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In the advanced technology nodes, the integrated design rule checker (DRC) is often utilized in place

and route tools for fast optimization loops for power-performance-area. Implementing integrated

DRC checkers to meet the standard of commercial DRC tools demands extensive human expertise to

interpret foundry speci�cations, analyze layouts, and debug code iteratively. However, this labor-

intensive process, requiring to be repeated by every update of technology nodes, prolongs the

turnaround time of designing circuits.

In this paper, we present DRC-Coder, a multi-agent framework with vision capabilities for

automated DRC code generation. By incorporating vision language models and large language

models (LLM), DRC-Coder can e�ectively process textual, visual, and layout information to perform

rule interpretation and coding by two specialized LLMs. We also design an auto-evaluation function

for LLMs to enable DRC code debugging. Experimental results show that targeting on a sub-3nm

technology node for a state-of-the-art standard cell layout tool, DRC-Coder achieves perfect F1

score 1.000 in generating DRC codes for meeting the standard of a commercial DRC tool, highly

outperforming standard prompting techniques (F1=0.631). DRC-Coder can generate code for each

design rule within four minutes on average, which signi�cantly accelerates technology advancement

and reduces engineering costs.

1. Introduction

In the era of advanced technology nodes, design rule checking (DRC) is a critical yet complex step in

physical design due to the increasing number of design rules, more complex inter-layer design rules,

and strict patterning rules. Place and route (P&R) tools often require an integrated DRC checker to
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ensure manufacturability and enable faster optimization loops for power-performance-area (PPA)

than running commercial DRC tools every iteration. Implementing an integrated DRC checker

typically takes experienced engineers several weeks, involving numerous iterations of debugging to

extract DRC rules from foundry documents and ensure the integrated checker meets the standards of

commercial DRC tools, as shown in Figure 1. Furthermore, this process need to be repeated for each

new technology development, which signi�cantly cause the long turnaround time of designing

circuits. Thus, an e�cient and intelligent methodology for DRC checker code generation is essential to

improve the consistency between the integrated DRC checker and the commercial DRC tool and reduce

the development time for new technologies.

Nowadays, large language models (LLMs)[1][2][3][4][5]  have demonstrated remarkable reasoning and

code generation capabilities. In addition, vision language models (VLMs)[6][7][5]  have been able to

e�ectively perform multi-modal reasoning. Moreover, LLMs have shown great potential in solving

complex tasks through LLM autonomous agent (LLM-agent)[8][9][10][11]. For example, LLM-agent can

stabilize the LLM coding process[12]  through auto-debugging. In LLM-agent, LLMs can decompose

the task, generate intermediate instructions, and provide feedback. In addition, LLMs can interact

with external environment like calling utility functions to solve problems. As a result, incorporating

LLM-agent with VLMs and LLMs serves as a good candidate for DRC interpretation and code

generation to enable auto-reasoning and auto-debugging.

In this work, we propose DRC-Coder, a multi-agent framework equipped with vision capability for

automated DRC code generation. This approach can absorb information from multiple modalities,

including textual descriptions, visual illustrations, and layout representations, for comprehensive

design rule interpretation. Our multi-agent framework breaks down the process into two hierarchical

sub-tasks including interpretation and coding, mimicking the human DRC coding process shown in

Figure  1. By assigning two LLMs with di�erent roles to handle each sub-task, we enhance the LLM

reasoning ability and reduce the potential hallucination of LLMs in solving complex DRC coding with

one agent. Additionally, by integrating our proposed domain-speci�c utility functions, DRC-Coder

can perform auto-evaluation by executing the generated code on a layout dataset to get a performance

report for auto-debugging, ensuring the e�ectiveness of the generated code.

To the best of our knowledge, we are the �rst work on the automated DRC code generation problem in

EDA. This work di�ers from a related work[13], which only focuses on extracting key design rule

components rather than generating completed codes without any human intervention. To
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demonstrate the concept, DRC-Coder targets on the DRC checker for standard cell layout

automation[14][15][16][17][18] using a sub-3nm technology node. This checker operates on a grid-based

layout format, which represents layout metals as grid coordinates, e.g., (8, 0, M0, N5), (5, 4, M0, N9)

in Figure 1. This is because routers typically perform on-track routing in the grid-based fashion.

