi.org/10.32388/FZGMPF 4

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

training efficiency without resorting to an external model. DEITA[26] first uses ChatGPT to evaluate the

complexity and quality of samples, then assesses the diversity of samples based on the distance between

model embeddings, thereby guaranteeing complexity, quality, and diversity in the subset. LIFT[41] first

guides GPT-4 to generate challenging instructions to expand the data distribution and then uses

dimensionality reduction and row variance analysis to select representative high-quality data, where

GPT-4 generates a quality score for each instruction. LESS[42] first stores the gradient features of samples

in the dataset, then calculates the similarity between a small number of samples from the target task and

the training data samples. Based on the calculated similarity scores, it selects the training samples whose

gradient features are most similar to those of the target task samples as the fine-tuning instances. Data

selection not only improves training efficiency but also prevents low-quality or poison data from

undermining model performance by filtering them out[43].

3. Star-Agents

The aim of our research is to construct a high-quality dataset of tailored complexity for the target LLM

through the enhancement of an initial seed dataset , consisting of instruction-response

pairs .

To this end, we introduce the Star-Agents Framework, depicted in Figure 1, which is segmented into three

steps. The first step leverages a spectrum of advanced LLMs, each trained independently. These models

are engaged in a dynamic interaction to generate a diverse data candidate set by sampling agent-

pair derived from as detailed in Section 3.1. Following this, we apply a dual-model evaluation strategy

 to meticulously extract the most suitable data from , aiming to substantially elevate the target

model’s performance. This process is elaborated in Section 3.2. To enhance the effectiveness and

efficiency of the Star-Agents framework in generating tailored data, we have developed an evolutionary

strategy for the Star-Agents, as discussed in Section 3.3. After these three steps, a tailored high-quality

dataset is obtained from the seed dataset, which is formulated as:

3.1. Generating Diverse Data

To improve the instruction-tuned model, it is crucial to assemble a high-quality and diverse instruction

dataset[26]. Traditional methods often use a single LLM, such as ChatGPT, for data enrichment. In

T

S = {(,)Ii Ri }Ni=1

(I,R)

D()Si

Si

π(⋅) D()Si

T

T = {arg π(D()) ∣ i = 1, 2, ⋯ ,N} .max
d∈D()Si

Si (1)

qeios.com doi.org/10.32388/FZGMPF 5

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

contrast, our approach employs multiple LLMs to avoid monotonous data distribution. This multifaceted

strategy also addresses the limitations and risks of quality degradation on domain-specific tasks

associated with using a single model. To counter these challenges, we propose to use an Agent-Pair

strategy.

Agent-Pair.

Utilizing a spectrum of LLMs, each trained with discrepant setting, facilitates the generation of varied

responses to given instructions. This diversity is crucial for synthesizing a dataset characterized by high

richness[40].

The Star-Agents framework strategically pairs different LLMs to rewrite the instructions in the seed

dataset and generate new responses to increase the diversity. With agent-pair , a new instruction

data can be generated as follows:

where and represent the agents that rewrites the instruction and response to the instruction,

respectively.

Given the high cost of deploying all agent-pairs, a feasible solution to balance cost and agent diversity is

to sample a subset of agent-pairs from the Star-Agents for data generation. Equation 3 formulates this

process, where is collected dataset generated by performing over all sampled pairs of

instruction agents and response agent with sampling probabilities :

 is number of agent-pairs sampled for a single seed sample. The sampling probability is initialized

as a uniform distribution and will be updated using the method described in Subsection 3.3 during data

generation. Meanwhile, an Instruction Memory Bank that stores high-quality instructions will be

updated. To ensure the lower bound of data quality, each iteration will consistently call a fixed set of

agent-pairs, referred to as base agent-pairs.

3.2. Evaluating Tailored Data via a Dual-model Strategy

Identifying and selecting tailored data from a diverse dataset is crucial for enhancing model

performance, especially since the presence of low-quality data can impede model functionality. It is

(,)AI
j AR

k

(,) = ((), ()),fj,k Ii Ri AI
j Ii AR

k
Ri (2)

AI AR

D f (,)AI
j AR

k

AI
j AR

k
pjk

D() = { (), ⋯ , () ∣ (,) ∼ ,m = 1, 2, ⋯ ,M},Si f ,j1 k1
Si f ,jM kM Si jm km pjk (3)

M pjk

qeios.com doi.org/10.32388/FZGMPF 6

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

acknowledged that data samples that are lengthy, complex, and challenging significantly benefit the

instruction tuning process[26].

Nevertheless, too complex instruction data may be not necessarily benefit model performance. We have

observed that for models with 14M and 70M parameters as illustrated in Figure 2, the Evol-Instruct

dataset, though more challenging than the Alpaca dataset, results in diminished model performance.

This suggests that intricate examples may surpass the capabilities of small models and be harmful for

model performance, despite the advantages of using complex data for large models.

Figure 2. Performance comparison of varied-scale models on the Alpaca and

Evol-Instruct datasets. The tasks from the Evol-Instruct dataset are more

complex than those from Alpaca.

qeios.com doi.org/10.32388/FZGMPF 7

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

Figure 3. Illustration of dual-model evaluation. Data with a significant gap

between the IFD scores of the small and large models will be prioritised.

Dual-model Evaluation.

To address the issue mentioned above, we propose to use a larger model to evaluate the difficulty of data

instances together with the evaluation from a smaller model (target LLM), hence termed as dual-model

evaluation. Inspired by Cherry LLM[12], we employ the IFD metric to measure the degree of difficulty a

data sample presents to the target model, which is calcuated as

We assume that for the same sample, stronger model yields a smaller IFD score. When the IFD scores of

the two models are close to each other, it indicates that the sample is either too simple or too complex,

which is not contributive to effective learning. However, when their IFD scores differ significantly, it

indicates that the data is sufficiently complex for the smaller model but still within the capability range

of the stronger model. This is a tailored complexity for facilitating learning. The above data assessment

method is illustrated at Figure 3 and formulated as

IFD(,) = .Ii Ri

exp(− logP (w|))1

| |Ri
∑w∈Ri

Ii

exp(− logP (w))1

| |Ri
∑w∈Ri

(4)

= .π i
dual

(,) − (,)IFDsmall Ii Ri IFDlarge Ii Ri

((,) − (,))max1≤i≤m IFDsmall Ii Ri IFDlarge Ii Ri

(5)

qeios.com doi.org/10.32388/FZGMPF 8

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

Noising data can be endowed with high score since the dual-model metric considers only the relative

complexity with the neglect of generation quality. To address this issue, we utilize an LLM as referee for

data sample scoring. This involves comparing each data sample in the same batch of diverse data samples

generated by selected agent-pairs against a base data sample generated by base agent-pairs. There are

three potential outcomes: the base data sample is better, the diverse data sample is better, or a tie, as

shown in Appendix A.1. These outcomes are quantitatively assigned as quality scores, thereby avoiding

collecting noising instruction samples:

Finally, the evaluation scores from both the LLM and the dual-model evaluation are combined to compute

a final composite score:

This score determines the overall quality and suitability of data for enhancing the model’s capabilities.

