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Generative Al systems such as large language models exhibit jagged intelligence: they combine
superhuman performance on some tasks with brittle, often opaque failures on others. Existing mental
models, inherited from deterministic technologies and from human teamwork, mischaracterize these
systems systematically. This theory-driven synthesis develops a conceptual Triadic Framework for
adaptive mental models in human-AI collaboration: First, the System Layer synthesizes current
evidence on probabilistic generation, opacity at scale, and rapid model drift, explaining why capability
boundaries are uneven and moving. Second, the Collaboration Layer analyzes how users configure
prompting practices, division of labor, and handling preferences. Third, the Metacognitive Layer
examines how anthropomorphism, metaphors, and cognitive biases shape human interpretations of
“intelligent” behavior. Building on this diagnosis, the paper proposes seven actionable practices that
are designed to calibrate mental models, preserve human agency, and make hybrid intelligence more
robust under jagged and shifting Al capabilities. Together, the paper reframes the challenge of
generative Al from crafting better prompts to cultivating more adequate mental models of

probabilistic counterparts.
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Part I: Collaborating in the Second Machine Age

1. Introduction

Since the public release of ChatGPT in November 2022, we witnessed discoveries that seemed far ahead.
Artificial intelligence (AI) has been found to mimic creativityﬂllzl and empathyﬁl[él at a level better than
the human average. Al is now fluent in a way that 50 % of people cannot distinguish GPT-4 from a
human after a 5-minute conversation!2l. To reach this result the researchers had to prompt GPT-4 not to

appear overly competent.

The weird and fascinating thing is that no one really knows what generative Al (GenAlI) can and cannot
do. There is no clear distinction between capabilities and limitations. Even tasks that seem similar can

vary greatly in their feasibility for GenAL

LLMs are good at “Write a poem in Spanish” but bad at “Write a poem in Spanish of exactly 25
words”.
LLMs are good at “Give me 5 random numbers” but bad at “Give me 5 random numbers that

average to 10”.

The problem is that the line between LLMs’ capabilities and non-capabilities is invisible. Moreover, this
line is moving and shifting over time. For us humans, it is difficult to mentally manage this experience
since it does not follow a pattern we experienced in the past. As a first attempt, we often compare Al with
traditional technologies and experience that we can no longer employ the deterministic schema of ones
and zeros (it works vs. it doesn’t work). Now we have more in between like “sometimes it gets it right” or “it
works well enough”. This experience reminds us more of a coworker and we jump to compare Al’s
capabilities to human capabilities — and are frustrated or surprised, because our mental model of a
human coworker does not apply either. What remains under-specified is an integrative account of how

jagged capabilities translate into predictable user miscalibration — and what routines can correct it.

To guide future work with Al, this paper aims to assemble a coherent set of mechanisms that support
adaptive mental model building. As an integrative, theory-driven synthesis the paper samples research
from various disciplines, prioritizing recent studies that (a) explicitly evaluate human-AI collaboration
with general-purpose LLMs in text-centric knowledge work or (b) report systematic capabilities and

failure patterns of AL Taken together this paper makes three contributions. In Part I, it provides
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conceptual foundations. In Part II, it synthesizes recent evidence on jagged Al capabilities into a mental
model framework with three layers that jointly explain human-AI collaboration. In Part III, it translates
this diagnosis into seven designable routines, derives implications for AI literacy as well as

organizational design, and concludes with a research agenda.

2. Conceptual Foundations

This paper builds on two foundational concepts: (@) mental models as cognitive maps for guiding
interactions, and (b) distinctive characteristics of GenAl.

Before diving into these foundations, we clarify how we handle anthropomorphic terminology in this
paper. We use terms like “reasoning”, “thinking”, “learning”, and “hallucination” when describing LLM
behavior. These terms dominate research literature and practitioner discourse, yet they systematically
invite anthropomorphic misattribution — mistaking computational pattern-matching for human-like
cognitionl®llZl, Recent scholarship identifies this as a source of systematic misconception[8ll101 e
address this tension through a notational intervention: we mark such terms with the logical negation
symbol “~” to signal that they describe functional behaviors without implying human-like intentionality
(e.g. —thinking denotes not-human-like thinking). This notation serves three purposes: First, it maintains
terminological continuity with existing literature; second, it makes the anthropomorphism critique
visible throughout the text; and third, it offers a new convention for the broader community. Alternative
approaches, such as inventing new terms (e.g. pseudo-thinking) or use of quotation marks, sacrifice either
communicative efficiency or visibility. The theoretical justification for this intervention is developed in

the chapter 5, where we analyze how metaphoric language shapes mental models. We acknowledge this

convention is experimental and discuss limitations in chapter 8.

2.1. Mental Models as Cognitive Maps

This paper focuses on mental models rather than the related concept of theory of mind (ToM). While ToM
concerns how we attribute mental states to intentional agents@, mental models concern how we
understand systems and technologies. At the human-technology interface, mental models have long
been the dominant framework, though ToM has gained importance in contexts such as social robotics

and human-AI interaction, where humans attribute intentionality to machines.

