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In-context learning (ICL) allows large language models (LLMs) to adapt to new tasks directly from the given

demonstrations without requiring gradient updates. While recent advances have expanded context windows

to accommodate more demonstrations, this approach increases inference costs without necessarily

improving performance. To mitigate these issues, We propose StreamAdapter, a novel approach that directly

updates model parameters from context at test time, eliminating the need for explicit in-context

demonstrations. StreamAdapter employs context mapping and weight absorption mechanisms to

dynamically transform ICL demonstrations into parameter updates with minimal additional parameters. By

reducing reliance on numerous in-context examples, StreamAdapter signi�cantly reduce inference costs

and allows for ef�cient inference with constant time complexity, regardless of demonstration count.

Extensive experiments across diverse tasks and model architectures demonstrate that

StreamAdapter achieves comparable or superior adaptation capability to ICL while requiring signi�cantly

fewer demonstrations. The superior task adaptation and context encoding capabilities of StreamAdapter on

both language understanding and generation tasks provides a new perspective for adapting LLMs at test

time using context, allowing for more ef�cient adaptation across scenarios and more cost-effective

inference.
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1. Introduction

Large language models (LLMs) have emerged as a powerful tool in natural language processing, demonstrating

exceptional performance across a diverse range of tasks, including text generation[1], question answering[2],
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open-ended conversations[3], and mathematical problem-solving[4]. A key factor behind the success of LLMs is

their ability to perform in-context learning (ICL)[5], where the model adapts to new tasks by conditioning on a

small number of input-output demonstrations provided in the context. Without any gradient updates, ICL

enables LLMs to acquire new knowledge and capabilities at test time, while also enabling LLMs to solve

complex tasks through step-by-step guidance[6].

Despite its remarkable capabilities, ICL faces several limitations that hinder its full potential. Firstly, the

effectiveness of ICL heavily depends on the quality and relevance of the provided demonstrations, making the

selection of appropriate examples a challenging task that often requires domain expertise[7][8]. Moreover, the

number of demonstrations that can be included is constrained by the model’s context window size. While

recent advancements have expanded these windows[9][10], accommodating more examples introduces

signi�cant computational overhead[11].

Although recent studies have attempted to use heuristic rules to select the most important subset of context to

improve the robustness and ef�ciency of ICL[12][13], these methods inevitably cannot ensure that the discarded

tokens that are currently unimportant will not become important in future decoding steps. Other investigations

have focused on constructing meta-ICL approaches to enhance ICL’s robustness and reduce reliance on perfect

prompts[14]. Yet, these methods remain constrained by limited context length and often require hand-crafted

prompt strategies, potentially leading to suboptimal performance. On the other hand, recent studies suggest

that ICL is actually performing a meta-gradient update for adapting to new tasks given the context

information[15][16]. These �ndings lead us to a crucial question: Instead of implicitly "updating" model parameters

to adapt to a new domain or task via context, is it possible to directly convert the context into parameter updates, thus

updating the network at test time without any backpropagation and without requiring demonstrations in the context

window?

To answer this question, we propose StreamAdapter, a novel approach that leverages the inherent capabilities

of LLMs to encode context information into their parameters. Instead of storing demonstrations explicitly in

the input context, StreamAdapter dynamically maps these demonstrations into temporary parameter updates.

This approach allows the model to bene�t from context to adapt to new tasks similar to ICL at test-time,

without consuming the context window or requiring backpropagation, thereby reducing the resource

requirements of traditional ICL methods. StreamAdapter employs two key mechanisms to achieve this goal: a)

Context Mapping: This mechanism utilizes intra-chunk cross-attention and inter-chunk recurrence to

adaptively condense the variable cached context into a constant context state for each parameter in the linear

layer of LLMs. b) Weight Absorption: The condensed context state interacts with two lightweight low-rank

matrices to be absorbed into the original model parameters. This process updates the LLM’s knowledge with

qeios.com doi.org/10.32388/G5H95J 2

https://www.qeios.com/
https://doi.org/10.32388/G5H95J


minimal additional learnable parameters and incurs no additional inference latency. By combining these

mechanisms, StreamAdapter effectively distills the context into parameter updates, allowing for more ef�cient

test-time adaptation (TTA). Comprehensive experiments across diverse language understanding and long-

context generation tasks, with various model architectures and scales, demonstrate that

StreamAdapter  achieves comparable or superior adaptation capability to full context evaluation while

outperforming other context compression variants and TTA methods. Moreover, StreamAdapter  not only

demonstrates constant inference generation time and lower memory consumption compared to full context

generation, but also shows better scalability when provided with more adaptation context and improved

robustness across various scenarios.

The contributions of our work can be summarized as follows:

We propose a new TTA strategy, StreamAdapter, that directly maps the given context into parameter

updates, rather than conditioning on the context. This method enables models to quickly adapt to new tasks

or acquire new temporary knowledge at test time like ICL, but with fewer or no demonstrations in context,

thereby reducing memory consumption and inference time.

We design StreamAdapter  with innovative context mapping and low-rank adaptation mechanisms. These

allow StreamAdapter  to map the context into parameter updates with minimal additional learning

parameters and without inducing any additional inference latency.

