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Electric vehicles (EVs) are gaining attention due to their zero carbon
emissions, but concerns about their reliability, especially critical
components, persist. Previous research has primarily focused on EV drive
motor reliability, neglecting the motor controller. To address this gap, this
study assesses the reliability of the entire motor system in electric vans,
including both drive motor and motor controller components. It predicts
failure rates for these components, highlighting vulnerabilities and
shortcomings in existing research, which can inform future design and
maintenance. In addition, the integration of EVs and renewable energy
resources has garnered attention, but concerns about component reliability
have arisen. A novel approach called " Innovative Incentive-Driven Fuzzy
Fault Tree Analysis " (IIFFTA) is introduced for power systems incorporating
EVs and renewable energy, addressing vague and imprecise events and data
de�ciencies in conventional fault tree analysis. IIFFTA considers di�erent
component failure rates and probability values of fault occurrences, o�ering
a more e�ective risk assessment method. Lastly, plug-in electric vehicles
(PEVs) impact distribution systems, and this paper explores distribution
feeder recon�guration (DFR) as a reliability-enhancing strategy for
coordinating vehicle-to-grid (V2G) services from PEV �eets within a
stochastic framework. The study accounts for uncertainties related to
network demand, energy prices, wind power generation, and PEV �eet
behavior, employing a self-adaptive evolutionary algorithm (SOS) to address
the stochastic optimization problem.

1. Introduction
In this paper, our primary focus lies in the
investigation of the reliability of commercial vehicles,
speci�cally pure electric vans, which now account for

more than 90% of all commercial vehicle sales  [1].
Within these vehicles, the motor system plays a
pivotal role as it converts electric energy into
mechanical energy to propel the vehicle. The

importance of ensuring the reliability of the motor
system cannot be overstated, as any reliability issues
within this crucial component could potentially result
in hazardous road accidents. Consequently, it
becomes imperative to conduct a thorough
examination of the motor system's reliability,
pinpoint vulnerable components, and initiate design

enhancements based on the �ndings [2][3]. To address
this objective, substantial e�orts have been made in
the past. A comprehensive literature review reveals
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that previous research in this domain has
predominantly focused on enhancing the control and
fault tolerance performance of motor systems. For
instance, researchers have delved into the fault
tolerance performance of multi-phase permanent
magnet synchronous motors, utilizing a multi-level

Markov model  [4], while similar investigations into
motor drives have been carried out employing the
Monte Carlo method to enhance fault tolerance

mechanisms  [5]. Further research has explored the
reliability of control systems for automated guided
vehicles (AGVs) using a combined fault tree and Petri

net approach  [6]. This work was subsequently

extended in  [7]  through the incorporation of genetic
algorithms into maintenance strategy optimization.
Additionally, fault classi�cation methods and fault-
tolerant control strategies have been adopted to
enhance the dynamic performance and control

stability of electric vehicles  [8]. Scholars have also
scrutinized the reliability of drive motors and
electronic converters for power supply. For example,
the reliability of electric vehicle (EV) drive motors has

been examined in  [9][10]  using a combined fault tree

and Petri net approach. The study in  [11]  focused on
investigating the fault causes related to winding
insulation and bearings, which exhibit higher fault
rates, using fault tree analysis. The reliability of
bidirectional DC/DC converters in EVs was explored

in  [12], with estimations of component age and

lifespan presented in  [13], based on survey data and
other relevant parameters.

However, it is apparent that previous research e�orts
have primarily concentrated on the analysis of drive
motors, with limited attention given to the reliability
issues within motor controllers. This oversight can
potentially yield unreliable research conclusions,
considering that drive motors and motor controllers
are inherently interconnected. They are designed to
function as a uni�ed system and cannot be isolated for
individual analysis. To address this gap in knowledge,
a comprehensive reliability assessment of both
components is essential, as this approach provides a
more dependable prediction of the overall motor
system's reliability. Surprisingly, no previous
research has undertaken such an extensive
examination of the entire motor system. This
noteworthy research gap serves as a primary
motivation for the present study. Furthermore, it is
worth noting that both drive motors and motor
controllers are comprised of multiple components.
The structural con�guration, types, and

characteristics of these components may also exert an
in�uence on the overall reliability of the motor
system. Unfortunately, these factors have not been
adequately considered in prior research. The objective
of this study is to bridge these knowledge gaps by
meticulously exploring the reliability aspects of all
subassemblies and components within both the drive
motor and motor controller. The anticipated outcome
of this research is expected to signi�cantly
complement the existing body of knowledge related to
electric vehicles and further contribute to the
burgeoning electric vehicle industry.