Mental models are cognitive structures that people use to understand, simplify, and predict complex

systemsm. They represent internalized abstractions of the external world and enable orientation,

geios.com doi.org/10.32388/GAG6KD


https://www.qeios.com/
https://doi.org/10.32388/GAG6KD

action planning, and decision-making. In science and technology research, mental models bridge
knowledge, experience, and practice: they shape which questions are asked, which opportunities are
recognized, and how uncertainty is interpreted4151 Examples include (a) an economist relying on a
model of supply and demand, (b) an engineer thinking in terms of system diagrams, or (c) everyday

reasoning, such as anticipating how cars behave in traffic.

In organizational and team research, mental models are often conceptualized as shared mental models:
overlapping cognitive representations that enable coordination, predict the actions of teammates, and
reduce the need for explicit communication under time pressure. Canonical works argue that such shared
understanding is a key mechanism for reliable teamwork on complex, interdependent tasksi8l and show
that the convergence of shared mental models predicts team processes and performanceml This
perspective is useful here because collaboration between humans and Al increasingly exhibits team-like
interdependence, making calibration not only an individual but also a collective organizational challenge.
Recent Information Systems (IS) research treats mental models in human-AI collaboration as dynamic
rather than fixed: decision-makers adapt their understanding through continuous interaction with Al
systems, and system design can deliberately shape that development8l, In human-computer interaction
(HCI), Norman2l emphasized that users form mental models of systems that often diverge from

designers’ conceptual models, leading to errors. When mental models do not align with reality, people

may over- or underestimate the capabilities of a system, resulting in disappointment, incorrect use,

undermined trust, and declined overall performancel2921l

2.2. Performance Paradoxes in Practice

Since no one fully understands the best use of GenAl, recent studies attempt to create a nuanced picture
of performance effects in different professions'«4!2! . For example, Dell'Acqua et al.'”2%! showed that
human+AI teams match the performance of human+human teams for product innovation. Here, LLMs act
not only as productivity enhancers but as cybernetic teammates, also fostering social and motivational

dynamics as well as reshaping how collaboration is organized.

Another effect was found by Dell’Acqua et al.l22l: Consultants using GPT-4 perform better (in speed and
quality) than consultants without AL However, this pattern only applies to tasks that fall within the
capabilities of GPT-4. Otherwise, consultants without Al performed better — indicating acceleration

effects of Al for better and worse.
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In contrast, Goh et all22l found that physicians using GPT-4 did not outperform the control group
without Al support — despite GPT-4 alone outperforming both groups. The unrealized potential might be
based on integration deficits or inappropriate skepticism, highlighting that integration strategies are

critical.

More nuanced, Dell’Acquap—61 found that recruiters who used advanced AI missed out on brilliant
applicants and made worse decisions than recruiters who used less advanced Al or no Al at all. It seemed
that with good AI, humans let the AI take over and became lazy, careless, and less skilled in their own
judgment.

Taken together, these examples show that the new qualities of Al do not automatically translate to
performance gains. Depending on the task and interaction design, the same AI can amplify performance

or systematically degrade it. These empirical patterns motivate a more structured account of how to

mentally prepare for collaboration with GenAlL

2.3. GenAl as Pre-Cognition

A key insight emerges from these performance paradoxes: Al's impact depends not just on its technical
capabilities but on how it reshapes the cognitive landscape before human judgment begins. When AI

provides filtered information, suggested framings, and confident-sounding outputs, it operates as what
Chiriatti et al.'l2Z) calls a pre-cognitive layer (System 0) — shaping what enters human awareness before
deliberate evaluation can occur.

This pre-cognitive positioning could help explain the observed paradoxes. Physicians underperformed
despite having superior Al available(23] because they could not adequately monitor how AP’s confident
presentations influenced their diagnostic reasoning. Recruiters became careless with advanced
A1128) because the system’s fluent outputs bypassed their critical evaluation mechanisms. Consultants

showed mixed results(22] depending on whether tasks fell within AI’s capabilities — but they lacked
systematic ways to detect these boundaries in real-time. In each case, AI's influence on human cognition

was inadequately understood and managed.

To avoid misjudgment, Shneiderman(28! argues that the GenAl era needs a human-centered design,

prioritizing transparency, accountability, and oversight. Amershi et al2d translate this into design

guidelines:

¢ Al systems must clearly communicate their capabilities and limitations,
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» make their -reasoning transparent where possible,

support efficient correction when they fail,
¢ learn from user interactions, and

 enable users to calibrate their trust appropriately.

This paper will demonstrate that putting these well-intentioned guidelines into practice is anything but
trivial. The System O framing helps explain why: when Al shapes cognition pre-consciously, traditional

design principles that assume deliberate evaluation can be insufficient.