We validate StreamAdapter on both language understanding and language generation tasks across various

model scales and architectures. The results demonstrate the effectiveness of StreamAdapter  over ICL and

other TTA methods in various adaptation scenarios. Analyses of ef�ciency and robustness further highlight

StreamAdapter’s advantages in terms of computational resources and generalization capabilities.

2. Related Work

2.1. In-Context Learning

ICL enables LLMs to acquire new knowledge or adapt to new tasks using in-context examples at test time

without any gradient updates[5]. Recent studies show that with proper instruction and more demonstrations,

ICL can surpass model �ne-tuning and mitigate inherent biases in pre-trained LLMs[7][17]. This exceptional

capability has inspired research into ICL’s working mechanisms, leading to various hypotheses such as

induction heads[18], task vectors[19][20], and structured task hypothesis[21]. A popular assumption posits that

ICL performs meta-gradient descent during inference.[16] demonstrate how a linear attention-only transformer

model can implicitly perform a gradient descent-like procedure, while[15] compare standard gradient descent-
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based �ne-tuning and ICL, revealing that transformer attention in ICL exhibits a dual form of gradient descent-

based optimization. Inspired by these �ndings, our work seeks to develop a learning algorithm that directly

performs parameter updates from the context without backpropagation at test time, aiming to achieve

performance similar to ICL while requiring limited or no demonstrations in the context.

2.2. Test-Time Adaptation

Test-time adaptation (TTA) enhances model capabilities at inference by learning directly from test data[22]. In-

context learning (ICL) represents a form of TTA where models adapt to new tasks using demonstrations within

the context at test time. Recent TTA research primarily follows two directions: a) Condition Augmentation: This

approach focuses on modifying the context conditioning to improve performance, either through heuristic

rules for adjusting conditional prediction distributions[12][13] or through sampling strategies like best-of-N and

reward-model based sampling[23][24][25]. b) Parameter Updates: This direction explores modifying model

parameters at inference time. Early approaches build on fast weight programming[26], exempli�ed by fast

weight programmers[27]  and Hop�eld networks[28], which update pre-trained weights using input-based

products. Meta-learning approaches[29][30]  employ hypernetworks to generate auxiliary parameters for test-

time adaptation. TempLoRA[31] extends this concept by training chunk-speci�c low-rank adapters[32] for next-

chunk prediction. Recent work[33]  formalizes test-time parameter updates through self-supervised learning

with TTT-Linear and TTT-MLP, treating model parameters as latent RNN states.

Our approach, StreamAdapter, aligns with parameter update methods but uniquely maps context directly into

parameter updates at test time without backpropagation.

2.3. Low-Rank Adaptation

Inspired by the observation that pre-trained models have low intrinsic dimension during �ne-tuning[34], low-

rank adaptation (LoRA)[32]  employs two trainable low-rank matrices to estimate the accumulated gradient

updates, thereby adapting pre-trained models with minimal additional parameters. Given its lower inference

latency and superior adaptation performance, LoRA has been widely adopted, with subsequent research

enhancing its ef�ciency and stability through dynamic rank allocation across layers[35]  and further matrix

decomposition[36]. Our work also employs low-rank adaptation to adapt LLMs with minimal parameters.

However, instead of training the adapter for speci�c tasks or datasets, StreamAdapter  learns directly from

previous context at test time, enabling more customized and �exible adaptation.
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3. Method

We propose StreamAdapter  to directly map contextual information into parameter updates, serving as a

temporary weight-level associative memory that encodes new knowledge and adapts to new tasks without

relying on full explicit context. The overall structure of StreamAdapteris presented in Figure 1.

StreamAdapter utilizes intra-chunk cross-attention and inter-chunk gated recurrence to adaptively map sparse

context information into constant-sized context states (context mapping). These states are then absorbed into

pre-trained weights through low-rank adaptation.

In the following subsections, we will brie�y describe the duality between ICL and model parameter updates

through gradient descent, shedding light on the fundamental motivation behind StreamAdapter  and its

formalization. We will then explore the details of StreamAdapter  context mapping and weight absorption

mechanisms.

3.1. Duality between In-Context Learning and Weight Updates

Recent studies have highlighted the inherent similarities between ICL and parameter updates through gradient

descent[15][16]. Speci�cally, let   be the current input token,   be the previous context, and   be

the projection matrices of the self-attention (SA) layer. By approximating standard SA with linear attention, the

output of single-head SA is formulated as: 

  where    are the initial result without any context, and 

  represents the "parameter updates" obtained from the given context. Moreover,

denoting   and   as the accumulated gradient updates from �ne-tuning, the result of linear attention

can be expressed as: 

From the similarity between    and  , it can be hypothesized that ICL actually functions as a

meta-optimizer, updating the underlying parameters through context-level associations[15].

In this study, we delve deeper into the potential of leveraging context to directly update model parameters,

thereby integrating context information into the model’s weights. The objective of StreamAdapter is to learn a

mapping function    that, given context  , maps the key-value (KV) caches    and    of    to

parameter update  : 
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We anticipate that updating the model parameters with   will achieve results comparable to full ICL without

the need for complete demonstrations �lling the context window.