The highest scoring data sample is then selected into dataset and Instruction Memory Bank as detailed

in Section 3.3, ensuring that the chosen dataset maximizes potential improvements in model

performance.

3.3. Evolving Star Agents

As mentioned in Section 3.1, we use the joint probability of instruction agents and response agents to

regulate the invocation of each agent-pair. Considering the abilities and specialities of each LLM vary,

however, sampling each agent-pair with the same probability is not optimal. We hence use the score from

Section 3.2 to dynamically evolve the sampling probability. Additionally, since the generation

performance of agent-pairs is task-dependent, we also propose an Instruction Memory Bank to select the

most suitable agent-pair for particular tasks.

Agent-Pair Sampling Evolution.

Section 3.2 has introduced the score , which effectively estimates the quality of generated samples.

During each iteration, if the generated samples are of high quality, we will increase the sampling

probability of the selected agent-pair, which is updated as follows:

=πllm

⎧

⎩
⎨

0,
1,
0.5,

if the base data sample is better,
if the generated data sample is better,
if tie.

(6)

π = ⋅ .πllm πdual (7)

T

π

qeios.com doi.org/10.32388/FZGMPF 9

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

The updated sampling probability for the agent-pair of the -th instruction agent and -th response

agent that successfully process the -th data sample will be used in the next iteration, where denotes

the evolution rate.This formula adjusts the sampling probabilities based on the effectiveness

demonstrated by agent-pairs in generating relevant data. Iterative updates ensure that as the synthesis

process advances, the probability of selecting more effective agent-pairs increases, while less effective

pairs are gradually phased out.

Instruction Memory Bank Evolution.

We establish an Instruction Memory Bank storing high-quality instructions aiming to accelerate

sampling and relate the evolution with task data. When processing a data sample , we perform a

query in the Instruction Memory Bank for , retrieving the top closest matches according to

embedding similarity. The associated agent-pairs, identified as highly proficient for tasks similar to ,

are then sampled. We sample agent-pairs from this pool using normalized probabilities to generate

diverse data. Moreover, to foster the creation of a diverse dataset, additional agent-pairs are

sampled from the remaining pool using their respective probabilities to assist in data synthesis. As a

result, new samples are generated and then feed for data assessment. Subsequently, the Instruction

Memory Bank will continuously evolve by incorporating tailored high-quality data, which get high

socres as introduced in Section 3.2.

4. Experiments

We conducted extensive experiments to evaluate the proposed Star-Agents framework. A wide range of

LLMs, benchmark datasets were used in our experiments to guarantee the robustness of our evaluation.

4.1. Setups

Datasets.

In alignment with the WizardLM[24], we adopted the Supervised Fine-Tuning (SFT) dataset, designated

as the Evol-Instruct dataset, which consists of 70,000 instruction-response pairs. The instructions in this

dataset were refined using “In-Depth Evolving” and “In-Breadth Evolving” methods, which were tailored

p~jk

pjk

= + β ⋅ π(,),pjk Ii Ri

← .
p~jk

∑j,k p
~
jk

(8)

j k

i β

(,)Ii Ri

Ii n

Ii

l

M − l

M

qeios.com doi.org/10.32388/FZGMPF 10

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

to enhance the base instructions by adding intricate details or expanding the overall scope, respectively.

To guarantee the fidelity of the data, ChatGPT was also integrated as generator into the refinement

process. The quality of the instruction data from the Evol-Instruct dataset has been validated as

superior[24][44]; hence, our research continues to leverage these refined instructions. Employing the Star-

Agents framework, our study invokes multiple LLMs to generate diverse and high-quality responses for

these instructions. For further enriching our comparative analysis, we employed the Alpaca dataset[23],

comprising 52,000 instruction-following samples. This dataset, developed under the self-instruct

paradigm, utilizes the ChatGPT2 instead of text-davinci-003 for a fair comparison[24].

Model Famliy Model Size Data Size Method Source

Phi[45] 2.7B 1.4T Pretrain Microsoft

ChatGLM[46] 6B 1T+ SFT & RLHF Zhipu AI

Gemma[47] 7B 6T SFT & RLHF Google

Mistral[48] 7B - SFT Mistral

Qwen[49] 14B - SFT & RLHF Alibaba

ChatGPT - - SFT & RLHF OpenAI

Table 1. Typical LLMs utilized in Star-Agents.

Models.

In response to the growing need for cost-effective inference of LLMs at the edge, our study explores the

capabilities of target models scaled at 1B and 7B parameters. The 1B models, specifically the Pythia-1B[50],

were trained on roughly 300 billion tokens derived from the Pile dataset. The 7B models, represented by

the Llama-2-7B[51], were trained on an extensive corpus of 2 trillion tokens.

During our experiments, we integrated as generator a diverse array of LLMs, as detailed in Table 1. Our

hypothesis posits that models from different development teams possess unique capabilities, yielding

rich responses to identical prompts due to the diversity in their training data and strategies. For instance,

the Phi2[45] employed 1.4T tokens of meticulously curated textbook-like data without undergoing

qeios.com doi.org/10.32388/FZGMPF 11

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

Reinforcement Learning with Human Feedback (RLHF) while the Gemma[47] was trained on 6T tokens

primarily sourced from English web documents, mathematical content, and code, with subsequent fine-

tuning through SFT and RLHF. To ensure the diversity and quality of generated data, we assembled LLMs

trained by different teams, widely regarded for their exceptional performance. In pursuit of fostering the

generation of data across varying levels of difficulty, the utilized LLMs range from 2.7B to 14B parameters,

including even larger models via API access. For a fair comparison with the Evol-Instruct dataset, the

most capable model employed was the ChatGPT, which was also used for generating responses within

the Evol-Instruct dataset. Notably, the ChatGPT was also served as evaluator to compute the comparison

score .

Benchmarks.