The contribution can be summarized as follows:

We present DRC-Coder, the �rst automated DRC checker code generation system to accelerate

technology migration process and reduce engineering e�orts.

We develop a novel multi-agent framework with vision capability, which e�ectively interprets

multi-modal information of design rules and layouts and enables automated debugging and

feedback mechanisms.

We decompose DRC code generation into two hierarchical tasks, interpretation and coding, and

allocate them to two specialized agents to improve LLM reasoning and reliability.

We propose three domain-speci�c utility functions for LLM-agent, including visual analysis for

design rule and layout and automated code evaluation.

Evaluation using sub-3nm technology node show that our DRC-Coder successfully generates

correct codes (F1=1.000) for all design rules considered in NVCell[17], while standard prompting

produces unsatisfactory results (F1=0.631). Additionally, DRC-Coder e�ciently generates code per

rule within four minutes on average.

DRC-Coder has potential to be extended to other DRC-related problems including DRC document

explanation, test pattern generation, and design rule optimization. In addition, we hope this work can

pave the way to new research directions for automating complex engineering tasks in the

semiconductor industry.
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Figure 1. DRC checker development process. The �ow begins with the interpretation of foundry-

provided description and a layout with its DRVs extracted from a commercial DRC tool report. Then,

the �ow comes to coding, alignment checking, and debugging. The proposed LLM-agent system

automates this process, signi�cantly reducing the development time compared to manual coding.

2. Preliminaries

In this section, we �rst study the related works for LLM-agent frameworks. Then, we introduce VLMs

and its potential on explaining design rule images and layouts. Finally, we introduce the grid-based

DRC checker used in the standard cell layout tool.
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2.1. LLM-Agent Framework

LLM autonomous agents (LLM-agents)[8][9][10][11] have emerged as powerful tools that enable LLM to

make plans and execute external functions based on their reasoning processes. LLM-agents have

demonstrated their e�ectiveness in various domains. In online shopping scenarios[19], LLM can base

on user instruction to search, choose the product on the website, and reason when to buy the product

to satisfy user requirements. In programming tasks[20], LLM-agents can generate code, compile and

execute it, and iteratively debug based on compiler and execution feedback. This ability to reason, act,

and learn from feedback illustrates the enhanced problem-solving capabilities of LLM-agents. In chip

designs, LLM-agents are also applied for tasks like Verilog and layout clustering generation[21][22],

demonstrating their potential in specialized domains and hardware-related problems.

However, existing frameworks only processes pure text representations, which are not e�ective for

interpreting circuit layouts and design rules. Therefore, having visual understanding capabilities in

LLM-agent frameworks is essential. In addition, we should provide a domain-speci�c DRC code

evaluation function to give meaningful feedback on the code performance in detecting DRVs. This

could help LLM to e�ectively avoid false positives and negatives of DRVs produced by the generated

code.

2.2. DRC Interpretation Challenges & VLMs

Foundries specify each design rule through concise text description and visual illustration that often

imply complex spatial conditions. For example, the description of rule M0.S.1 in Figure 1 has an image,

presenting multiple spacing scenarios S1A1, S1A2 for rules M0.S.1 & M0.S.2, and a text with abbreviated

term PRL. It needs interpretation to know that the actual condition is: the horizontal space between

metals in the M0 layer must be    when the parallel run length (PRL)  , where PRL can be

viewed as a vertical space.

Circuit designers must also analyze commercial DRC tool reports on layouts to uncover implicit

conditions not explicitly stated in the foundry description. Figure 1 reveals that the commercial tool

further checks for a boundary condition: the space between the x-boundary and metals must be  .

The above example indicates the challenges of accurately analyzing foundry descriptions and

commercial tool reports in DRC code generation.

> 1 ≥ −1

> 1
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VLM [6] can process images and text to answer the user’s query based on the image. For example, it

can give image explanation or distinguish the di�erence between images. Thus, VLM has the potential

to help LLM-Agent to explain design rule images and layouts. Here, we use two state-of-the-art

VLMs, including Phi-3 [7] and GPT-4o [5], to perform image explanation on a design rule and a layout.