Figure 1. Overall structure of StreamAdapter. StreamAdapter maps the KV cache into a context state using intra-chunk

cross-attention and inter-chunk recurrence, then connects two low-rank matrices through the context state to update

the model parameters for absorbing context information into model weights

3.2. Context Mapping

The KV cache scales linearly with the context, whereas the model’s parameters remain constant in size.

Consequently, a context mapping strategy that condenses the cache information into a �xed-size state is

essential for absorbing context information into the model’s weights. The most straightforward approach to

achieving this is to compress the KV cache into a latent hidden state, similar to recurrent models[37][38].

However, token-by-token recurrence requires substantial memory, as it necessitates materializing all time step

states. To mitigate this issue, we propose splitting the KV cache into �xed-size chunks and leveraging a number

of learnable queries to summarize each chunk of caches. We then perform inter-chunk recurrence across each

chunk of summarized results to convert the cache into a constant-size context state. More speci�cally, let the

KV cache be denoted as  , where   is the number of heads,   is the length of cache, and   is the

hidden dimension for each head. Let    be the prede�ned chunk size, and de�ne 

 as the key cache corresponding to the  -th chunk (with similar notation for 

). Suppose the learnable query is denoted as  , where    is a hyperparameter determining how

many queries are used to summarize the KV cache in the current chunk. For each chunk,

F ( , ) → ΔW.WkX
′

WvX
′ (3)

ΔW
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StreamAdapter performs multi-head cross-attention between   and   to obtain the summarized result 

 for chunk  : 

where    is the hidden state dimension after concatenation across all heads, and 

.

After obtaining the chunk-wise results  , it is necessary to further aggregate the

information across different chunks. This aggregation should consider locality, as the most recent information

is likely to be more relevant to subsequent generation processes. Therefore, we employ a gated inter-chunk

recurrence to aggregate this information: 

where    is initialized to zero and    is a per-query scalar forget gate. Given recent research suggesting that

data-dependent gating demonstrates more expressive power[39], StreamAdapter determines each gating factor 

 with the following parameterization:

where  ,   is sigmoid function, and   is a temperature term that encourages the model to

have a slower forgetting rate[40]. Through the data-dependent approach, the �nal context state 

 condenses the information from the KV cache. This condensed state,  , is then integrated into the

parameters of the pre-trained model using the low-rank adaptation method, thereby serving as the updated

weight-level associative memory[28].

3.3. Weight Absorption

We expect the context states   to serve as newly learned knowledge from the context, which can be absorbed

into the model’s weights. Drawing inspiration from the low-rank adaptation method[32],

StreamAdapter assigns learnable queries to each linear layer in the pre-trained model and maps the KV cache

corresponding to the block where the current linear layer resides to the context state using these queries. The

parameters of the linear layer are then updated by integrating the context state with two low-rank matrices in a

sandwich-like structure (Figure 1).

Speci�cally, a typical transformer-based LLMs is built by stacking a series of identical blocks, each containing a

multi-head self-attention (MHA) layer and a FFN layer. Each block stores the KV cache computed by its MHA

layer. Therefore, for each parameter    (where    and    denote the input and output dimensions,

Q ,K[i] V[i]

Si i

= Softmax( ) ∈ ,Si

QK⊤
[i]

d
−−

√
V[i] R

r×dkv (4)

= H × ddkv

i ∈ {0, 1, . . . ,L/C − 1}

{ , , . . . , }S0 S1 SL/C−1

= + ∈ ,hi αihi−1 Si R
r×dkv (5)

h0 αi

αi

= σ( + ∈ R,αi SiWα bα)
1
τ (6)

∈Wα R
×1dkv σ(⋅) τ = 16

hL/C−1 hL/C−1

h

W ∈ R
×di do di do

qeios.com doi.org/10.32388/G5H95J 7

https://www.qeios.com/
https://doi.org/10.32388/G5H95J


respectively) of the linear layer in the  -th block, and the stored KV cache    of that block,

StreamAdapter assigns a unique learnable query   to each   and summarize   and   into the context state 

, following Equations 4 and 5. This strategy of summarizing context with a unique query for each parameter

allows the compression process to be adaptively learned from data for different weights. Finally, two low-rank

learnable matrices,   and  , are connected through   to absorb the context information

into  :

The second term,  , can be interpreted as a simpli�ed form of linear attention[41]  with context-

informed keys and a �xed value prototype[42]. From this interpretation, the input    is �rst projected to

the KV dimension   via   and then used to compute the dot product similarity   with the context

state  . This similarity weights the pre-learned prototype   and produces the output that is updated through

the new context-informed weight.

In implementation, considering that the KV dimension    is typically large in current LLMs (e.g., 1024 for

LLaMA-3-8B), resulting in a signi�cant number of new learnable parameters, StreamAdapter  introduces an

additional down-projection learnable parameter    (where  ) to reduce the parameter

size by down-projecting the   cache:

As a result, the original dimension   is projected to  , thereby reducing the number of

the learnable parameters.
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Figure 2. Training strategy of StreamAdapter. The sliding-window strategy accumulates loss from each

step in a sequence and updates StreamAdapter’s parameters after the entire sequence has been

processed. The in-context training employs a 2-forward-1-backward strategy: the �rst forward pass

computes the KV cache without gradient computation, while the second forward pass updates the

model parameters using the KV cache from the �rst forward pass and calculates the loss to update the

parameters introduced by StreamAdapter

3.4. Training Strategy

StreamAdapter’s reliance on the KV cache for parameter updates necessitates a departure from conventional

next-token prediction training methods. To address this, we have developed two distinct training strategies

tailored to the speci�c requirements of language generation and language understanding tasks: sliding window

training and in-context training (Figure 2).