Fault tree analysis, a highly e�ective methodology for
conducting reliability and safety assessments, has a
proven track record in investigating reliability issues

in various systems  [14]. Notably, it has been
extensively applied to assess the reliability of diverse
systems. For instance, fault tree analysis was
employed to qualitatively and quantitatively evaluate

potential failures in wind turbines  [15]. It was
determined that the majority of failures in �oating
turbines could be attributed to factors such as marine
conditions, salt spray, and high wind speeds.
Subsequent enhancements were made to the fault tree
analysis method to accommodate qualitative analysis

in complex systems with multiple components  [16].
Additionally, dynamic fault tree analysis models have
been developed for various applications, including
estimating the average maintenance period of �oating

wind turbines  [17]. Dynamic fault tree models have
also been employed in assessing the reliability of
fault-tolerant control systems and vehicle guidance

systems in unmanned aerial vehicles [18][19]. Given the
proven success of fault tree analysis in prior
applications, this paper adopts this methodology to
investigate the reliability of motor systems in pure
electric vans." While the trend towards more
sustainable energy sources is on the rise, marked by a

growing shift toward renewable energy resources [20],
the increasing proliferation of electric vehicles has
created deeper interconnections between the power
and transportation systems. This integration
introduces new challenges in terms of potential fault
occurrences across various systems. Consequently, a
robust risk assessment method becomes essential for
power systems that encompass both electric vehicles

and renewable energy resources [21].

E�orts to enhance the reliability of power systems,
especially with the incorporation of renewable energy
resources through various techniques, have been

proposed  [22]. Electric vehicles are now interfaced
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with arti�cial intelligence and complex software
systems, enabling them to understand real-world
conditions, make autonomous decisions, and perform

tasks without human intervention  [23]. In addition,
systems for communication and computation within
electric vehicles have been introduced, alongside
discussions on the stochastic design of vehicle
communication reliability using probability

theory  [24]. Moreover, the integration of solar and
wind power systems has been explored through the
use of distribution generation systems, incorporating
suitable non-linearity into conventional power

systems to improve accuracy [25]. Innovative methods
have been suggested, such as a tracking absorption
approach for renewable power based on the interface
between the demand and supply sides. This approach
regulates the charging process of electric vehicles,
enabling the e�cient utilization of renewable energy

resources and unrestricted electric power  [26].
Methods have also been proposed for the e�cient
allocation of charging stations for electric vehicles
within the power system without compromising

performance  [27]. The inclusion of renewable energy
resources with electric vehicles necessitates an
analysis of power systems based on the demand for

electric vehicle charging  [28]. The inherent variability
and unpredictability of solar and wind energy systems
can pose challenges for system operators in
maintaining reliability. Consequently, a stochastic
risk-constrained framework has been introduced to
assess the impact of demand response on system

reliability  [29]. As power electronic technologies are
increasingly integrated into the grid, the assessment
of system reliability becomes crucial. Understanding
the impact of equipment failure rates on overall

system reliability is a key consideration  [30].
Additionally, the incorporation of various energy
storage systems into distribution networks can

in�uence system reliability and utility outcomes  [31]

[32]. The evolving grid, departing from its original
design, is undergoing a transformative change in how

power is generated and consumed [33].

The uncertainties associated with wind and solar
power resources can a�ect system reliability.
Consequently, a novel production rescheduling
algorithm has been introduced to regulate production
outputs, reducing energy �ow deviations and

mitigating the risk of overloads [34]. With the growing
penetration of renewable power, many Independent
System Operators (ISOs) are introducing ramp ability
products to address the challenge of real-time power

matching  [35]. Furthermore, a novel approach has
been presented to explore the e�ectiveness of
applying reliability assessment to de�ne reliability
standards for grids with a high penetration of power

converter-interfaced production  [36]. The design of
various components within the power system plays a

crucial role in improving e�ciency and reliability [37]

[38]. As electric vehicles gain prominence in the
market, their design should adhere to a reliability-

based approach  [39]. In this context, a novel reliable
motor called the 'magnetic steering motor' has been
introduced to explore the concept of a magnetic

discrepancy system for electric vehicles  [40]. One of
the primary advantages of renewable power systems
is their ability to reduce carbon emissions across
various levels. By integrating renewable energy with
the grid, the need for units generated by thermal-
based plants decreases, resulting in a reduction in

carbon footprints  [41]. Additionally, a general
framework for electric vehicle charging stations has
been proposed to assess the reliability of power
electronics-based components in electric

vehicles  [42]. Furthermore, the reliability observation
of hybrid electric vehicles is essential for their design,

control, planning, and management  [43][44].
Innovative energy conversion methods have been
introduced for renewable-based power generation,
allowing each element of renewable energy sources to

operate optimally and generate maximum power [45].