The result is shown in Figure 2. GPT-4o can generate meaningful responses. On the other hands, Phi-

3 produces unsatis�ed responses, where the space is not between M0 and S1A1, and the DRVs is not in

(6, 4) and (6, 2). Based on this experiment, we observe that the VLM, especially GPT-4o, can help in

explaining complex design rules and layouts. Thus, we integrate this VLM with LLM-agents to process

textual, visual, and layout information, enabling e�ective rule interpretation for DRC code generation.

2.3. Grid-based DRC Checker

In our evaluation, we use NVCell[17]  as our target standard cell layout tool. NVCell employs a grid-

based DRC checker to rapidly obtain layout performance. For example, it can complete DRC for a cell

with 22 devices in 0.05 seconds, while the commercial DRC tool takes 215 seconds. In this paper, our

goal is to generate a new grid-based DRC checker for a sub-3nm technology node. Figure  3

demonstrates an example of the grid-based DRC code for design rule M0.S.1 (Figure 2(a)). The core of

the checker is the drc function, which takes three parameters:

layout: A list of tuples. Each tuple   denotes the grid coordinate  , metal layer,

and net name of a layout component. Note that we use the same coordinate system for all layers, as 

 and   are horizontal and vertical coordinates, respectively.

max_x and max_y: The maximum grid coordinates of the layout in   and   directions.

This drc function implements two checks:

1. Boundary check: Identi�es components at or beyond the layout edges 

.

2. Spacing check: Detects violations between pairs of components based on their relative positions.

The function returns a list of DRVs, where each DRV is a tuple that indicates the violating components.

In the example, the output is [((2, 0, M0), (3, 2, M0))], which indicates a spacing violation

between two components (2, 0, M0) and (3, 2, M0).

(x, y, layer, net) (x, y)

x y

x y

(x ≤ 1 or x ≥ max\_x − 1)
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Figure 2. Comparison of the response of two VLMs, GPT-4o and Phi-3, for (a) the design rule

and (b) the layout. In layout image, yellow polygons are the metals in the M0 layer, black

polygons are the DRV region marked by the commercial DRC tool, and black crosses are the

corresponding DRV locations in grid-based coordinates.

Figure 3. A grid-based DRC code for design rule M0.S.1.
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3. Data Preparation

To evaluate the generated DRC code, we create a dataset composing of standard cell layouts and their

DRC reports. The dataset preparation process has two steps: layout generation and DRC report

preprocessing.

3.1. Layout Generation

We produce 207 di�erent standard cell layouts using NVCell by mutating the routing behaviors

without DRC �xing. This approach ensures a wide range of DRV scenarios for evaluation. These layouts

are represented in a grid format used in the grid-based DRC checker stated in Section 2.3.

3.2. DRC Report Preprocessing

The preprocessing stage converts physical coordinate-based DRC reports from the commercial tool

into a grid-based representation that aligns with the output format of our grid-based DRC checker.

The preprocessing involves the following steps:

1. Produce the DRC reports of layouts by running the commercial DRC tool. These reports use

polygons to mark DRV locations in physical coordinates.

2. Identify the layout components that intersect with the DRV polygons reported by the commercial

DRC tool.

Finally, we view the grid-based coordinates of these layout components as the ground-truth of DRVs

in our evaluation process. This grid-based DRV report can precisely capture layout components

involved in each DRV. Figure 4 illustrates this conversion process, demonstrating how polygon-based

DRVs from the commercial tool reports are transformed into our grid-based representations. For the

DRV interpretation in DRC-Coder, we also construct the grid-based visualization of each layout along

with its DRVs, as shown in the examples in Figure 1, 2(b), and 4.
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Figure 4. Conversion from DRVs in the commercial DRC tool report to grid-based DRVs. DRV

locations in the commercial tool report are marked by black polygons, each de�ned by four

points with x and y coordinates. Our grid-based approach identi�es the layout components

intersecting these polygons and represents DRVs using the grid coordinates of these

components.