3.4.1. Sliding Window Training

For general language generation tasks, we employ a sliding window strategy to train StreamAdapter  for

mapping context into parameter updates. This process begins with general language corpora, which we divide

into sequences   of length  . For each sequence, we utilize a window size   and a stride size  . It’s important

to note that   here is larger than the context length   used in Section 3.2. We start by initializing the window

with the �rst   tokens of  . Then, we begin an iterative process. In each step, we evict the earliest   tokens.

The KV caches of these evicted tokens are then used to generate parameter updates. Simultaneously, we

calculate the next token prediction loss for the incoming    tokens using the updated parameters. As we

progress through the sequence, the loss is accumulated until the entire sequence   has been processed. Once

X L C ′ Δ

C ′ C

C ′ X Δ

Δ

X
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the sequence is fully seen, we update StreamAdapter’s parameters using this accumulated loss. This sliding

window approach enables StreamAdapter  to ef�ciently process long sequences while maintaining a �xed

context size. By continuously updating the window and accumulating loss, the model learns to utilize context

information effectively across various positions in the input sequence.

3.4.2. In-Context Training

To adapt StreamAdapter for language understanding tasks, we employ an in-context training strategy using a

selected set of tasks. For each sample in each task’s training set, we �rst randomly sample   examples to form a

few-shot context and store their KV caches (1st forward pass without gradient computation). We then update

the base model parameters using this cache and compute the loss for the current sample to optimize the

parameters introduced by StreamAdapter (2nd forward pass with backpropagation).

3.5. Inference Strategy

For model inference, inspired by context-locality[12][13], we adopt a hybrid approach tailored to different task

types: For language understanding tasks, we convert most demonstrations into weight updates, retaining only

a small portion of recent context. For long context generation tasks, we use a sliding window strategy with

stride size    smaller than window size  . We keep the most recent context intact while transforming the

evicted context into temporary model updates via StreamAdapter. This adaptive strategy balances immediate

context and adapted knowledge from earlier inputs, optimizing ef�ciency and performance across different

scenarios.

4. Experiments and Results

We evaluate StreamAdapter  across various model scales and architectures, focusing on both language

understanding tasks and language generation tasks. We also explore the scaling ability of StreamAdapter with

different numbers of in-context demonstrations across various tasks and lengths. Additionally, We evaluate

StreamAdapter’s ef�ciency and robustness through comprehensive ablation studies and in-depth analyses.

4.1. Experimental Setting

Base Model

we select TinyLlama-1.1B[43], LLaMA-3-8B, and Phi-3-Medium[44]  as our base model. In all experiments, we

froze the original model weights and only trained the parameters introduced by StreamAdapter.

k

Δ C ′
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Base Setting

Without explicit specialization, we apply StreamAdapter  to every linear layer of the pre-trained model. The

default chunk size   in Section 3.2 is set to 128, and the down-projected value dimension   in Equation 8 is

set to 32 for all base models. When performing chunk-wise cross-attention, in cases where the input KV cache

is not divisible by  , we performe an additional cross-attention operation on the remaining KV cache after

division and concatenate the result with the chunk-wise result. The number of learnable queries in

StreamAdapter is set to 16 for TinyLlama-1.1B and LLaMA-3-8B, and 48 for Phi-3-Medium.

4.2. Language Understanding Task

Training Details

For adapting StreamAdapter  to language understanding tasks, we employ the in-context training approach

introduced in Section  3.4.2. We carefully select several tasks for training. The tasks included BoolQ  [45],

CoPA  [46], SST2  [47], CB  [48], and RTE  [49]. For each sample in training set across all tasks, we randomly select

context examples from the training set for computing the KV cache in the �rst forward pass. The number of

demonstrations tailored to each model’s capacity: 30 samples for TinyLlama-1.1B, and 60 samples for both

LLaMA-3-8B and Phi-3-Medium. For further training detailes, please refer to Appendix A.1.

Evaluation and Baseline

We evaluate StreamAdapter  across a diverse set of language understanding tasks, including both those

encountered during the training stage and unseen tasks. Our comparison encompasses several baseline

methods: zero-shot prompting, ICL, and two heuristic context eviction strategies—SnapKV [12] and  [13]. We

also include TempLoRA [31], a test-time low-rank adaptation method, as a baseline. For a fair comparison, we

additionally incorporate results obtained after �ne-tuning the base model using LoRA  [32]  with the same

number of learnable parameters as StreamAdapter. For detailed settings of the different methods, please refer

to Appendix B.1.