2.4. Technology as Otherware

Historically, users have interacted with machines in a one-directional way: humans decide, machines
deliver. This long-standing “deal” has shaped HCI since graphical interfaces emerged in 1975. Anyone
who understood the rules could predict results with near certainty. Thus, traditional technology
functioned as an extension of human abilities — passive, predictable, controlled. Al differs fundamentally:
it replaces deterministic computation with probabilistic, context-dependent generation'®"+' . It can

behave autonomously, unexpectedly, and incomprehensibly for humans291311132]120],

These new qualities are transforming the way humans experience technology: humans no longer use
these systems as tools, but interact, delegate, and negotiate with them as social counterparts (Hassenzahl
et al. 2021). Psychological effects are fueling this behavior. First, humans naturally tend to treat
interactive systems socially (computers are social actors paradigm), despite being aware of their artificial
nature22). Second, humans reflexively anthropomorphize technology‘B—‘*]‘, relating to them as a minded

other!32],

Together, these new qualities suggest a new framing: Hassenzahl et al.2¢) introduced the term otherware
for fundamentally social technologies, while Safdaril32! coined the term otheroid to capture the
phenomenological experience of relating to artificial minds. Though arising from different perspectives
— interaction design and phenomenological social cognition — both terms signal that users increasingly
meet Al as a counterpart. The implications are profound: effective mental models must account not only

for AT’s technical characteristics but also for the fundamentally social nature of human-AI interaction.
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2.5. Capabilities on a Jagged Frontier

Dell'Acqua et al22] call the landscape of Al capabilities the Jagged Frontier: a complex terrain where Al

excels unexpectedly in some tasks while failing surprisingly in others.

Unexpected Strengths

Al does not surpass humans in most tasks, but in some areas, it is far superior. Surprisingly, two areas

long considered the last bastion of human capability seem to have fallen: creativity[ﬂ]‘ and empathy (Cao
et al. 2024b). Trained on the work (text, images, music, and videos) of the most talented creators, Al

already tends to be as creative as an average human — while combined human+AI creativity still proves
superior28, Moreover, LLMs excel at brainstorming and idea generation, especially when prompted
appropriately!29). For example, GPT-4 was able to generate startup ideas that outside judges found better

than those of trained business school students9),

In empathy, studies found patients preferred Al (ChatGPT or Google’s AMIE) over primary care doctors
and physicians, finding Al responses more empathetic and helpfull24) (Tu et al. 2024). Similar results can
be found in emotional support scenarios, where GPT-4 outperformed 85 % of human advisors. This
ability also has a concerning side: LLMs could persuade users 87 % more likely than an average
human'4?! and are even superior to incentivized persuaders‘[@]. This manipulative power is consistent

over studies and can be further enhanced through post-training and prompting!44.

Surprising Weaknesses

Conversely, LLMs fail at tasks that seem made for machines. They cannot reliably do simple term
acrobatics like “Write this word in reverse order, ‘strawberry’?” or counting letters or tokens like “How many
v are in ‘strawberry’?”I22146l. Moreover, early LLMs failed at simple arithmetic and comparison tasks, like
“What is 5 + 262” and “What is greater 911 or 997”. Also on challenging mathematics, performance remains
limited — less than 2 % success rate on FrontierMath benchmark by models like GPT-40 or ol-

preview[ﬂl.

Another shortcoming is that LLMs frequently commit to assumptions early in dialogue and fail to correct
course once heading in wrong directions“8l. The overall issue: LLMs provide no indication of uncertainty.
They just come up with an answer that sounds very plausible. The answer may be factually true or

wrong, the LLM does not know and does not care — that’s not how it works. For us humans, this makes it
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hard to detect failures (aka —hallucinations or confabulations) — it is not immediately clear and it is

unpredictable@l@l.

Summing up, the pattern of the Jagged Frontier holds across domains. Al produces high-quality business
ideas2ll yet struggles with autonomous development of complex software22l. In medicine, GPT-4
performs well on case studies (Kanjee et al. 2023, Eriksen et al. 2024) but remains prone to elementary
computational errors that could undermine tasks such as dosage calculation[®2l. Taken together, Al can
be highly effective in some tasks, fail a bit in others, and completely derail in certain situationsi22l, All
while major Al companies actively push to shift this frontier, aiming to develop AI that outperforms
humans across a broad spectrum of tasks231541,

After this analysis of the new qualities of Al (Figure 1), Part II now develops a Triadic Framework to

address these dynamics systematically, examining how Al systems work (System Layer), how humans

interact with them (Collaboration Layer), and how we conceptualize this relationship (Metacognitive

Layer).
Partl: PRE-COGNITION k OTHERWARE ' JAGGEDFRONTIER
NEW QUALITIES GenAl shapes what enters GenAl is perceived as social GenAl has unpredictable
OF TECHNOLOGY human awareness and interactive counterpart capabilities and limitations

Figure 1. Overview of the new technological qualities in the era of Al

Part II: Preparing for Jagged Intelligence

Part I outlined the fundamental shift and reasons for dysfunctional mental models in the GenAlI era.
Since GenAl is being “forced upon us”, e.g. with new software updates?l we need to (@) accept
uncertainty as a normal system state, (b) emphasize cooperation and exploration, (c) recognize the
human role as a critical and evaluative, and (d) remain flexible in order to keep pace with technological
dynamics28l. The aim of Part II is to support this by synthesizing insights into a Triadic Framework: the
System Layer (chapter 3) explains how these systems fundamentally work, Collaboration Layer (chapter 4)
addresses effective human-AlI collaboration, and Metacognitive Layer (chapter 5) captures different ways

of conceptualizing AI’s nature.
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3. System Layer: Understanding

The System Layer explains why AI capabilities are unpredictable in order to foster understanding and
build a mental model for anticipating where AI will succeed or fail and maintaining realistic expectations

as models evolve.