4. DRC-Coder

Our approach, DRC-Coder, generates DRC code on a rule-by-rule basis. To make DRC-Coder more

applicable when facing new technology node, our code generation is under a zero-shot setting, i.e., no

example codes are provided during generation. The overall �ow of DRC-Coder is illustrated in

Figure  5. The core of this system consists of two LLM agents operating in a group chat manner: (1)

Planner: Responsible for interpreting design rule conditions in grid domain. (2) Programmer:

Translate the design rule condition into the executable code. These agents are powered by the general

LLMs (GPT-4o[5]) but are assigned with di�erent roles for the DRC coding process. This multi-agent

approach decomposes the DRC process into planning and coding phases, allowing each agent to focus

on its specialized task to enhance overall system performance.

To process image inputs and evaluate DRC code, DRC-Coder sets three specialized tool functions for

agents to use: (1) Foundry Rule Analysis, (2) Layout DRV Analysis, and (3) DRC Code Evaluation. These

tools provides the agents the specialized image analysis and evaluation capabilities throughout the

code generation process.

The work�ow begins with an input design rule, which goes through Prompting stage to produce an

initial prompt to Planner. Then, Planner and Programmer work together to generate the DRC checker
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code with the help of tool functions. Finally, the code generation undergoes an iterative auto-

debugging process until the DRC reports are aligned with ground truth DRVs of the commercial DRC

tool. The example of the work�ow is shown in Figure 11. In the following, we detail all components in

DRC-Coder.

Figure 5. Overview of DRC-Coder. Planner �rst interprets the input design rule by executing analysis

tool functions. Programmer receives the rule condition to generate code. Finally, DRC code evaluation

is executed to provide code performance feedback. Planner receives the feedback to perform re-

reasoning, and Programmer performs debugging until generating the correct code.

4.1. Prompting

Given the input design rule, this stage constructs a structured initial prompt, as illustrated in Figure 6,

to the Planner. The components of this prompt is split into the �x part and the design rule (DR)

dependent part. The �x part contains: (1) A task de�nition for developing a Python function to identify

DRVs in layout data. (2) The requirements that formally states the input and output format of the

function. (3) A step-by-step guide that decomposes coding problem into subtasks for the Planner and

Programmer.

The DR dependent part has: (1) The target design rule description from foundry document. (2) Layout

examples with metal information and corresponding DRV locations to provide concrete cases for

analysis. Note that we randomly select two layout examples that has the target DRVs from our dataset

to construct the prompt. Additionally, the DR dependent part is dynamically adjusted based on the

target design rule.
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Figure 6. Initial prompt to DRC-Coder. The part of design rule (DR) dependent inputs is

dynamically changed according to di�erent target design rules.

4.2. Planner

Planner is an LLM agent focusing on interpreting foundry-provided design rule descriptions and

layouts to generate corresponding design rule conditions in the grid domain. These foundry-provided

descriptions are often concise and multi-modal, combining text and images, which makes them

challenging to use directly for coding purposes. To help Planner interpret the image information, we

design two utility functions for the Planner to employ: Foundry Rule Analysis and Layout DRV

Analysis. In each round of interpretation, Planner can control whether to call each of functions to get

more information. If calling functions, Planner receives the response of tool functions to

automatically transform all information into grid-based design rule conditions. In the example shown

qeios.com doi.org/10.32388/G493W2 11

https://www.qeios.com/
https://doi.org/10.32388/G493W2


in Figure 11, design rule conditions generated by Planner contain the analysis of DRVs and the plans to

write the code, including boundary and spacing checks.

Foundry Rule Analysis. This function processes a speci�c question from Planner regarding DRVs.

Then, a VLM is called to interpret design rule descriptions (combining text and images) in the foundry

document and provides a answer to the input question. As shown in Figure 7, the function analyzes the

provided image, identifying target spacing directions and generating a detailed response for DRC

conditions for each spacing requirement. This automated interpretation helps Planner to understand

complex design rules presented in multi-modal formats, facilitating the translation of foundry

speci�cations into precise and grid-based conditions that can be used for DRC code generation.