C d′
kv

C

OH2
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Table 1. Evaluation results on language understanding tasks after in-context training. OBQA: OpenbookQA. ARC-C:

ARC-Challenge. ARC-E: ARC-Easy

Figure 3. Comparison of various methods across different tasks with different numbers of demonstrations

Evaluation Result

The evaluation results in Table 1 show that StreamAdapter consistently outperforms LoRA on the test set across

the seen tasks, despite using the same training recipe and parameter count. On unseen tasks,

StreamAdapter  also surpasses all other methods across the three models. Unlike context selection methods

such as SnapKV and H2O, which are upper-bounded by full ICL, StreamAdapter enhances model capability by

absorbing context and even outperforms full ICL. Additionally, while LoRA exhibits performance degradation
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on unseen tasks, indicating catastrophic forgetting, StreamAdapter maintains improved results, demonstrating

its effectiveness and generalization capabilities.

Scaling Analysis

We examine the adaptation accuracy of various methods, including StreamAdapter, as the number of

demonstrations increases across different tasks using the LLaMA-3-8B model. To ensure fair comparison

across methods, we employ a consistent approach to demonstration selection. For each task, we generate a

�xed set of demonstrations from its training set. All test samples are then evaluated using this same set of

demonstrations across all methods. For detailed con�guration information, please refer to Appendix B.2.

Figure 3 shows that StreamAdapter consistently improves with more demonstrations on both seen and unseen

tasks. On both seen and unseen tasks, StreamAdapter signi�cantly outperforms TempLoRA and achieves better

results than ICL and other context eviction strategies. The increasing accuracy with more demonstrations,

particularly on unseen tasks, suggests that StreamAdapter  effectively leverages contextual information to

encode knowledge into parameters rather than simply memorizing task-speci�c patterns.

These results highlight StreamAdapter’s potential as a robust approach for TTA in language models,

demonstrating its ability to generalize across diverse language understanding tasks.

4.2.1. Language Generation Task

Training Details

For training StreamAdapter  on language generation tasks, we utilize the training set of the PG19 dataset[50],

employing the sliding window strategy introduced in Section  3.4.1. The sequence length    is set to 8192 for

TinyLlama-1.1B, and 16384 for LLaMA-3-8B and Phi-3-Medium. The SW size   for all models is �xed at 1024,

with a stride   of 512. For additional training hyperparameters, please refer to Appendix A.2.

Table 2. Comparison on PG19 test set across varying maximum context lengths using sliding

window evaluation strategy

L

C ′

Δ
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Figure 4. Perplexity gap between TTA methods and sliding window strategy across varying maximum context

lengths on the PG19 test set

Evaluation and Baselines

We evaluate StreamAdapter on the PG19 test set using various maximum truncation lengths. For each sample,

we employ the sliding window evaluation strategy with a window size    of 1024 and a stride    of 512.

Perplexity is computed in the incoming stride window, and we report the average perplexity across the entire

test set. For comparison, we use two baselines: naive sliding window approach with identical settings, and

TempLoRA. Detailed parameter settings for TempLoRA are provided in Appendix B.3.

Evaluation Result

The results are presented in Table  2. They clearly demonstrate that StreamAdapter  outperforms both the

sliding window approach and TempLoRA across all maximum context length. Notably, while TempLoRA

achieves lower generation perplexity than sliding window with TinyLlama-1.1B, it shows inferior performance

when evaluated with LLaMA-3-8B. We hypothesize that this discrepancy may be due to LLaMA-3-8B’s training

on high-quality corpora. TTA with TempLoRA on the current chunk might lead LLaMA-3 to over�t to that

chunk, resulting in inaccurate predictions on subsequent context. In contrast, StreamAdapter exhibits superior

generation performance on both TinyLlama-1.1B and LLaMA-3-8B models, showcasting its wide applicability

across different model scales. Moreover, we visualize the perplexity gap between StreamAdapter  and

TempLoRA compared to the sliding window approach at different maximum lengths in Figure  4. The gap

consistently widens as the context size increases for both TinyLlama-1.1B and LLaMA-3-8B models. The

consistent improvement across increasing context lengths highlights StreamAdapter’s ability to effectively

leverage additional contextual information, regardless of the base model’s scale. This scalability further

C ′ Δ
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emphasizes StreamAdapter’s robustness and adaptability in processing long-form text, making it particularly

suitable for applications requiring ef�cient handling of extensive contextual data.

4.3. Analysis

Ef�ciency

Figure 5. Generation latency and peak memory consumption across different pre�ll lengths.   indicates adaptation

using sequential chunk-wise strategy, as directly mapping all pre�ll context leads to out-of-memory

We compare the end-to-end latency and peak memory consumption of model generation with TinyLlama-1.1B

across various pre�ll context lengths. Our evaluation process begins by generating the KV cache for a given

pre�ll context length, followed by measuring the latency of generating 128 tokens using three methods: full

context, TempLoRA, and our StreamAdapter.

The hyperparameter settings for TempLoRA and StreamAdapter  are consistent with those described in

Section 4.2.1. All results are averaged across �ve runs with a single NVIDIA A100-80G GPU.

The results, presented in Figure  5, clearly demonstrate that StreamAdapter  maintains constant generation

latency across different pre�ll context lengths (i.e., different KV cache sizes). In contrast, the latency of full

context generation and TTA with TempLoRA increases almost linearly with the context size. Moreover,

TempLoRA’s need for gradient backpropagation during adaptation leads to substantial GPU memory

consumption as the pre�ll context increases. While this can be mitigated using sequential chunk-wise

adaptation (with a chunk size of 2048 in our setting), this approach increases the generation latency.