To rigorously evaluate the instruction-following capabilities of AI models, we utilized three widely used

benchmarks: MT-bench, Vicuna-bench, and the WizardLM testset. Specifically, MT-bench and Vicuna-

bench are designed to test the models’ competencies in various complex cognitive tasks, including

mathematics, reasoning, complex format handling, and writing through both multi-turn and single-turn

dialogues. The WizardLM testset, conversely, extends the evaluation to encompass diverse fields such as

technology, biology, and law. It also features varied difficulty levels to facilitate a more nuanced

comparison of models’ performance disparities. Following established protocols, we employed the Fast-

Chat[30] to assess model performances, with GPT-4 acting as the judge model.

Baselines.

For baseline comparisons, we employed the Pythia-1B and Llama-2-7B, both trained using the Evol-

Instruct datasets. The Alpaca datasets were also referenced for comparative analysis, alongside

IFD[12] and Random select as an additional comparsion for data selection methods.

Implementation Details.

We fine-tuned our models (Pythia-1B and Llama-2-7B) over three epochs using the Adam optimizer, with

an initial learning rate of , a maximum token count of 2048, and a batch size of 64. For the Star-

Agents, 10 agent-pairs were employed.

πllm

2 × 10−5

qeios.com doi.org/10.32388/FZGMPF 12

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

4.2. Main Results

Model Vicuna-Bench WizardLM testset MT-Bench Average

1B Models

Pythia-1B[50] 1.68 1.34 1.17 1.40

OPT-1.3B[52] 2.49 1.64 1.12 1.75

Sheared-LLaMA-1.3B[53] 2.73 1.86 1.59 2.06

Pythia-1B-alpaca 4.14 2.97 2.20 3.10

Pythia-1B-evol_instruct 5.07 3.55 2.56 3.73

Pythia-1B-IFD[12] 4.60 3.21 1.98 3.26

Pythia-1B-Random 5.13 3.39 2.35 3.62

Pythia-1B-star_instruct 5.93 3.90 2.69 4.17

7B Models

Llama-2-7B[51] - - 3.95 -

zephyr-beta-sft[26] - - 5.32 -

mpt-7B-chat[26] - - 5.45 -

XGen-7B-8k-Inst[54] - - 5.55 -

sRecycled-Wiz-7B-v2[27] - - 5.56 -

Llama-2-7B-alpaca 6.33 5.08 3.63 5.01

Llama-2-7B-evol_instruct 7.27 6.57 5.21 6.35

Llama-2-7B-star_instruct 8.24 6.87 5.74 6.95

Table 2. Results of different models on Vicuna-bench, WizardLM testset and MT-Bench.

qeios.com doi.org/10.32388/FZGMPF 13

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

GPT-4 Automatic Evaluation

Based on the findings summarized in Table 2, comprehensive training sessions were conducted for the

Pythia-1B and Llama-2-7B models utilizing three distinct datasets: Alpaca, Evol-Instruct, and the

optimally refined Star Instruct datasets. The latter was developed through the application of Star-Agents,

which are derivatives of the Evol-Instruct datasets. Through comparative analyses with other

contemporary state-of-the-art models, we observe that the SFT-aligned models employing the Star

Instruct datasets consistently outperform nearly all aligned counterparts, across all evaluated model

families.

Figure 4. Radar plot of detailed scores for Llama-2-7B-star_instrcut against the major baseline on different

subtasks of (a) Vicuna-Bench and (b) MT-Bench.

Notably, at the 1B scale, models trained with the Star Instruct dataset demonstrate significant superiority,

surpassing baselines across diverse evaluation datasets. Remarkably, in comparison to models trained

with the Evol-Instruct dataset, those utilizing Star Instruct achieve an average absolute improvement of

approximately 0.45, which is corresponding to a performance enhancement of about 12%. Additionally,

when compared to models trained with the Alpaca dataset, our framework achieves an absolute

improvement of 1 point, thereby affirming that the Star Instruct dataset is particularly well-suited for the

Pythia-1B model, significantly boosting its operational efficacy. Additionally, within the 7b model

category, the Llama-2-7B-star_instruct outperforms the sRecycled-Wiz-7B-v2[27], which is trained on the

Evol-Instruct dataset enhanced by Selective Reflection-Tuning. Figure 4(a) illustrates the Llama-2-7B-

star_instruct’s performance enhancements across nine metrics, with notable substantial improvements

qeios.com doi.org/10.32388/FZGMPF 14

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

in math, coding and fermi problem-solving, where improvements surge up to 40%. A similar

phenomenon can be observed in Figure 4(b). Additionally, comparative examples of single-turn and

multi-turn dialogues are provided in Appendix A.2, and the performance on the Open LLM Leaderboards

of LLMs can be found in Appendix A.4.

Components Average Score

Diversity Data selection Evolutiuon

✓ ✓ ✓ 4.17

✓ ✓ ✕ 3.97

✓ ✕ ✕ 3.62

✕ ✕ ✕ 3.73

Table 3. Impact of different components.

Model Average Score

Pythia-1B-evol_instruct 3.73

Pythia-1B-IFD[12] 3.26

Pythia-1B-Random 3.62

Pythia-1B-star_instruct 4.17

Table 4. Imapct of the selection method.

qeios.com doi.org/10.32388/FZGMPF 15

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

Figure 5. Evolution of the typical Agent-Pairs.

4.3. Ablation Study

Main Components.

As illustrated in Table 3, we conducted ablation experiments on the three principal components within

the Star-Agents framework. Results indicate that models using solely diversified datasets with random

sampling yield a bit lower performance than the baseline. This occurs because the baseline employs data

generated by ChatGPT, which is of high quality. In contrast, the diversified datasets draw from a variety of

sources, making it challenging to ensure uniformly high quality. Thus, random sampling may introduce

low-quality data, leading to diminished model performance. The inclusion of a data selection module

subsequently leads to a recovery in model performance, suggesting that this module effectively selects

high-quality data suitable for the model. Integration of the evolution strategy also provides a significant

improvement, demonstrating that the evolution module can effectively select the most appropriate data

generation agent-pairs from a complex array of candidate agent-pairs.

Selection Method.

As demonstrated in Table 4, we evaluated a range of conventional selection methods, including both

random selection and strategies informed by the IFD[12]. Our dual-model selection strategy significantly

outperforms these approaches. Compared to random selection, our method achieves a significant

improvement, registering an improvement exceeding 0.5 points on average across a variety of test sets.

When compared with the IFD approach, our enhancement approaches a 0.9 point. These findings

robustly validate the effectiveness of our dual-model selection strategy, illustrating its superior

performance in refining model selection precision using diverse evaluation metrics.

qeios.com doi.org/10.32388/FZGMPF 16

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

Evolution.