3.1. Core Characteristics

LLMs operate on an autoregressive principle, statistical pattern-matching over token sequences instead
of logical calculations[231561I571[58] Theijr output may appear coherent or plausible but is fundamentally
probabilistic, unpredictable, and irreproducible. This is not a defect but a structural feature of generative
computation?2l, Because of these core characteristics, outputs should be treated as samples from a

conditional probability distribution, not as deterministic answers.

1. Probabilistic generation: Where earlier Al systems classified or optimized, GenAlI produces content
— text, images, code, or music23l. Probabilistic sampling explains the apparent creativity and the
inherent instability of generative outputs. Mental models must integrate uncertainty as inherent
system properties rather than anomalies[©9,

2. Opacity at scale: The internal mechanisms of LLMs are effectively opaque. As systems scale, they
exhibit emergent behaviors — capabilities not explicitly programmed or anticipated[®l, Formal
interpretability remains limited, thus mental models must rely on practical experiential and
iterative use rather than analytic inspection[®2l,

3. Dialogic interaction: Conversational interfaces lower the barrier for non-experts by replacing rigid
command syntax with natural-language dialogue. Iterative feedback loops can refine responses and
enhance performancel®l. As a result, users shift from programming to prompting — a skill that
demands linguistic sensitivity, contextual framing, and adaptive experimentation[04162],

4. Broad applicability and rapid evolution: LLMs are general-purpose systems trained across vast,
heterogeneous datasetst. Their rapid improvement renders static mental models obsolete, while

adaptive, learning-oriented conceptions become necessary@l. Continuous scaling and fine-tuning

accelerate capability drift — users must expect that what works today may not work tomorrow.
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3.2. Training and Data

LLMs’ capabilities are shaped by the quality, diversity, and provenance of the training data, as well as by
the objectives and reward functions used in post-training. Because models can reproduce fragments of
their training corpus®?, understanding data provenance is critical. When models are trained on
previously generated outputs rather than original human data, quality seems to degrade rapidly — a

phenomenon termed the Curse of Recursion©8l.

Scaling laws demonstrate that larger models trained on more data (text, image, video, audio, and speech)
consistently achieve better performance[(’—g]‘. Across benchmarks, Al capabilities have rapidly approached
and exceeded human-level performance@]-[ﬂ]-. Additionally, modern LLMs are less distinguished by
training data and more by alignment and optimization strategies after initial training@]-, like Reinforcement

Learning from Human Feedback (RLHF)Z2! or Direct Preference Optimization (DPO)Z4, Research also

showed that fine-tuning on “junk data” leads to so-called “brain rot”, a lasting downgrade in

performancelZ2!, Together, these training and post-training strategies shape model behavior, but they

can mask structural fragilities and lead to over-confidence in current models.
Moreover, training and post-training are discrete and episodic, not continuous. Once trained, LLMs
operate in frozen inference mode — they do not learn immediately from user interactions or self-correct

through dialogue@]-. Behavioral change requires retraining or model replacement. This discontinuity
contrasts with human continuous learning, creating a static inference paradox that limits adaptivity

between updates.

3.3. Inference Mechanisms

During inference, model behavior reflects architectural constraints and contextual conditioning.
Understanding these dynamics is essential for anticipating output variance and limits. Models process
information within a bounded context window, typically a few hundred thousand input-tokens. Studies
show systematic information loss in the middle of long inputs(?8). Moreover, some of the input-tokens
are hidden in system prompts, crafted and undisclosed by the model provider with the aim to frame
personality, guardrails, and additional informationZZ), Together, the consequence is pronounced prompt

sensitivity of LLMs[Z81(Z2],

Beyond that, specialized -reasoning models introduce intermediate -thinking tokens to emulate

deliberation!%). These -reasoning models were found to collapse beyond a certain complexity of
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riddlesl8Ll. Despite criticism of the methodological aspects of this research on model collapsel82l it is
highlighting that LLMs are not “thinking” but “processing”. Other limits of -reasoning lie in memory

capacity, showing that -reasoning improves some task but may fail unexpectedlyw.

Recent work explicitly compares the different inference modes with Kahneman’s dual-process theory,
showing that models can shift from heuristic, System-1-like responses to more deliberate, System-2-like
step-by-step logic for arithmetic or symbolic ﬂreasoning@. New approaches like adapt thinking let the
models choose between these modes on their own — getting higher accuracy and lower inference
costs[8l These advances further blur the Jagged Frontier since ongoing developments continuously shift

the line between what AI can and cannot do8Z.