Conversely, StreamAdapter’s recurrent design allows simultaneous mapping of all context without requiring

sequential chunk-wise processing. Although StreamAdapter’s peak memory consumption also increases with

larger pre�ll contexts, we attribute this to the current implementation materializing all intermediate states. As

†
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only the �nal state is needed, we believe further optimizations, similar to those in[38], could reduce

StreamAdapter’s memory demands.

Adaptation Ratio

Figure 6. Average accuracy of StreamAdapter with TinyLlama-1.1B across different adaptation ratios on both seen

and unseen tasks

In the language understanding tasks described in Section  4.2, we adapt a �xed ratio of context into model

weights and evaluate the model with the remaining context in context. To explore the relationship between

adaptation ratio and �nal accuracy on both seen and unseen tasks, we evaluate TinyLlama-1.1B with �xed 10-

shot samples across different adaptation ratios.

The results of our adaptation ratio analysis are presented in Figure 6. For a more detailed breakdown of acuracy

on each individual task, please refer to Appendix C.2. StreamAdapter generally performs better on seen tasks

when adapting more demonstrations. For unseen tasks, StreamAdapter  outperforms 10-shot ICL when

adapting 10%-80% of demonstrations but shows a decline with extreme adaptation ratios (90% or 100%).

Although teh adaptation accuracy remains better than zero-shot prompting, we hypothesize that retaining a

small portion of demonstrations is necessary to guide adaptation direction on unseen tasks. This is likely

because StreamAdapter learns mapping relations from a limited set of tasks and may adapt the base model in a

direction different from the target unseen task. We posit that training StreamAdapter with a more diverse task

set could address this issue, which we leave for future work.
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Robustness

Table 3. Evaluation results on language understanding tasks with different prompt templates for in-

context examples and evaluated samples

We evaluate the in�uence of using different templates for in-context examples and target evaluated samples to

analyze the robustness of different TTA methods as patterns change. For this analysis, we use the TinyLlama-

1.1B model trained from Section  4.2. We select three seen tasks (BoolQ, SST2, RTE) and three unseen tasks

(ARC-Challenge[51], ARC-Easy[51], PIQA[52]) to verify the robustness of full in-context learning (ICL) and

StreamAdapter. We �x the number of in-context examples at 10, with other details for

StreamAdapter remaining the same as in Section 4.2.

The results, presented in Table  3, show that although both full ICL and StreamAdapter  exhibit degraded

accuracy compared to Table 1, StreamAdapter still outperforms ICL on both seen and unseen tasks. Moreover,

as illustrated in Figure  7, ICL’s average accuracy decreases as the number of in-context examples increases,

suggesting that ICL primarily memorizes patterns and fails to adapt when these patterns change. Conversely,

StreamAdapter consistently achieves higher accuracy with additional demonstrations, indicating that TTA with

StreamAdapter leverages contextual information to enhance model capability rather than simply memorizing

task-speci�c patterns.
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Figure 7. Evaluation with varying numbers of demonstrations, using different prompt templates for evaluated

samples and in-context examples

ChunkWise Seen Task Avg. Unseen Task Avg.

No Chunking 82.84 51.46

64 82.23 51.47

128 86.99 51.92

256 86.10 51.71

Table 4. Evaluation on language understanding task with different chunk size
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# of Query # of Learnable Param. (%) Seen Task Avg. Unseen Task Avg.

16 4.99 83.14 52.61

32 5.55 86.50 52.01

64 6.66 87.21 51.99

128 8.81 87.22 52.05

Table 5. Evaluation on language understanding task with different number of learnable query for summarizing each

chunk

# of Query # Learnable Param. Seen Task Avg. Unseen Task Avg.

8 4.20 85.33 52.30

16 4.99 83.14 52.61

32 5.55 87.80 52.50

Table 5. Evaluation on language understanding task with different number of learnable query for summarizing each

chunk

Chunk Size # of Query # Learnable Param. Seen Task Avg. Unseen Task Avg.

64 8 4.20 85.33 52.30

128 16 4.99 83.14 52.61

256 32 5.55 87.80 52.50

Table 6. Evaluation results on language understanding task with �xed chunk size / query ratio using TinyLlama-1.1B

4.4. Ablation

We examine the impact of different components and settings of StreamAdapter, focusing our analysis on the

TinyLlama-1.1B model and evaluating its adaptation capability on language understanding tasks. Except for the

qeios.com doi.org/10.32388/G5H95J 19

https://www.qeios.com/
https://doi.org/10.32388/G5H95J


speci�c parameter settings under investigation, all other training and evaluation settings remain consistent

with those described in Section 4.2.

We begin by examining the effectiveness of the chunk-wise design and the in�uence of chunk size on

StreamAdapter’s performance. For this analysis, we �x the number of queries used to compress each chunk at

16. In the absence of a chunk-wise design, we would directly summarize the entire KV cache using queries with

cross-attention to generate new model weights, eliminating the need for inter-chunk recurrence. Table 4 shows

that the chunk-wise approach outperforms the non-chunked version, with a chunk size of 128 achieving the

best results on both seen (86.99%) and unseen tasks (51.92%). Smaller (64) and larger (256) chunk sizes show

suboptimal results, indicating that 128 strikes the right balance in capturing contextual information with 16

queries.