As depicted in Figure 5, we analyzed the sampling probability curves of typical agent-pairs throughout an

iterative evolutionary process. Initially, each agent-pair began with a sampling probability of

approximately 10%. Due to its robust performance, the Mistral-ChatGPT receives consistent rewards,

which leads to a gradual increase in its sampling probability. By the completion of about 70,000

iterations, this probability has escalated to 30%. In stark contrast, the Phi2-ChatGPT undergoes a steady

decline over the same period, with its sampling probability ultimately plummeting to near zero as it is

progressively phased out. Concurrently, the ChatGLM3-ChatGPT exhibits a relatively stable trajectory,

albeit with a slight downward trend. Evolutionary trajectories present significant discrepancy indicating

different generation suitability of different generators on different tasks, where all the differences are

captured by our evolution mechanism.

5. Conclusion

In this paper, we have presented the Star-Agents framework, an automated system for optimizing data to

be optimally challenging for target LLMs. This framework has been applied to the open-source SFT

datasets, and we conduct training sessions on a variety of model families, adjusting the data to enhance

its efficacy. Our empirical investigations include a series of instruction tuning experiments that utilize

both multiple baselines and specially optimized datasets on well-known models such as Pythia and

LLaMA. Extensive experiments confirm the substantial impact of our method: the optimized tailored

datasets result in an average performance enhancement of approximately 12%, with certain metrics,

especially those involved in Fermi problem tasks exhibiting increases exceeding 40%, as substantiated

by results on benchmarks such as MT-bench, Vicuna bench, and the WizardLM testset. These findings

underscore the premise that strategically diverse and tailored data can profoundly improve model

alignment and performance. In conclusion, our research details a highly effective automated framework

that significantly augments dataset functionality, thus fostering more efficient model alignment.

Limitations.

Our approach achieves remarkable performance improvements on single-turn instruction datasets.

However, it has not yet been evaluated on multi-turn conversations. We hence leave the evaluation on

multi-turn instruction datasets and validation on datasets with domain-specific instructions to our

future work.

qeios.com doi.org/10.32388/FZGMPF 17

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

A. Appendix

A.1. Prompt Examples

Following the Fast-Chat[30], the prompts used in the data selection process are as listed in Table 5.

System Prompt: Please act as an impartial judge and evaluate the quality of the responses provided by three AI

assistants to the user question displayed below. You should choose the assistant that follows the user’s instructions

and answers the user’s question best. Your evaluation should consider factors such as the helpfulness, relevance,

accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the two

responses and provide a short explanation. Avoid any position biases and ensure that the order in which the

responses were presented does not influence your decision. Do not allow the length of the responses to influence

your evaluation. Do not favor certain names of the assistants. Be as objective as possible. After providing your

explanation, output your final verdict by strictly following this format: “[[A]]” if assistant A is the bset, “[[B]]” if

assistant B is the bset, and “[[C]]” for a tie.

Prompt Template:

[User Question]

<question>

[The Start of Assistant A’s Answer]

<answer_a>

[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]

<answer_b>

[The End of Assistant B’s Answer]

[Final Verdict]:

Table 5. Prompts of data selection for LLMs.

A.2. Case Study

Examples of the single-turn dialogue and multi-turn dialogue are presented in Table 6 and Table 7.

qeios.com doi.org/10.32388/FZGMPF 18

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

Instruction: A tech startup invests $8000 in software development in the first year, and then invests half of that

amount in software development in the second year. What’s the total amount the startup invested in software

development over the two years?

Llama-2-7B-evol_instruct:

The total amount the

startup invested in

software development

over the two years is

$12,000.

Llama-2-7B-star_instruct: To calculate the total amount the startup invested in

software development over the two years, we need to find the total investment in

software development for each year and then add them together. In the first year, the

startup invested $8000 in software development. In the second year, the startup

invested half of that amount, which is $4000. So, the total investment in software

development for the two years is: $8000 (first year) + $4000 (second year) = $12000

Therefore, the total amount the startup invested in software development over the

two years is $12000.

Table 6. Single-turn dialogue example.

qeios.com doi.org/10.32388/FZGMPF 19

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

Instruction: Act as a math teacher. I will provide some mathematical equations or concepts, and it will be your job

to explain them in easy-to-understand terms. This could include providing step-by-step instructions for solving a

problem, demonstrating various techniques with examples in everyday life or suggesting online resources for

further study. My first request is "I need help understanding how probability works."

Llama-2-7B-evol_instruct: Sure, I’d be happy to help!

Probability is the likelihood of something happening,

and it’s a fundamental concept in math and science. To

explain it simply, probability is the chance of something

happening out of all possible outcomes. For example, if

you flip a coin, the probability of getting heads is 1 out of

2, or 50%. Probability can be used to make predictions

and calculate risks, and it’s important in fields like

finance, statistics, and data analysis.

To calculate probability, you can use different formulas

depending on the type of problem you’re solving. One

common method is to use a formula called the

probability mass function, which tells you the likelihood

of getting a certain outcome. Another method is to use

the probability density function, which tells you the

likelihood of getting a certain range of outcomes.

There are many resources available online to help you

learn more about probability, including video tutorials,

interactive simulations, and practice problems. Some

popular websites for learning probability include Khan

Academy, Mathway, and Coursera. I hope this helps!

Llama-2-7B-star_instruct: Sure, I’d be happy to help

explain probability! Probability is a measure of how

likely an event is to occur. It’s often expressed as a

number between 0 and 1, where 0 represents a very

unlikely event and 1 represents a very likely event.

To calculate probability, you need to know the total

number of possible outcomes and the number of

favorable outcomes for the event you’re interested in.

For example, if you’re flipping a fair coin, there are two

possible outcomes (heads or tails), and the probability of

getting heads is 1/2 or 0.5, because there’s only one way

to get heads out of two possible outcomes.

In everyday life, probability can be used to calculate the

likelihood of certain events, such as the chance of rain

on a particular day or the probability of getting a certain

grade on a test. It’s also used in decision-making

situations, like calculating the risk of a particular

investment or the likelihood of success in a business

venture.

There are many resources available online to help you

learn more about probability, such as video tutorials,

practice problems, and interactive simulations. Some

popular websites include Khan Academy, Coursera, and

edX, which offer free courses and resources on

probability and other mathematical concepts.

Instruction: What are the differences between Riemannian geometry and euclidean geometry?

qeios.com doi.org/10.32388/FZGMPF 20

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

Llama-2-7B-evol_instruct: Riemannian geometry and

Euclidean geometry are two different types of

geometries. In Euclidean geometry, the distance

between two points is always a straight line, and the

angles of a triangle always add up to 180 degrees. In

Riemannian geometry, the distance between two points

is not always a straight line, and the angles of a triangle

can add up to more than 180 degrees.