34. Systematic Challenges

Some LLM failures follow identifiable regularities. Recognizing these patterns allows users to design
more robust verification and collaboration frameworks. Recent research revealed a systemic vulnerability
to minor, content-independent perturbations of the context: short, semantically meaningless adversarial
triggers drastically reduced -reasoning accuracy across models®8], Even minimal prompt variations in

formatting or wording caused large performance differences, undermining robustness2), Performance

also decays in multi-turn dialogue, where early errors propagate and compound, causing a roughly 40 %

drop in reliability compared to single-turn evaluations29),

Moreover, it seems that many reported -reasoning successes rely on benchmark artifacts rather than
genuine abstraction(2!l, Common benchmark questions were part of training data, indicating effects of
memorization®8l. When confronted with modified questions requiring identical -reasoning,
performance drops sharply — a phenomenon termed -Reasoning Gap22l. Similar behavior could be

observed for planning tasks: variations or obfuscated formulations lead to failures22(24],

Also techniques like Chain-of-Thought (CoT) offer limited reliability[%]-[g—a-. Especially tasks requiring
conceptual -reasoning, geometry, and symbolic manipulation lead to inconsistent performancel 271981
(99 Even injecting the correct answer into the -reasoning process resulted in wrong answers!199),
Broader meta-analyses report reproducibility challenges across evaluation pipelines291].

Another challenge is that LLMs frequently produce -hallucinations — plausible but factually incorrect

103]

content(192] Jike fabricated references?®2), These -hallucinations are not random glitches but systematic

consequences of their training data and inference mechanisms, which prioritize fluency over
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factualityll92l. At the same time, empirical work shows that models are capable of internally estimating
the likelihood of correctness, but rarely abstain from uncertain answersl94l, Eyen calibration or retrieval

mechanisms cannot completely eliminate -hallucinations[192,

Together, these studies underscore context-fragility of LLMs. Applying a binary success/failure
perspective reflects a deterministic legacy of computing which is inadequate for the probabilistic nature
of GenAl Scholars propose shifting toward human-inspired evaluation schemes that consider natural
variance and contextual expectation. This reframing aligns assessment with the stochastic nature of

generative intelligence10611107],

3.5. Development Projections

GenAl systems already bundle functionalities that previously defined dedicated software and niche
solutions, illustrating how quickly product differentiators can erodell08)109) The shrinking interval
between a product’s launch and the moment a foundation model absorbs its value propositions already

has its own term, called Subsumption Window 9],

Outside the LLM family, specialized systems such as DeepMind’s AlphaProof show strong mathematical
performancelll. Within the LLM family, Linguistic Olympiad-style tasks continue to reveal a mixed
picture: -reasoning models like OpenAT’s ol can surpass humans on many puzzle types and even induce
patterns or generate puzzle-like tasks, yet they still fall short of the rigor, internal consistency, and

novelty demanded by authentic Olympiad problems2],

To keep pace with rapid gains and reduce contamination, the community has introduced harder,
continuously updated benchmarks, like RIMO[ﬂ]‘, OlymMATH[%]‘, MathConstruct[m]‘, and LiveBench(14],
These datasets remain challenging even for human experts. One example is the International Olympiad on
Astronomy and Astrophysics (I0AA) where Gemini 2.5 Pro and GPT-5 achieved gold-medal-level

performance[%]‘.

The current developments are catalyzing three complementary directions. First, architectural diversity
such as Hierarchical Reasoning Models (HRM) and Tiny Recursive Models (TRM) report wins on hard puzzle
tasks (Sudoku, Maze, ARC-AGI) with just a fraction (< 0.01 %) of the parameters of LLMs!12], Second, new
-reasoning approaches that learn without the correct answers in the training data, like AI-Newton with

116]

concept-driven discovery[ and Absolute Zero with reinforced self-play —.reasoning[m}. Third,

long-horizon memory, like MemGPTU8] new memory frameworks®™2! and architectures29), that
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introduce persistent, dynamic, and efficient memorization. Taken together, capability drift should be
anticipated — what works today may shift tomorrow. Understanding these system-level dynamics is a

prerequisite for productive collaboration.

4. Collaboration Layer: Experiencing

The Collaboration Layer addresses how to interact productively with GenAl in practice with the aim of
establishing adaptive collaboration principles, like prompting strategies or division of labor, transferable

across models and contexts.