Layout DRV Analysis. This function takes two inputs: a question from Planner regarding design rules

and layout, and a list of cell names indicating the layouts to be examined. It then utilizes a VLM (GPT-

4o) to interpret the speci�ed layout images. The VLM identi�es key elements such as metal regions

and DRV locations within the provided grid coordinates. As demonstrated in Figure  8, the function

generates a comprehensive response that addresses Planner’s query, detailing the reasons for

detected DRVs, including speci�c coordinates and descriptions of issues like spacing problems or

boundary violations. This automated and context analysis enhances Planner’s ability to generate more

accurate grid-based design rule conditions.
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Figure 7. The usage and example response of Foundry Rule Analysis. This function uses

a VLM to interpret design rule descriptions, including text and image inputs, to produce

a detailed analysis of the design rule.
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Figure 8. The usage and example response of Layout DRV Analysis. This function

utilizes a VLM to interpret layout images of input cells, identify their DRVs, and provide

detailed grid-based explanations on DRVs.

4.3. Programmer

Programmer is an LLM agent responsible for translating the grid-based design rule conditions,

produced by the Planner, into executable DRC code. To understand the generated code performance,

we design a tool function, DRC Code Evaluation. The example in Figure  11 shows the generated DRC

code.

DRC Code Evaluation. This function inputs the generated code and outputs the performance report of

the code. In detail, this function executes our generated code on cell layouts in the dataset and directly

compares the code output with the golden DRC reports of the commercial tool. The generated DRC
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code must correctly classify layout grids as either DRC-compliant or DRC-violating based on each

design rule. The dataset of standard cell layouts used for evaluation is inherently imbalanced, with

DRC-violating grids being signi�cantly less than compliant ones. Thus, to evaluate performance, we

measure Precision, Recall, and F1 score between the DRVs detected by the commercial tool and our

generated code. These metrics are particularly suitable for imbalanced datasets, focusing on the

correct identi�cation of the minority class (DRC-violating). Higher values in these metrics indicate

better DRC code. Note that we serve F1 score as our primary metric since it o�ers a comprehensive

view of e�ectiveness by balancing both precision and recall. In this way, we can examine whether our

code correctly replicates the results of the commercial tool. Finally, this function produces a

performance report for Planner to do reasoning and for Programmer to conduct debugging.

Figure  9 shows the example of this function. In the performance report, we have the average

performance and summarize the false negatives and false positives. For each false negatives

(positives) DRV location, we �rst classify it into boundary violation or spacing violation. For each DRV

of spacing violation (boundary violation), we compute the x and y distances between two points (the

point to the boundary). Finally, we report the DRVs with unique x, y distances because they may come

from di�erent design rule conditions. We cannot report all the DRVs due to context length limitation

of LLMs and the potential hallucination problem of LLMs triggered by long contexts.

At the end of the report, we provide the goal and the available actions that agents can take. Note that

Planner has freedom to call Layout DRV Analysis in the next round of generation to know more about

DRVs. For example, Planner could ask about the DRV scenario around speci�c grid locations according

to the report.
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Figure 9. The usage and example response of DRC Code Evaluation. By executing the

input generated code on the layout dataset, this function compares the code outputs

with golden grid-based DRVs converted from commercial tool reports. Then, it provides

a performance report for our two LLM agents.
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Table 1. Performance evaluation of DRC code generation using standard prompting and our DRC-Coder

with GPT-4o[5] and Llama3[23] across seven design rules. The table presents Precision (P), Recall (R),

and F1 score (F) for each method. For our DRC-Coder using GPT-4o, the number of debugging

iterations and runtime in seconds are also included.

5. Experimental Results

In this section, we �rst detail the experiment setup. Then, we present the evaluation results and an

abalation study of DRC-Coder. Finally, we introduce a detailed work�ow of DRC-Coder.

5.1. Experiment Setup

Development platform

DRC-Coder is developed under Python language based on the multi-agent system development toolkit

AutoGen[11]. Planner and Programmer agents, along with the VLMs embedded in two tool functions,

are powered by GPT-4o[5] using the OpenAI API version 2024-05-13. This means that our DRC-Coder

is training-free because we do not perform any �netuning on the LLMs.