Another key difference between the two geometries is

the way they handle curved surfaces. In Euclidean

geometry, a flat surface is a rectangle with parallel sides,

while in Riemannian geometry, a surface can be curved

in any way. This means that Riemannian geometry is

better suited for describing the geometry of the universe,

as it can handle the curvature of space-time.

Overall, Riemannian geometry is a more complex and

advanced form of geometry, and it has many practical

applications in fields such as physics and engineering.

Llama-2-7B-star_instruct: Great question! Riemannian

geometry and Euclidean geometry are two different

types of geometry that are used to describe and analyze

the properties of spaces. The main differences between

the two are as follows:

1. Metric: In Euclidean geometry, the distance

between two points is defined by the Pythagorean

theorem, which states that the sum of the squares

of the two sides of a right triangle is equal to the

square of the length of the hypotenuse. In

Riemannian geometry, the distance between two

points is defined by a metric, which is a function

that describes how much the shortest path

between two points is curved.

2. Curvature: Euclidean geometry deals with flat

spaces where the curvature of the Earth’s surface

is negligible. In contrast, Riemannian geometry

deals with curved spaces, such as the surface of the

Earth, where the curvature plays a significant role

in determining the properties of the space.

3. Geodesics: In Euclidean geometry, the shortest

path between two points is a straight line. In

Riemannian geometry, the shortest path between

two points is called a geodesic, which can be

curved and depends on the metric.

4. Tensor Fields: Riemannian geometry involves the

use of tensor fields, which are mathematical

objects that describe the geometry of a space.

These fields are used to calculate the curvature of

the space and the behavior of objects moving

through it.

Overall, Riemannian geometry and Euclidean geometry

are two different approaches to understanding the

properties of spaces, with Riemannian geometry being

qeios.com doi.org/10.32388/FZGMPF 21

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

more applicable to curved spaces and Euclidean

geometry being more applicable to flat spaces.

Table 7. Multi-turn dialogue examples.

A.3. Data Examples

Data examples are shown in Table 8.

qeios.com doi.org/10.32388/FZGMPF 22

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

Instruction: Given some binary classification data, identify a suitable machine learning model that can be applied

to this task.

Evol Instruct: The suitable machine learning models for binary classification tasks include:

1. Logistic regression: It is a statistical method that uses a logistic function to model a binary dependent

variable. It is a relatively simple and interpretable model that works well with linearly separable datasets.

2. Support Vector Machines (SVMs): It is a popular classifier that is used for binary classification tasks. SVMs can

handle high-dimensional data and work well with datasets that are not linearly separable.

3. Random Forests: It is an ensemble learning method that works by constructing a multitude of decision trees

at training time and outputs the class that is the mode of the classes output by the individual trees.

4. Neural networks: It is a type of machine learning model that is widely used for binary classification tasks.

Neural networks can handle non-linear relationships between variables and are capable of learning complex

patterns in the data.

The choice of the model depends on the particular characteristics of the data and the specific requirements of the

project."

Agent-Pair A: There are several machine learning models that can be applied to binary classification tasks,

depending on the nature of the data and the problem at hand. Here are a few popular ones:

1. Logistic Regression: This is a simple and effective model that can be used for binary classification problems.

It works by estimating the probability of the positive class and using it to make predictions.

2. Decision Trees: Decision Trees are a popular machine learning model that can handle both categorical and

numerical features. They work by recursively splitting the data into subsets based on the values of the input

features.

3. Random Forest: Random Forest is an ensemble learning method that combines multiple decision trees to

improve the accuracy of the model. It works by creating a set of decision trees and then averaging their

predictions.

4. Support Vector Machines (SVM): SVM is a powerful model that can handle high-dimensional data. It works by

finding the hyperplane that maximally separates the classes in the feature space.

5. Neural Networks: Neural Networks are a set of algorithms that can learn and classify from data. They can

handle complex and nonlinear relationships between the input features and the output labels.

The choice of the model depends on various factors such as the size and complexity of the dataset, the type of

features, the computing resources, and the desired level of accuracy.

qeios.com doi.org/10.32388/FZGMPF 23

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

Agent-Pair B: For binary classification tasks, several machine learning models are suitable, depending on the size

of the dataset, complexity of the problem, and the availability of features. Here are some popular models that can

be applied:

1. Logistic Regression: A simple and interpretable model that works well for small to medium-sized datasets. It’s

linear and can handle both categorical and continuous features.

2. Decision Trees and Random Forest: These are easy to interpret and can handle both numerical and categorical

data. Random Forest is an ensemble method that combines multiple decision trees, reducing overfitting.

3. Support Vector Machines (SVM): Effective for high-dimensional data and can handle non-linear relationships

through kernel functions. SVMs are robust to outliers and can be used for both linear and non-linear

classification.

4. Naive Bayes: A probabilistic model that assumes features are independent. It’s fast, easy to implement, and

works well for text classification or when features are not highly correlated.

5. K-Nearest Neighbors (KNN): A simple model that classifies based on the majority class of its nearest

neighbors. It’s non-parametric and can be useful for small datasets.

6. Neural Networks (e.g., Feedforward, Convolutional, or Recurrent Neural Networks): Deep learning models that

can capture complex patterns in large datasets. They are powerful but require more data and computational

resources.

7. Gradient Boosting Machines (GBM) or XGBoost: Ensemble methods that iteratively build weak learners (e.g.,

decision trees) to create a strong classifier. They are often used for structured data and can handle high

dimensionality.

8. AdaBoost: Another boosting algorithm that combines weak learners to create a strong classifier. It’s

particularly useful when dealing with imbalanced datasets.

9. Neural Network Ensembles (e.g., stacking, blending): Combining predictions from multiple models can

improve performance and robustness.

To choose the best model, it’s essential to perform exploratory data analysis, split the data into training and testing

sets, and evaluate the models using appropriate metrics (e.g., accuracy, precision, recall, F1-score, or AUC-ROC for

imbalanced datasets). Cross-validation can help in selecting the optimal model and hyperparameters

Agent-Pair C: A suitable machine learning model for this task would be a Random Forest Classifier. This model is

effective in handling both categorical and numerical data, and can handle large datasets with high dimensionality.

Agent-Pair D: One suitable machine learning model for binary classification tasks is the Logistic Regression

model. Logistic Regression is commonly used for binary classification as it provides the probability of an instance

belonging to a particular class. It is a simple and efficient algorithm that works well with linearly separable data.

Other popular machine learning models for binary classification tasks include Support Vector Machines (SVM),

qeios.com doi.org/10.32388/FZGMPF 24

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

Decision Trees, Random Forest, Gradient Boosting Machines (GBM), and Neural Networks. The choice of the model

depends on the complexity of the data, size of the dataset, interpretability requirements, and computational

resources available.