To assess the reliability of power systems that
incorporate wind energy with small hydropower
plants, this article aims to evaluate their impact on

system reliability  [46]. Numerous stochastic
computational methods for analyzing fuzzy systems

have been introduced  [47]. Due to the increasing
prevalence of wind and solar generators, traditional
reliability evaluation methods are inadequate due to
the intermittency and uncertainty of these resources.

As a result, new approaches have been introduced [48].
In both qualitative and quantitative research, fault
trees are commonly employed to analyze the

unreliability of electrical or mechanical systems  [49].
To overcome these challenges and address the
reliability issues associated with the integration of
electric vehicles and renewable energy sources into
the power grid, this article proposes an innovative
reliability-oriented approach. This approach utilizes a
novel incentive-based fuzzy fault tree analysis to
resolve practical reliability investigation challenges
associated with solar-wind-electric vehicle-
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connected power systems  [50]. It is applied to derive
di�erent reliability indices and assess the
probabilities of top event failures under varying loads.

The outcomes obtained from this approach are then
compared with various existing methods, including
the electrical loss minimization technique,
chronological multiple-state probability model,
system state generation method, and probabilistic
minimal cut-set-based iterative methodology. It is
worth noting that these existing techniques involve
lengthy processes and demand additional time for
assessing system reliability, making the proposed
approach more e�cient by comparison.

Plug-in Electric Vehicles (PEVs) serve as mobile
electric loads and storage devices in the system,
introducing additional operational constraints that
o�er advantages to distribution systems. However,
these bene�ts can be o�set by their impact on the
availability of power supply to users. Simultaneously,
the extensive integration of wind energy can
potentially lower operational costs and reduce
emissions. Still, the inherent variability of wind
generation can pose challenges to network security

and reliability  [51]. The storage capacity of PEVs can
play a crucial role in mitigating the intermittency of
wind generation, thereby enhancing network
reliability and reducing operational costs. PEVs are
capable of drawing energy from the grid, storing it in
their batteries, and injecting it back into the grid at
di�erent times and locations to help manage the
�uctuations in wind generation. Through Vehicle-to-
Grid (V2G) technology, grid operational costs can be
lowered by utilizing the stored energy in PEVs, which
can be transferred between locations without strictly

adhering to conventional power �ow rules  [52].
Furthermore, the integration of V2G-enabled PEVs
can make substantial contributions to the reliability
and security of the distribution grid. As a result,
extensive research has been conducted focusing on
addressing the uncertainties associated with wind
generation and the power from PEVs. Research has
also evaluated the reliability and cost implications of
PEVs and wind generation. Additionally, optimal
scheduling of network power resources and wind
generation while considering PEVs has been

investigated  [53], and reliability assessments
considering PEVs have been addressed. Furthermore,

references  [54]  delve into the characteristics,
advantages, weaknesses, economics, and technical
speci�cations of V2G technology. Among various
methods proposed to enhance system reliability, such

as accelerating fault prediction procedures and
improving protection measures, Distribution Feeder
Recon�guration (DFR) stands out as a cost-e�ective
strategy. DFR aims to identify the optimal network

topology by altering its con�guration [55].

While previous studies have primarily focused on
DFR's capability to improve network reliability, they
often lack a comprehensive model of DFR's ability to
mitigate the impacts of PEVs and coordinate V2G
services within a stochastic and reliable framework.
Therefore, this paper introduces a stochastic DFR
formulation, which optimally schedules V2G services
and concurrently determines the most bene�cial
network topology from reliability and total cost
perspectives. The improvement in reliability is
measured with respect to the Energy Not Supplied
(ENS) index. In addressing uncertainties linked to
wind generation, PEVs, energy prices, and
active/reactive load demand, a Monte Carlo
simulation (MCS) method is employed. The
optimization problem is then solved using a self-
adaptive modi�ed Symbiotic Organism Search (MSOS)
algorithm, representing a powerful optimization
technique. The SOS algorithm is a bio-inspired
optimization approach based on simulating the
interactive behaviors of diverse organisms within an
ecosystem to �nd the optimal solutions in the search
space. To enhance the performance of conventional
SOS in complex optimization scenarios, a new
modi�cation phase has been incorporated into the
algorithm. The proposed methodology is applied to a
69-bus IEEE distribution test system to validate its
e�ectiveness. The results demonstrate that the
stochastic DFR strategy, in conjunction with V2G
technology, e�ectively reduces operating costs and
strengthens network reliability. Furthermore, the
proposed MSOS algorithm e�ciently minimizes the
de�ned objective functions.