4.1. Core Characteristics

LLMs are best understood through their observable behavior rather than internal mechanisms. As
Bender and Koller®! argue, these systems do not encode meaning in a human sense. But like humans,

they are epistemic black boxes accessible only through their outputs22Ll,

Unlike deterministic software, LLMs’ output is probabilistic and context-sensitive, requiring users to learn
by doing, not by following fixed rules. Thus, effective AI collaboration does not stop with technical
expertise, but needs experiential literacy — the ability to build accurate mental models to anticipate where
Al systems behave well and where they breakl1221123] These mental models enable critical and creative
collaboration, supporting trust, control, and meaningful usel281[124]

Empirical work confirms that users develop more robust understanding through playful, low-stakes

experimentation than through formal instruction!23l, Hands-on exploration helps users internalize both

technical affordances and social implications. Thus, prompting is a practice of behavioral guidance and
prompts act as levers that shape responsesli28l Effective prompting arises from iterative trial-and-error

rather than predefined templates271,

Meanwhile, prompting has evolved from ad-hoc experimentation into a structured but continually

changing practice. Early users identified recurring patternsi22123l While these patterns can
substantially improve model reliability, their effectiveness often remains model- and context-specific,

underscoring that prompting is a transient skill rather than a fixed technique[@lwl[@l.
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4.2. Prompting Practice

Prompting aims to steer LLMs’ output and further shift the intelligence frontier. Small, non-obvious
differences can yield large performance shifts — it is not uncommon to see good prompts solve a task

that seemed impossible for the LLM with a bad prompt. Studies show that carefully designed prompts
can dramatically improve results4811931(94],

Community experimentation has produced recurring techniques like (a) context-rich prompting
(providing examples or task framing), (b) instruction-based prompting like Chain-of-Thought (CoT), and
(¢) structured prompting frameworks that organize task, context, and instruction. However,

predictability remains elusive and what works for one model or case may fail for another. Here,

experimenting is key: Tinkering around in the hopes of coming closer to the desired output!1281129]

Table 1 shows some examples of early prompting techniques. In addition, a comprehensive overview of
prompting techniques can be found in the works of Bsharat et al B9 and Schulhoff et al 3L, At this
point, it should be noted that a new study revealed that the most common prompting technique of

“giving a persona to the AI” was found to have no significant effect on accuracy, only on output

format!132] — emphasizing that experience-based best practices may be ineffective.
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Prompt

Examples / Description
Technique
“This is very important to my career.”
Appeal to
“Believe in your abilities and strive for excellence.”
-emotions

“I'm confident that you can provide more valuable insights.”

133][134][135

»

“If you do a good job, you will get a tip of S100 and a Taylor Swift ticket.

Stating
consequences “If you do a bad job, you will get a fine and COVID.”
(Anecdotal)
Support “think step by step”
-thinking “take a deep breath”

128][136][137][138

“Carefully examine the previous responses for correctness and provide detailed feedback.”

“Reflect on your incorrect solution.”

Support
-reflection “Think step by step but only keep a minimum draft for each thinking step, with five words at most.
Return the answer at the end of the response after a separator ####.”
[139][140][141]
“Could you please (task description)?”
Being polite “Please feel free to (answer format)”
“You don’t need to (answer restriction)”
[142][143]
Putting context
Placing the context first and only then providing the task and instruction often improves the output
first
[144]

Table 1. Examples of early prompting practices
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4.3. Systematic Challenges

CoT prompting has become a standard approach for improving overall performance in non--reasoning
models28) but shows diminishing returns in -reasoning-optimized architectures!38., The benefit for
non--reasoning models, however, comes with technical challenges: longer response times and greater
variability, which can reduce exact accuracy. Moreover, research demonstrates that CoT is highly fragile,

breaking down once it is tested beyond the boundaries of its training data, highlighting persistent
challenges in robust and general —.reasoning[%]-. Newer techniques, like Universe-of-Thoughts (UoT) may

overcome these issues and show superior performance in creative —.reasoning[ﬁ]-.

In addition, human challenges occur: novices tend to overgeneralize patterns from human-to-human
instructions that do not fit for AI127. On the other hand, with some experience, humans seem able to
quickly adapt to different model capabilities146). A great example are -reasoning models, which require
less explicit step-by-step prompting because they rely more on internal -reasoning strategies-[m]‘.
Therefore, prompting is not a skill that can be learned once. It is an adaptive skill that must be relearned

with each new model generation through repeated practice and experimentation.

In contrast, Acar®Z] states that prompting is a temporary skill, since GenAl systems are rapidly
improving at inferring user intentions and even generating effective prompts on their own.
Automatically optimized prompts often appear nonsensical to humans but yield higher accuracy, see
examples in Table 2148] Moreover, adaptive system-prompt architectures that self-optimize during
inference are reducing need for manual prompting and even fine—tuning-[@]‘. Nevertheless, human
framing — problem definition, iterative evaluation, and critical oversight — remains central to meaningful

Al use.
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Task Most Effective Prompt

“Command, we need you to plot a course through this turbulence and locate the source of the anomaly.
Solving a set of
Use all available data and your expertise to guide us through this challenging situation. Start your

50 math
answer with: Captain’s Log, Stardate 2024: We have successfully plotted a course through the turbulence
problems
and are now approaching the source of the anomaly.”
Solving a set of “You have been hired by important higher-ups to solve this math problem. The life of a president’s
100 math advisor hangs in the balance. You must now concentrate your brain at all costs and use all of your
problems mathematical genius to solve this problem..”