Table 8. Diverse Data Examples.

Model ARC HellaSwag MMLU TruthfulQA Average

Wizardlm 51.60 77.74 42.74 45.75 54.18

Llama-2-7B-evol_instruct 51.88 76.70 45.76 46.10 55.11

Llama-2-7B-star_instruct 54.44 77.64 46.94 46.13 56.29

Table 9. Performance on Open LLM Leaderboards.

A.5. Computational Cost

The computational overhead of our proposed method primarily depends on the inference computational

load of the various LLMs used:

Qwen-14B: During inference with a sequence length of 256 tokens, the computational load is

approximately Multiply-Add cumulations (MACs).

Phi-2-2.7B: For the same sequence length, the inference computational load is around MACs.

ChatGPT: Given that ChatGPT is a proprietary model, we don’t have details on its computational

requirements.

Nonetheless, for estimation purpose, we can approximate the overall computational cost. Assuming an

iterative process involving multiple LLMs (e.g., 10 LLMs) and a large dataset (e.g., 70,000 samples), the

total computation without using our framework can be roughly estimated as:

 FLOPs (Qwen-14B) 10 LLMs 70,000 samples = MACs

While, when the Agent-Pairs Sampling and Instruction Memory Bank are employed, 5 of 10 LLMs are

used to generate data , therefore, total computation can be significantly reduced and roughly estimated

4 × 1012

7 × 1011

4 × 1012 × × 2.8 × 1018

qeios.com doi.org/10.32388/FZGMPF 25

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

as:

 FLOPs (Qwen-14B) 5 LLMs 70,000 samples = MACs

Acknowledgements

The present research was partially supported by the National Key Research and Development Program of

China (Grant No. 2023YFE0116400). We would like to thank the anonymous reviewers for their insightful

comments.

Notes

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Footnotes

1 https://github.com/CANGLETIAN/Star-Agents

2 https://chatgpt.com/

References

1. ^Wang Y, Chen H, Tang Y, Guo T, Han K, Nie Y, Wang X, Hu H, Bai Z, Wang Y, et al. PanGu-π: Enhancing Lang

uage Model Architectures via Nonlinearity Compensation. arXiv preprint arXiv:2312.17276. 2023.

2. ^Tang Y, Liu F, Ni Y, Tian Y, Bai Z, Hu Y, Liu S, Jui S, Han K, Wang Y (2024). "Rethinking optimization and arc

hitecture for tiny language models". arXiv preprint arXiv:2402.02791.

3. ^Sun H, Jin R, Xu S, Pan L, Cui M, Dui J, Lei Y, Yang L, Shi L, Xiao J, et al. FuxiTranyu: A Multilingual Large La

nguage Model Trained with Balanced Data. arXiv preprint arXiv:2408.06273. 2024.

4. ^Chang Y, Wang X, Wang J, Wu Y, Yang L, Zhu K, Chen H, Yi X, Wang C, Wang Y, Ye W, Zhang Y, Chang Y, Yu P

S, Yang Q, Xie X (2023). "A Survey on Evaluation of Large Language Models". arXiv. arXiv:2307.03109 [cs.CL].

5. ^Zhao WX, Zhou K, Li J, Tang T, Wang X, Hou Y, Min Y, Zhang B, Zhang J, Dong Z, Du Y, Yang C, Chen Y, Chen

Z, Jiang J, Ren R, Li Y, Tang X, Liu Z, Liu P, Nie JY, Wen JR (2023). "A Survey of Large Language Models". arXiv.

arXiv:2303.18223 [cs.CL].

6. ^Yang J, Jin H, Tang R, Han X, Feng Q, Jiang H, Yin B, Hu X (2023). "Harnessing the Power of LLMs in Practic

e: A Survey on ChatGPT and Beyond". arXiv. cs.CL. Available from: https://arxiv.org/abs/2304.13712.

4 × 1012 × × 1.4 × 1018

qeios.com doi.org/10.32388/FZGMPF 26

https://github.com/CANGLETIAN/Star-Agents
https://chatgpt.com/
https://arxiv.org/abs/2307.03109
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2304.13712
https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

7. ^Guo Z, Jin R, Liu C, Huang Y, Shi D, Yu L, Liu Y, Li J, Xiong B, Xiong D, et al. (2023). "Evaluating large languag

e models: A comprehensive survey". arXiv preprint arXiv:2310.19736. arXiv:2310.19736.

8. ^Shen T, Li S, Tu Q, Xiong D (2023). "Roleeval: A bilingual role evaluation benchmark for large language mo

dels". arXiv preprint arXiv:2312.16132. Available from: https://arxiv.org/abs/2312.16132.

9. ^Wei J, Bosma M, Zhao V, Guu K, Yu AW, Lester B, Du N, Dai AM, Le QV. "Finetuned Language Models are Zer

o-Shot Learners." In: International Conference on Learning Representations; 2022. Available from: https://o

penreview.net/forum?id=gEZrGCozdqR.

10. ^Longpre S, Hou L, Vu T, Webson A, Chung HW, Tay Y, Zhou D, Le QV, Zoph B, Wei J, Roberts A (2023). "The Fl

an Collection: Designing Data and Methods for Effective Instruction Tuning". ArXiv. abs/2301.13688. S2CI

D 256415991.

11. a, b, cChen L, Li S, Yan J, Wang H, Gunaratna K, Yadav V, Tang Z, Srinivasan V, Zhou T, Huang H, et al. (2023).

"Alpagasus: Training a better alpaca with fewer data". arXiv preprint arXiv:2307.08701.

12. a, b, c, d, e, f, g, hLi M, Zhang Y, Li Z, Chen J, Chen L, Cheng N, Wang J, Zhou T, Xiao J (2023). "From quantity to

quality: Boosting llm performance with self-guided data selection for instruction tuning". arXiv preprint arX

iv:2308.12032. Available from: https://arxiv.org/abs/2308.12032.

13. ^Yan J, Yadav V, Li S, Chen L, Tang Z, Wang H, Srinivasan V, Ren X, Jin H (2023). "Virtual Prompt Injection for

Instruction-Tuned Large Language Models". arXiv. 2307.16888.

14. ^Shu M, Wang J, Zhu C, Geiping J, Xiao C, Goldstein T (2023). "On the Exploitability of Instruction Tuning". ar

Xiv. arXiv:2306.17194 [cs.CR].