2. Innovative Incentive-Driven
Fuzzy Fault Tree Analysis (IIFFTA)
Method
Figure 1. Construction of Fault Trees Using the
Proposed Approach and Identi�cation of Risk Factors

This section delves into the impact of integrating
renewable energy resources and electric vehicles on
the power system's reliability. It outlines both the
advantages and disadvantages of incorporating these
sources and electric vehicles into the conventional
electrical power system. While some disadvantages
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exist, the advantages are prevalent due to their
unlimited and cost-e�ective nature. Reliability stands
as a pivotal focus in this research. Therefore, by
leveraging past failure data and expert opinions, the
primary and basic event failures are pinpointed. The
major event failures in the grid-connected solar-wind
and electric vehicle system encompass the following:

Solar power system faults (SPSF)
Wind power system faults (WPSF)
Electric vehicle faults (EVF)

The fault tree diagrams are constructed to visualize
the proposed power systems, illustrating the
hierarchy from top events to basic events. The fault
tree for the grid-linked power system with wind-solar
energy resources, excluding electric vehicles,
accounting for the system structure and di�erent
faults occurring in the solar-wind power system. The
top event is the fault in the solar-wind power system,
with sub element failures in the system branching
into basic events.

The reliability assessment of the entire system is
conducted over a chosen period of 2 years in this
research. Solar power system faults encompass issues
such as solar module faults, wiring faults, junction
box faults, front glass failures, solder bond faults,
encapsulation faults, system balance faults (DC and
AC switches), circuit breakers, connectors, bypass
diodes, DC combiners, inverter module faults, AC and
DC contactors, cooling fan faults, operational faults,
startup and stopping faults, converter faults, grid
operation faults, and weather-related faults.
Meanwhile, wind power system faults consist of rotor
blade faults, generator faults, gearbox faults,
mechanical brake faults, yaw system faults, hub
faults, pitch system failures, startup faults, blade
damage, shell damage, tip damage, di�erent angle
faults, sensor faults, structural faults, among others.
Electric vehicle faults include failures in charge
controllers, power converters, rotor shafts, startup
faults, stopping faults, connector faults, battery
modules, stator winding open circuits, eccentricity-
related issues, battery temperature problems,
overcharge and undercharge issues, bearing faults,
slave controllers and master controllers of the battery
management system, vehicle sensors, abnormal
stator winding connections, control module failures,
driver module issues, communication module
problems, discharging module faults, transducer
malfunctions, body hardware failures, paint-related
problems, and power switch issues.

The primary challenge in calculating the failure
probabilities of the grid-connected wind-solar energy
resources and electric vehicles is the lack of
comprehensive data on various component failures
within the entire system. Therefore, the proposed
methodology is employed to address this issue.
Experts contribute their expertise by providing failure
probabilities for all events. While there are known
failure rates for 20 basic events from research papers
and databases, the failure rates for the remaining
events are determined using the proposed method.
The fault tree model of the grid-connected renewable
energy system with electric vehicles, showcasing the
system's structure and the various faults occurring in
both the solar-wind power system and electric
vehicles.

3. Examination of Motor Controller
Reliability
The motor controller comprises power electronic
components and a protective housing shell. Given that
the protective housing shell is inherently dependable
and has minimal in�uence on the motor controller's
reliability, it will not be a focal point of our
subsequent investigation. The motor controller
encompasses bus-bar capacitors, a control module, a
driver module, a discharging module, a
communication module, and IGBT. Recognizing that a
fault occurring in any of these components can
potentially result in motor controller failure. On one
hand, they absorb the energy generated by the drive
motor when power switching devices are rapidly
turned o�, particularly in emergency stop scenarios.