Evaluation method

We evaluate DRC-Coder’s capability to develop DRC checker codes for a sub-3nm technology node,

speci�cally for NVCell[17][18]. Our evaluation dataset, generated as described in Section 3, comprises

207 standard cell layouts and covers 7 distinct design rules, as illustrated in Table 1. These rules

contain all primary DRV types that could occur and are considered in NVCell’s grid-based routing

engine. In addition, they cover metal and via layers from M0 to M2, which include all available routing

layers in standard cell layout tools[14][15][16].
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Figure 10 illustrates four selected design rules. Rule M0.S.1 demonstrates spacing for M0 components,

while rule M0.S.2 shows horizontal spacing with distinct spacing parameters. VIA0.S.1 shows spacing

constraints between VIA0 metals. Rule M2.S.1 represents more complex multi-layer interactions,

addressing spacing between VIA1 and M2 components. This rule introduces the concept of M2

enclosure, which is the M2 metal that extends beyond the VIA1 boundaries, as shown by the light

purple areas surrounding blue VIA squares in Figure 10. M2 enclosure is essential for ensuring reliable

connections and manufacturbility in advanced chip designs.

While not illustrated, M1.S.1 and M1.S.2 are similar to M0.S.1 and M0.S.2 respectively, but with

di�erent spacing requirements in vertical directions. VIA1.S.1 is analogous to VIA0.S.1 but with distinct

spacing parameters. This diverse rule set enables a comprehensive evaluation of DRC-Coder’s

capability to handle both single-layer spacing rules and complex multi-layer interactions.

To quantify DRC-Coder’s performance, we compare the generated code output with the golden DRC

reports of the commercial tool and employ three metrics: Precision, Recall, and F1 score as detailed in

Section 4.3, where F1 score is our primary metric.
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Figure 10. Illustration of selected design rules for DRC-Coder evaluation. (1) Rule

M0.S.1: Spacing between M0 components, considering both vertical and horizontal

direction. (2) Rule M0.S.2: Horizontal spacing between M0 components. (3) Rule

VIA0.S.1: Spacing between VIA0 metals. (4) Rule M2.S.1: Interaction between VIA1 and

M2 components, considering M2 enclosure of VIA1.
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Baselines

We are the �rst work focusing on DRC coding generation problem and use LLM-Agent-based method

to solve it. Thus, the main baseline is set to the standard prompting, which using prompt in Figure 6 to

directly generate the code without tool function feedback. DRC-Coder is a multi-agent framework

with multi-modal vision capability. We set two variants of DRC-Coder as other baselines for abalation

study: (1) single-agent with vision capability: Only use Programmer to directly generate code and (2)

multi-agent without vision capability: Keep Planner and Programmer but without Foundry Rule and

Layout DRV Analysis.

LLM GPT-4o

Design rules

Multi-agent Single-agent

w/o vision capability w/ vision capability

P R F P R F

M0.S.1 0.951 0.657 0.747 0.944 0.965 0.946

M0.S.2 0.929 1.000 0.956 0.530 1.000 0.661

VIA0.S.1 1.000 1.000 1.000 0.660 1.000 0.769

M1.S.1 0.848 0.880 0.844 1.000 1.000 1.000

M1.S.2 1.000 1.000 1.000 1.000 1.000 1.000

VIA1.S.1 1.000 1.000 1.000 1.000 1.000 1.000

M2.S.1 1.000 1.000 1.000 1.000 1.000 1.000

Average 0.961 0.934 0.935 0.876 0.995 0.911

Table 2. Performance evaluation of DRC code generation using two DRC-Coder variants: multi-agent

without vision capability and single-agent with vision capability using GPT-4o. P: Precision, R: Recall,

F: F1 score
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5.2. Results of DRC-Coder

The evaluation results are shown in Table  1. Our DRC-Coder using GPT-4o[5], employing a multi-

agent architecture with vision capability, achieves perfect scores (1.000) in Precision, Recall, and F1

score for all seven design rules evaluated. This consistent performance across di�erent rule types

highlights the robustness of our approach in interpreting and translating complex design rules into

accurate DRC code.

In contrast, the standard prompting method shows unsatis�ed performance across di�erent design

rules with an average F1 of 0.631. While it performs adequately for some rules, e.g., VIA1, it struggles

with others, particularly in terms of Recall and F1 scores. This inconsistency shows the limitations of

conventional prompting when dealing with the intricate DRC.

In summary, DRC-Coder achieves 37% higher F1 score. In addition, DRC-Coder can complete the

coding within an average 2.3 iterations of debugging, taking 210 seconds of runtime. Thus, it can

greatly accelerate the DRC coding process, where a designer easily takes weeks to write a correct DRC

code.