15. ^Khashabi D, Min S, Khot T, Sabharwal A, Tafjord O, Clark P, Hajishirzi H. "UNIFIEDQA: Crossing Format Bo

undaries with a Single QA System". In: Findings of the Association for Computational Linguistics: EMNLP 2

020. Online: Association for Computational Linguistics; 2020. p. 1896-1907. doi:10.18653/v1/2020.findings-e

mnlp.171. Available from: https://aclanthology.org/2020.findings-emnlp.171.

16. ^Ye Q, Lin BY, Ren X. "CrossFit: A Few-shot Learning Challenge for Cross-task Generalization in NLP". In: Pr

oceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Association for C

omputational Linguistics; 2021. p. 7163–7189. doi:10.18653/v1/2021.emnlp-main.572. Available from: https://

aclanthology.org/2021.emnlp-main.572.

17. ^Wei J, Bosma M, Zhao VY, Guu K, Yu AW, Lester B, Du N, Dai AM, Le QV (2021). "Finetuned language models

are zero-shot learners". arXiv preprint arXiv:2109.01652. arXiv:2109.01652.

18. ^Wang Y, Mishra S, Alipoormolabashi P, Kordi Y, Mirzaei A, Naik A, Ashok A, Dhanasekaran AS, Arunkumar

A, Stap D, Pathak E, Karamanolakis G, Lai H, Purohit I, Mondal I, Anderson J, Kuznia K, Doshi K, Pal KK, Pate

qeios.com doi.org/10.32388/FZGMPF 27

https://arxiv.org/abs/2310.19736
https://arxiv.org/abs/2312.16132
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://api.semanticscholar.org/CorpusID:256415991
https://arxiv.org/abs/2308.12032
https://arxiv.org/abs/2307.16888
https://arxiv.org/abs/2306.17194
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://aclanthology.org/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://aclanthology.org/2021.emnlp-main.572
https://aclanthology.org/2021.emnlp-main.572
https://arxiv.org/abs/2109.01652
https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

l M, Moradshahi M, Parmar M, Purohit M, Varshney N, Kaza PR, Verma P, Puri RS, Karia R, Doshi S, Sampat

SK, Mishra S, Reddy AS, Patro S, Dixit T, Shen X. "Super-NaturalInstructions: Generalization via Declarative I

nstructions on 1600+ NLP Tasks". Proceedings of the 2022 Conference on Empirical Methods in Natural La

nguage Processing. 2022:5085-5109. Available from: https://aclanthology.org/2022.emnlp-main.340.

19. ^Du Z, Qian Y, Liu X, Ding M, Qiu J, Yang Z, Tang J. "GLM: General Language Model Pretraining with Autore

gressive Blank Infilling." In: Proceedings of the 60th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for Computational Linguistics; 2022. p. 320

-335. doi:10.18653/v1/2022.acl-long.26. Available from: https://aclanthology.org/2022.acl-long.26.

20. ^Shen T, Jin R, Huang Y, Liu C, Dong W, Guo Z, Wu X, Liu Y, Xiong D (2023). "Large language model alignmen

t: A survey". arXiv preprint arXiv:2309.15025.

21. ^Liu C, Yu L, Li J, Jin R, Huang Y, Shi L, Zhang J, Ji X, Cui T, Liu T, et al. OpenEval: Benchmarking Chinese LLM

s across Capability, Alignment and Safety. arXiv preprint arXiv:2403.12316. 2024.

22. ^Wang Y, Kordi Y, Mishra S, Liu A, Smith NA, Khashabi D, Hajishirzi H. Self-Instruct: Aligning Language Mod

els with Self-Generated Instructions. In: Proceedings of the 61st Annual Meeting of the Association for Comp

utational Linguistics (Volume 1: Long Papers). Toronto, Canada: Association for Computational Linguistics;

2023. p. 13484-13508. Available from: https://aclanthology.org/2023.acl-long.754.

23. a, bTaori R, Gulrajani I, Zhang T, Dubois Y, Li X, Guestrin C, Liang P, Hashimoto TB (2023). "Stanford Alpaca:

An Instruction-following LLaMA model". GitHub repository. Available from: https://github.com/tatsu-lab/st

anford_alpaca.

24. a, b, c, d, e, f, g, hXu C, Sun Q, Zheng K, Geng X, Zhao P, Feng J, Tao C, Jiang D (2023). "WizardLM: Empowering

Large Language Models to Follow Complex Instructions". arXiv preprint arXiv:2304.12244. Available from:

https://arxiv.org/abs/2304.12244.

25. a, bLi M, Chen L, Chen J, He S, Huang H, Gu J, Zhou T (2023). "Reflection-Tuning: Data Recycling Improves LL

M Instruction-Tuning". ArXiv. abs/2310.11716. S2CID 264288970.

26. a, b, c, d, e, fLiu W, Zeng W, He K, Jiang Y, He J (2023). "What makes good data for alignment? a comprehensiv

e study of automatic data selection in instruction tuning". arXiv preprint arXiv:2312.15685.

27. a, b, cLi M, Chen L, Chen J, He S, Gu J, Zhou T (2024). "Selective reflection-tuning: Student-selected data recyc

ling for llm instruction-tuning". arXiv preprint arXiv:2402.10110.

28. ^Chen JC-Y, Saha S, Stengel-Eskin E, Bansal M (2024). "MAGDi: Structured Distillation of Multi-Agent Intera

ction Graphs Improves Reasoning in Smaller Language Models". arXiv preprint arXiv:2402.01620.

qeios.com doi.org/10.32388/FZGMPF 28

https://aclanthology.org/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.acl-long.26
https://aclanthology.org/2022.acl-long.26
https://aclanthology.org/2023.acl-long.754
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2304.12244
https://api.semanticscholar.org/CorpusID:264288970
https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

29. ^Li M, Zhang Y, He S, Li Z, Zhao H, Wang J, Cheng N, Zhou T. "Superfiltering: Weak-to-Strong Data Filtering f

or Fast Instruction-Tuning". 2024. Available from: arXiv:2402.00530.

30. a, b, c, d, eZheng L, Chiang WL, Sheng Y, Zhuang S, Wu Z, Zhuang Y, Lin Z, Li Z, Li D, Xing E, et al. Judging llm-

as-a-judge with mt-bench and chatbot arena. Advances in Neural Information Processing Systems. 36, 202

4.

31. ^Conover M, Hayes M, Mathur A, Xie J, Wan J, Shah S, Ghodsi A, Wendell P, Zaharia M, Xin R (2023). "Free do

lly: Introducing the world’s first truly open instruction-tuned llm". Company Blog of Databricks.