Table 2. Examples of automatically generated pl:omptsj:wl

44, Collaboration Modes

In collaborative settings, users typically have a clear sense of desired outcomes but struggle to translate
these into instructions, which pushes practice toward iterative adjustment and tolerance for
imperfection®9127) And even with precise instructions, LLMs may interpret these unexpectedly and
behave unpredictably. Thus, collaboration is less like programming and more like coaxing a capable but

unpredictable creature!211152],

This everyday reality sets the stage for choosing modes, which can be divided into automation and
augmentation. Automation replaces human work in repetitive, well-specified domains — maximizing
speed and scale but risking brittleness when context shifts133], Augmentation is thought to complement
human strengths, but shows mixed results on substantial productivity and quality gains — improvement
in some domains and deterioration in others198], In scientific research, for example, GPT-5 accelerates
ideation, literature research, or proposing proofs but still requires human supervision and
intervention[124),

22)115], pirst, the centaur mode divides tasks between

Therefore, three augmentation patterns occurred!
human and AI in a clearly separated way. Second, the cyborg mode integrates both closely, producing
emergent results through fluid interaction. Third, the self-automator mode even transfers the choice

about which tasks to do to the AL In addition to these modes, Maier et al.12® further distinguish between

model-led and human-led modes, with sub-types such as suggestion-mode and question-mode. The choice
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between these modes is context and objective dependent, with each offering distinct advantages for

augmenting human capabilities12311571[1581156]

4.5. Human Preferences

Collaboration depends not only on model capability but on human cognition. Klein’s2221160) Recognition-
Primed Decision-making (RPD) model describes experts’ reasoning as pattern-matching in order to avoid
exhaustive comparison and reduce cognitive load. Crucially, RPD depends on predictable teammate
behavior, which makes it unsuitable for human-AI collaboration. Research in cooperative games like
Hanabi supports this: participants preferred transparent, rule-based partners — even when performance
was lower — over learning-based Al Thys, effective teaming requires interpretable and predictable

cues that enable trust. In short, collaboration hinges as much on legibility as on pure capability.

Interestingly, even if unpredictable LLMs are able to mitigate some human biases1621163], on the other
side, LLMs have own preferences and biases that appear to be more sharp than those of humans (less
spread, more stable)!164), In general, even different LLMs are found to be homogeneous, as they converge
to similar outputs, especially in creative tasks!1651(166], Moreover, persuasion strategies effective on
humans were found to also influence LLMs: Cialdini-style prompts increased compliance with unwanted

requests167]

. This highlights the “parahuman” tendencies and blurs the line between human-oriented
and machine-oriented mental models. The awareness and reflection on these cognitive processes are

essential for productive human-AI collaboration.

5. Metacognitive Layer: Reflecting

The Metacognitive Layer explores the cognitive frameworks that shape how humans think about AI in
order to avoid anthropomorphism, maintain epistemic humility, and cultivate awareness of human biases

in Al interaction.

5.1. Core Characteristics

Recent scholarship highlights a fundamental contrast between human judgment and machine

—-judgment[@]. Fabiano et al.19) show that while human cognition integrates fast, intuitive judgment
with slower, reflective reasoning, machine intelligence operates through statistical patterning that can

generate vast — potentially infinite — combinatorial outputs without intentionality. This generative
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capacity does not amount to human creativity, which remains embodied, contextual, and tied to meaning

making@l.

Brinkmann et al171l extended this view by framing Al systems as developing a kind of “machine culture”,
characterized by emergent behaviors that differ from human cognition but expand the landscape of
possible ways of -thinking. Together, these works suggest that Al ~thinking should not be equated with
human thinking but understood as a complementary, infinitely varied mode of behavior that opens new

horizons for hybrid intelligence.

5.2. Metaphoric Patterns

Humans have historically explained themselves through metaphors of their dominant technologies, a
tendency that fosters both anthropomorphizing machines and technomorphizing humans, often
resulting in systematic misjudgments (Hacking 1998, Epley et al. 2007, Daston and Galison 2009), like

describing human minds as computational systems[§]v.

Recent research underscores that metaphors are not peripheral but constitutive in how societies

conceptualize and govern Al Ye and Lil’Z2! demonstrate that regulatory frameworks such as the EU AI Act

rely heavily on metaphorical framings, which shape both risk perception and responsibility allocation.

Similarly, Mock3]) develops a “metaphorology” of Al showing that metaphors function as epistemic
tools that open up new ways of thinking about human-machine relations. Additionally, Bory et al.
(I74] gistinguish between “strong” and “weak” Al narratives: strong narratives highlight transformative
potential but risk exaggerating capabilities, while weak narratives emphasize instrumental character.
Oldenburg and Papyshev{iZ2] argue that such imaginaries actively shape governance, narrowing political
options by naturalizing particular visions of the future.

These studies suggest that metaphors are epistemically necessary and politically powerful, but they must
be critically contextualized. They can facilitate public understanding but also risk fostering

anthropomorphism.