Next, we examine the effect of different numbers of queries, with results presented in Table 5. As the number of

queries per chunk increases, accuracy improves on seen tasks but declines on unseen tasks. We hypothesize

that increasing the number of learnable parameters through additional queries causes StreamAdapter to trend

towards memorizing �xed patterns from training tasks, resulting in poorer generalization to unseen tasks.

From the results in Tables 4 and 5, we hypothesize that the optimal ratio of context tokens per query is 128 / 16

= 8. To validate this hypothesis, we conduct experiments with different chunk sizes while maintaining this

�xed ratio. The results from Table 6 show that maintaining this ratio does improve the adaptation accuracy on

both seen and unseen tasks compared to the results from Table  4. However, the highest accuracy is still

achieved with the original chunk size of 128 and 16 queries. We hypothesize that this optimal con�guration

may be related to the context length of each task’s in-context examples (presented in Table 3). Further analysis

of this relationship is left for future work.

5. Conclusion

We introduce StreamAdapter, a novel approach for adapting pretrained LLMs at test time directly from given

context. StreamAdapter employs context mapping and weight absorption mechanisms to ef�ciently transform

context tokens into parameter updates, achieving similar or superior results to full-context generation while

reducing both memory consumption and inference time. Evaluations across diverse language understanding

and generation tasks with various model scales demonstrate StreamAdapter’s effectiveness in adapting to new

tasks, outperforming �ne-tuning and zero-shot prompting, while also surpassing full ICL. Analysis reveals

StreamAdapter’s superior scalability and robustness across varying context lengths and adaptation ratios,

while maintaining constant inference time and memory consumption. These promising results open new

avenues for ef�cient TTA of LLMs, paving the way for more �exible and customized language model
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deployments. Future work could explore StreamAdapter’s application to more diverse tasks and larger model

scales, potentially extending its principles to other modalities.

Appendix A. Training Details

A.1. Language Understanding Task

We use the training sets of BoolQ[45], CoPA[46], SST2[47], CB[48], and RTE[49]  for training on language

understanding tasks. We construct each sample with pre-de�ned template, the template for each task is

presented in Table 7.

For training StreamAdapter, we employ the WarmupCosine learning rate scheduler and the AdamW optimizer

with    and weight decay 0.01 for 3 epochs. The hyperparameters vary across models: for

TinyLlama-1.1B, we use a batch size of 16, learning rate of  , and 100 warmup steps; for LLaMA-3-8B, a

batch size of 4, learning rate of  , and 500 warmup steps; and for Phi-3-Medium, a batch size of 2,

learning rate of  , and 800 warmup steps.

For training LoRA, we apply the adapter to every linear layer of the pre-trained model and use the same

learning rate scheduler, optimizer, and number of epochs as for training StreamAdapter. The rank and    of

LoRA are both set to 64. The hyperparameters are adjusted for each model: TinyLlama-1.1B uses a batch size of

16, learning rate of  , and 100 warmup steps; LLaMA-3-8B uses a batch size of 8, learning rate of 

, and 300 warmup steps; and Phi-3-Medium uses a batch size of 4, learning rate of  , and 500

warmup steps.

A.2. Language Generation Task

For training on language generation tasks, we utilize the training set of the PG19 dataset. We employ the

WarmupCosine learning rate scheduler with 500 warmup steps and the AdamW optimizer with 

  and weight decay 0.01 for 1 epoch. The hyperparameters are adjusted for each model:

TinyLlama-1.1B uses a batch size of 8 and a learning rate of  ; LLaMA-3-8B uses a batch size of 4 and a

learning rate of  ; and Phi-3-Medium uses a batch size of 2 and a learning rate of  .

( , ) = (0.9, 0.95)β1 β2

5 × 10−5

2 × 10−5

1 × 10−5

α

1 × 10−4

8 × 10−5 5 × 10−5

( , ) = (0.9, 0.95)β1 β2

5 × 10−5

2 × 10−5 1 × 10−5

qeios.com doi.org/10.32388/G5H95J 21

https://www.qeios.com/
https://doi.org/10.32388/G5H95J


Table 7. Templates used for each task in training on language understanding tasks

B. Evaluation Details

B.1. Language Understanding Task

Unless otherwise speci�ed, we use the task templates introduced in lm-evaluation-harness[53]  for all our

evaluations on language understanding tasks. We report the accuracy for task BoolQ, CoPA, SST2, CB, RTE,

OpenbookQA, ARC-Challenge, Winogrande, PIQA, and ARC-Easy, while report the normalized accuracy for

Hellaswag.

For a fair comparison when using multi-shot demonstration contexts, we generate the required number of

demonstrations from the training set of each task. These same demonstrations are then used as context for

evaluating all methods. This approach eliminates potential variability due to demonstration selection, allowing

for a more direct comparison of different methods. The results we report are averaged from three independent

runs.

TempLoRA: We apply LoRA to every linear layer of the base model and directly train it on the given in-context

examples. For optimization, we use the AdamW optimizer with a OneCycleLR learning rate scheduler. The rank

and    of LoRA are both set to 64 across all models. We use a �xed learning rate of    and train for 5

epochs.