4. Novel Stochastic Distribution
Feeder Recon�guration Strategy
The novel DFR approach introduced in this study aims
to determine the most optimal radial con�guration
for the distribution network while scheduling the
provision of Vehicle-to-Grid (V2G) services by PEV
�eets within a dependable and secure framework. This
approach seeks to achieve several objectives, which
encompass reducing the expenses associated with
power exchange with the upstream network,
minimizing overall active power losses, lowering the
operational costs related to the aggregated PEVs, and
ultimately enhancing the reliability of the network.

qeios.com doi.org/10.32388/G7VHLA 5

https://www.qeios.com/
https://doi.org/10.32388/G7VHLA


5. Reliability Matrices Assessment
Reliability matrices are fundamental tools in the �eld
of reliability engineering and systems analysis. They
serve as structured mathematical models for
assessing the reliability and failure characteristics of
complex systems. These matrices typically comprise a
list of system components and their interconnections,
where '1' often signi�es a functioning or reliable
connection, while '0' denotes a failure or non-reliable
connection. Reliability engineers and analysts use
these matrices to evaluate the overall reliability of
intricate systems, where traditional analytical
methods may become unwieldy or impractical. They
allow for the calculation of important reliability
metrics like system failure probabilities, availability,
and mean time to failure. Reliability matrices are
widely applied in diverse industries, including
aerospace, telecommunications, manufacturing, and
critical infrastructure, where ensuring the reliability
and safety of systems and products is of paramount
importance. They o�er a systematic approach to
addressing the complex interactions and
dependencies that in�uence system reliability,
making them indispensable tools for risk assessment
and decision-making in design, maintenance, and
operations.

While the aforementioned calculation results have
indeed o�ered insights into the reliability of
individual components, they represent mere static
glimpses of the motor system's reliability. To address
this limitation, we proceed to assess the unreliability
indices for not only the drive motor and motor
controller but also the entire motor system. This
comprehensive evaluation of reliability aims to
provide a more holistic and dynamic understanding of
the motor system's dependability, incorporating the
insights gleaned from the preceding calculations.

6. Signi�cance of Review on
Reliability of Vehicle-to-Grid
Networks
This paper introduces an intelligent stochastic
framework designed for the automation of future
smart distribution grids as wind generation and PEV
�eets become more prevalent. The primary goal is to
utilize Distribution Feeder Recon�guration (DFR) to
minimize operational costs, enhance system
reliability, and optimize Vehicle-to-Grid (V2G)
provisioning by PEVs. Mobile and distributed PEVs
prove highly e�ective in facilitating energy

distribution across the network, resulting in reduced
grid operation costs and improved stability in the face
of renewable generation variability. The incorporation
of storage systems, whether stationary or mobile,
signi�cantly enhances the Average Energy Not
Supplied (AENS) metric. DFR plays an essential role in
reducing network costs and losses while enabling the
seamless integration of PEVs without additional
expenses, ensuring a reliable power supply.
Simulations reveal that applying the DFR technique
e�ectively reduces the total network cost under
various conditions. The optimization of our proposed
objective functions also enhances network voltage
security by minimizing maximum voltage deviations.
This approach showcases favorable impacts on other
critical targets, including bus voltage deviations.
Furthermore, our research demonstrates that the
evolutionary algorithm presented (MSOS) is
competitive with other well-known methods for
problem-solving and surpasses them in certain
aspects.

Conclusion
To ensure a more accurate assessment of the overall
reliability of pure electric vans' entire motor system,
this paper conducts an in-depth investigation into the
reliability aspects of both the drive motor and the
motor controller using a fault tree analysis approach.
Over time, as both the drive motor and motor
controller age, their reliability gradually decreases,
impacting their performance and safety. Regardless of
the service time, the motor controller exhibits lower
reliability compared to the drive motor within the
entire motor system.. The increased number of
electronic components leads to more intricate
connections, thinner wiring, and additional through
holes on the PCB, ultimately reducing the reliability of
the control module. When evaluating the reliability of
the motor system, it is imperative to address the
reliability issues in both the drive motor and motor
controller simultaneously. Focusing solely on the
drive motor's reliability can lead to inaccurate
predictions since the drive motor and motor
controller are logically interconnected and always
operate as a uni�ed system in electric vehicles.
Neglecting the reliability issues in the motor
controller can result in an underestimation of the
entire motor system's reliability. In an e�ort to
enhance the overall reliability assessment of power
systems that encompass both electric vehicles and
renewable energy sources, this paper conducts a
comprehensive exploration of reliability issues within
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the proposed system. The study leverages the
Innovative Incentive-Based Fuzzy Fault Tree Analysis
approach. Within this framework, fuzzy probability
scores for basic events and prediction analysis factors
for these events within the proposed system are
meticulously calculated. Additionally, a probability
analysis of fault occurrences is introduced to evaluate
the impact of each basic event on the top event. These
prediction analysis factors serve as a valuable tool for
assessing the real consequences of basic events on the
proposed system.
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