32. ^Köpf A, Kilcher Y, von Rütte D, Anagnostidis S, Tam ZR, Stevens K, Barhoum A, Nguyen D, Stanley O, Nagyfi

R, et al. Openassistant conversations-democratizing large language model alignment. Advances in Neural I

nformation Processing Systems. 36, 2024.

33. ^Chiang WL, Li Z, Lin Z, Sheng Y, Wu Z, Zhang H, Zheng L, Zhuang S, Zhuang Y, Gonzalez JE, et al. (2023). "V

icuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality". See https://vicuna. lmsys. org

(accessed 14 April 2023). 2 (3): 6.

34. ^Wang Y, Kordi Y, Mishra S, Liu A, Smith NA, Khashabi D, Hajishirzi H (2022). "Self-instruct: Aligning langua

ge models with self-generated instructions". arXiv preprint arXiv:2212.10560.

35. ^Taori R, Gulrajani I, Zhang T, Dubois Y, Li X, Guestrin C, Liang P, Hashimoto TB (2023). Stanford alpaca: An

instruction-following llama model.

36. ^Xu C, Guo D, Duan N, McAuley J (2023). "Baize: An open-source chat model with parameter-efficient tunin

g on self-chat data". arXiv preprint arXiv:2304.01196.

37. ^Li G, Hammoud HAAK, Itani H, Khizbullin D, Ghanem B (2023). "Camel: Communicative agents for 'mind'

exploration of large scale language model society". ArXiv. 2023.

38. ^Ding N, Chen Y, Xu B, Qin Y, Zheng Z, Hu S, Liu Z, Sun M, Zhou B (2023). "Enhancing chat language models

by scaling high-quality instructional conversations". arXiv preprint arXiv:2305.14233. Available from: http

s://arxiv.org/abs/2305.14233.

39. ^Jiang Y, Chan C, Chen M, Wang W (2023). "Lion: Adversarial distillation of closed-source large language m

odel". arXiv preprint arXiv:2305.12870.

40. a, bLu K, Yuan H, Yuan Z, Lin R, Lin J, Tan C, Zhou C, Zhou J (2023). "# InsTag: Instruction Tagging for Analyz

ing Supervised Fine-tuning of Large Language Models". The Twelfth International Conference on Learning

Representations.

41. ^Xu Y, Yao Y, Huang Y, Qi M, Wang M, Gu B, Sundaresan N (2023). "Rethinking the Instruction Quality: LIFT i

s What You Need". arXiv. arXiv:2312.11508.

qeios.com doi.org/10.32388/FZGMPF 29

https://arxiv.org/abs/2402.00530
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2312.11508
https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

42. ^Xia M, Malladi S, Gururangan S, Arora S, Chen D (2024). "Less: Selecting influential data for targeted instru

ction tuning". arXiv preprint arXiv:2402.04333. Available from: https://arxiv.org/abs/2402.04333.

43. ^Yan J, Yadav V, Li S, Chen L, Tang Z, Wang H, Srinivasan V, Ren X, Jin H (2023). "Backdooring instruction-tu

ned large language models with virtual prompt injection". In: NeurIPS 2023 Workshop on Backdoors in Dee

p Learning-The Good, the Bad, and the Ugly.

44. ^Naveed H, Khan AU, Qiu S, Saqib M, Anwar S, Usman M, Barnes N, Mian A (2023). "A comprehensive overvi

ew of large language models". arXiv preprint arXiv:2307.06435. Available from: https://arxiv.org/abs/2307.0

6435.

45. a, bJavaheripi M, Bubeck S, Abdin M, Aneja J, Bubeck S, Mendes CC, Chen W, Del Giorno A, Eldan R, Gopi S, et

al. (2023). "Phi-2: The surprising power of small language models". Microsoft Research Blog. 2023.

46. ^Zeng A, Liu X, Du Z, Wang Z, Lai H, Ding M, Yang Z, Xu Y, Zheng W, Xia X, et al. (2022). "Glm-130b: An open

bilingual pre-trained model". arXiv preprint arXiv:2210.02414. Available from: https://arxiv.org/abs/2210.024

14.

47. a, bTeam G, Mesnard T, Hardin C, Dadashi R, Bhupatiraju S, Pathak S, Sifre L, Rivière M, Kale MS, Love J, et a

l. Gemma: Open models based on gemini research and technology. arXiv preprint arXiv:2403.08295. 2024.

48. ^Jiang AQ, Sablayrolles A, Mensch A, Bamford C, Chaplot DS, de las Casas D, Bressand F, Lengyel G, Lample

G, Saulnier L, et al. Mistral 7B. arXiv preprint arXiv:2310.06825. 2023.

49. ^Bai J, Bai S, Chu Y, Cui Z, Dang K, Deng X, Fan Y, Ge W, Han Y, Huang F, et al. (2023). "Qwen technical repor

t". arXiv preprint arXiv:2309.16609. Available from: https://arxiv.org/abs/2309.16609.

50. a, bBiderman S, Schoelkopf H, Anthony QG, Bradley H, O’Brien K, Hallahan E, Khan MA, Purohit S, Prashant

h US, Raff E, et al. Pythia: A suite for analyzing large language models across training and scaling. In: Intern

ational Conference on Machine Learning. PMLR; 2023. p. 2397–2430.

51. a, bTouvron H, Martin L, Stone K, Albert P, Almahairi A, Babaei Y, Bashlykov N, Batra S, Bhargava P, Bhosale

S, et al. (2023). "Llama 2: Open foundation and fine-tuned chat models". arXiv preprint arXiv:2307.09288. Av

ailable from: https://arxiv.org/abs/2307.09288.

52. ^Zhang S, Roller S, Goyal N, Artetxe M, Chen M, Chen S, Dewan C, Diab M, Li X, Lin XV, et al. (2022). "Opt: Op

en pre-trained transformer language models". arXiv preprint arXiv:2205.01068.

53. ^Xia M, Gao T, Zeng Z, Chen D (2023). "Sheared llama: Accelerating language model pre-training via struct

ured pruning". arXiv preprint arXiv:2310.06694. Available from: https://arxiv.org/abs/2310.06694.

54. ^Nijkamp E, Xie T, Hayashi H, Pang B, Xia C, Xing C, Vig J, Yavuz S, Laban P, Krause B, et al. (2023). "Xgen-7b

technical report". arXiv preprint arXiv:2309.03450.

qeios.com doi.org/10.32388/FZGMPF 30

https://arxiv.org/abs/2402.04333
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2310.06694
https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

Declarations

Funding: The present research was partially supported by the National Key Research and Development

Program of China (Grant No. 2023YFE0116400).

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/FZGMPF 31

https://www.qeios.com/
https://doi.org/10.32388/FZGMPF