We further demonstrate the results using an open-sourced LLM Llama3[23]. Our framework also can

achieve improvement with 42.2% compared to the standard prompting. However, it cannot perform

as e�ective as GPT-4o, indicating GPT-4o has a more powerful agent capability in this domain-

speci�c DRC coding problem.

5.3. Abalation Study

The abalation study results are shown in Table  2. This experiment can evaluate the performance

contribution of the visual capability and the multi-agent setting in DRC-Coder. Two variants of DRC-

Coder demonstrate improved performance over standard prompting (�rst column in Table  1) with

32.5% and 30.7% higher F1 score, respectively. However, they fall short of the full DRC-Coder (second

column in Table 1) in some design rules. These results indicate the importance of visual capability in

interpreting certain design rules and the advantage of our multi-agent setting in task decomposition

of the DRC coding task.
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5.4. Case Study of DRC-Coder Work�ow

This section presents a detailed case study of DRC-Coder’s work�ow for generating and re�ning DRC

code for design rule M0.S.1. Figure 11 provides a step-by-step visualization of this process.

The work�ow begins with an initial prompt, which triggers the Planner agent to analyze the design

rule using FoundryRuleAnalysis and LayoutDRVAnalysis tool functions (steps 1-2). These analyses

provide insights into the rule speci�cations and potential DRV conditions. Based on this information,

Planner summarizes the DRV analysis and generate a plan for writing the DRC code (step 3), including

the boundary and spacing DRV checking. Then, Programmer implements the DRC code (step 4) and

call the DRCCodeEval tool (step 5) to get the code performance and reveal areas for improvement.

In the next iteration of code generation, Planner develops a plan for re�nement (step 6), indicating

how to modify the boundary rules and spacing conditions. This guides Programmer to make code

adjustments (step 7). This iterative process continues, with each cycle improving the code

performance and decrease the false negatives and positives (steps 8-10). Note that in step 8, there is

no false negatives for the code. Finally, when the DRCCodeEval indicates the code is correct, Planner

send the TERMINATE signal to end the code generation process.

This demonstration shows that Planner can generate e�ective plans for modifying design rule

conditions. Also, Programmer can follow the plan and combine its last generated code to generate an

improved one.
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Figure 11. Work�ow of DRC-Coder generating and re�ning DRC code for design rule M0.S.1. The

process illustrates the iterative collaboration between Planner and Programmer, utilizing various tool

calls (FoundryRuleAnalysis, LayoutDRVAnalysis, DRCCodeEval) to progressively improve code

performance and eliminate false positives and negatives. Note that pseudo code is used in the image to

represent the generated code to reduce the context length.

6. Conclusion

In this work, we introduce DRC-Coder, the �rst automated DRC code generation framework

leveraging a multi-agent system with vision capabilities. Our approach decomposes the DRC coding

process into interpretation and programming tasks, utilizing two LLMs and integrating VLMs to

e�ectively process multi-modal information including textual descriptions, visual illustrations, and

layout representations. In addition, we develop three specialized tool functions for LLMs: foundry rule

analysis, layout DRV analysis, and DRC code evaluation. These functions enable automated reasoning

and debugging, signi�cantly robustify the code generation process.

Our evaluation demonstrates that DRC-Coder signi�cantly outperforms standard prompting

techniques, achieving perfect F1 scores of 1.000 across all design rules considered in a standard cell

layout tool for a sub-3nm technology node. This indicates that the generated DRC checker successfully

replicates the report of the commercial tool, providing signo� DRC to the layout tool. Moreover, DRC-

Coder drastically reduces the coding time from days of manual e�ort an average of four minutes per

design rule, highly accelerating technology migration and reducing engineering costs. Note that DRC-
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Coder can be generalized to generate codes using other programming language, e.g., C++, for more

e�cient DRC.

Looking ahead, DRC-Coder can be extended to a wide range of DRC-related applications. For example,

we can use our image analysis functions and include human interactive feedback in each Planner’s

response to realize a DRC-explanation chatbot. We also aim to extend our framework to other areas of

physical design that require multi-modal reasoning. Finally, as DRC-Coder unlocks LLM’s capability

for a complex engineering task in EDA, we hope to stimulate future research on developing LLM-

agents in this �eld.
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