H2O: We retain 20% of the context, with both the heavy ratio and recent ratio set to 0.1.

SnapKV: For SnapKV, we allocate 10% of the context for the observation window and retain an additional 10%

for inference, leading to a total context retention of 20%.

StreamAdapter: Unless otherwise speci�ed, we convert 80% of the context into a parameter update, leaving the

remaining 20% of the context unchanged.

α 1 × 10−5
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Task Name

Context Length

1-shot 3-shot 5-shot 10-shot 15-shot 20-shot 25-shot 30-shot

BoolQ 275 475 744 1218 2219 2992 4190 4567

CoPA 18 44 86 145 232 316 374 450

SST2 28 91 121 290 412 470 705 872

CB 97 240 550 988 1533 1629 2703 3304

RTE 42 161 500 958 1240 1666 1984 2399

Hellaswag 63 298 382 567 1051 1470 1959 2129

Winogrande 25 77 129 231 322 416 527 638

OpenbookQA (OBQA) 20 53 76 164 267 344 393 437

ARC-Chanllege (ARC-C) 25 154 171 363 570 680 895 998

ARC-Easy (ARC-E) 29 129 194 367 426 802 983 1296

PIQA 23 191 257 371 598 817 973 1028

Table 8. The context length of different demonstration of different tasks using LLaMA-3-8B tokenizer
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Figure 8. Comparison of various methods across different tasks using TinyLlama-1.1B with different numbers of

demonstrations

Figure 9. Comparison of various methods across different tasks using Phi-3 Medium with different numbers of

demonstrations
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B.2. Language Understanding Scaling Analysis

We evaluate different methods under varying numbers of demonstrations on six tasks: BoolQ, RTE, SST2, ARC-

Challenge (ARC-C), ARC-Easy (ARC-E), and PIQA. To ensure a fair comparison, we employ a consistent approach

across all methods. We �rst generate a �xed set of demonstrations for each task, which is then used as context

for all methods being compared. Our evaluation covers 1, 3, 5, 10, 15, 20, 25, and 30-shot scenarios. The reported

results are obtained by averaging three different runs, each utilizing a distinct set of generated demonstrations.

We also provide the average context length for each task across different numbers of demonstrations using the

LLaMA-3-8B tokenizer in Table 8.

Adaptation

Ratio

Seen Task Unseen Task

BoolQ CoPA SST2 CB RTE Avg. Hellaswag Winogrande OBQA
ARC-

C

ARC-

E
PIQA Avg.

10% 70.15 76.00 80.25 55.64 51.99 66.81 59.62 60.46 26.00 30.12 65.03 73.72 52.49

20% 74.28 75.00 83.37 55.00 76.91 72.91 59.29 60.69 25.80 30.38 64.86 73.88 52.48

30% 77.83 77.00 84.17 62.86 81.59 76.69 59.39 60.38 26.00 30.38 64.90 74.05 52.52

40% 79.60 76.00 85.08 66.07 83.75 78.10 59.83 60.06 25.80 30.38 65.19 73.94 52.53

50% 80.06 75.00 83.14 81.07 83.75 80.60 59.28 59.80 26.00 30.55 65.56 74.05 52.54

60% 80.37 74.00 84.63 82.86 83.75 81.12 59.30 60.22 26.40 30.55 65.45 74.16 52.68

70% 81.47 75.00 89.79 85.77 83.75 83.16 59.67 59.35 27.00 31.06 65.07 73.39 52.59

80% 81.77 76.00 89.56 85.71 82.67 83.14 59.45 59.91 27.00 31.06 64.93 73.29 52.61

90% 82.36 75.00 90.31 85.72 82.67 83.21 59.54 59.04 23.00 29.60 64.10 73.18 51.41

100% 83.36 74.00 93.81 90.43 82.67 84.85 59.40 59.04 23.00 29.52 64.02 73.78 51.46

Table 9. Average accuracy of StreamAdapter on language understanding tasks using TinyLlama-1.1B, evaluated

across different adaptation ratios

B.3. Language Generation Task

For TempLoRA, we apply the LoRA adapter to every linear layer, with the rank and   both set to 64.α
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B.4. Robustness Analysis

For evaluting the robustness of ICL and StreamAdapter adaption capability from different prompt template, we

use different prompt template for in-contetx examples and targer sample. For in-context examples, we use the

same prompt teamplte with lm-evaluation-harness[53], while the teamplte for the target sample are presented

in Table 10.

Table 10. Templates used for each task in training on language understanding tasks

C. Additional Results

C.1. Scaling Analysis on Language Understanding Task

We further present the results on language understanding tasks with varying numbers of demonstrations for

TinyLlama-1.1B and Phi-3-Medium in Figure  8 and Figure  9, respectively. These results further demonstrate

that StreamAdapter  clearly outperforms full ICL and other TTA methods. Moreover, StreamAdapter  exhibits

better scaling capability as the number of demonstrations increases.

C.2. Evaluation with Different Adaptation Ratio

Table  9 presents the detailed accuracy of StreamAdapteracross different adaptation ratios, as discussed in

Section 4.3.
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