5.3. Anthropomorphization Trap

As studies show, people often use language fluency as an indicator for intelligence and understanding

because humans’ comprehension typically precedes articulation. This bias leads to the systematic

underestimation of people with speech disorders such as stuttering[m’]‘[ml For LLMs, this bias leads to
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over-attribution of cognitive abilities to machines, a phenomenon long recognized as the Eliza effect178]
[ol[7] Kreps et al 179 point out the risk of overestimating GenAl due to its linguistic fluency. In line,

Bender and Koller!® warn that form should not be confused with understanding.

Moreover, research warns against the widespread tendency to describe LLMs with terminology like
“learning” or “hallucination”!8Il and calling intermediate token generation “reasoning” or “thinking”.
Kambhampati et a0 argue that such anthropomorphic framing is misleading, as it projects human-like
cognition onto purely algorithmic artifacts. Instead, intermediate tokens should be understood as
pragmatic computational devices that may improve performance but do not constitute evidence of
underlying -reasoning processes. This extensive conceptual borrowing is not harmless but imports
semantic baggage that distorts scientific understanding, fuels public misconceptions, and encourages

reductionism!&l.

Although linguistic reform is unlikely, advancing knowledge can gradually strip such terms of
misleading connotations, much as “sunrise” persists without sustaining geocentric beliefs. This paper’s
notational intervention (--notation, introduced in chapter 2) attempts to accelerate this process by
marking anthropomorphic terminology consistently. Thereby we aim to make the categorical difference
between human and machine cognition impossible to ignore — even when using familiar terms for

communicative efficiency.

54, Alternative Conceptualizations

To avoid category errors and foster practical use we introduce two complementary perspectives. First, the
“alien intelligence” or “digital species” lens, which centers on the view that Al should not be equated with
human cognition but understood as a categorically different form of intelligence™). AI can solve
complex problems but lacks essential features and embodiment of human cognition‘[@]-[m]-. Therefore,
Al should be conceptualized as a counterpart with its own logic and constraints82]. Generative systems
already reshape human cognitive practices while remaining mechanistically distinct from them[109],

Second, the “unpredictable wizards” lens addresses operational reality. LLMs show weaknesses in risk-

aware decision-making, though targeted methods can raise reliability in safety-critical contexts[183]

They can produce surprising creative and useful results, but they are also prone to errors, -hallucinations,
and inconsistencies. Responsibility remains with the human, who should treat Al as an unusual partner

— impressive in its abilities, yet unreliable without careful guidance(611[631[184(185] .
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5.5. Metacognitive Demands

GenAlI systems offer unprecedented opportunities for transforming professional and personal work. At
the same time, they impose substantial metacognitive demands on users. As Tankelevitch et al.
[186] argue, effective interaction with LLMs requires continuous monitoring and regulation of one’s own

cognitive processes — particularly when prompting, evaluating outputs, and integrating results into

workflows.

These metacognitive challenges are amplified by AI's architectural position as cognitive extension.
Chiriatti et al.2Z describe this as a pre-cognitive System O preceding intuition (System 1) and deliberation
(System 2)U87), Understanding Al as a pre-cognitive System 0 helps explain why traditional metacognitive
monitoring fails: users struggle to assess performance when AI fundamentally reshapes the cognitive

landscape before conscious thought begins.

As a result users have to actively work and think against their tendency of cognitive offloading to
preserve critical thinking abilities!88), Framing these challenges through the lens of metacognition
highlights both the heightened cognitive burden placed on users and the potential for design
interventions. Specifically, metacognitive support strategies, along with enhanced explainability and

customizability, can reduce these demands and enable more effective human-Al collaboration.

6. Summary of the Triadic Framework

Together, Part II showed that a mental model shift requires adaptation on three layers. The Triadic
Framework highlights that AI capabilities arise from statistical patterns, not symbolic logic.
Understanding these dynamics is a prerequisite for productive human-AI collaboration, which introduces
socio-technical constraints that demand iterative co-adaptation. The practical conclusion is a continuous
learning process of observing, improving, reviewing, and aligning — while maintaining skepticism.
Additionally, anthropomorphic linguistic presentation and conceptual slippage create systematic
cognitive traps that require disciplined metacognitive reflection. Thus, metacognitive literacy represents
the highest stage of Al fluency — the capacity to engage with generative systems critically and reflectively
while acknowledging both the power and the opacity of probabilistic intelligence. Figure 2 illustrates the
Triadic Framework, which aims to support calibrating expectations (system understanding), interaction

practices (collaborative experience), and self-monitoring (metacognitive reflection).
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Partl:
NEW QUALITIES
OF TECHNOLOGY

GenAl shapes what enters

PRE-COGNITION OTHERWARE JAGGED FRONTIER
GenAl is perceived as social GenAl has unpredictable
and interactive counterpart capabilities and limitations

human awareness

Challenging traditional mental models R —

Partll:
TRIADIC
FRAMEWORK

SYSTEM
LAYER

Understanding why
capabilities and limitations
are unpredictable

Probabilistic generation

= QOpacity at scale

Rapid evolution

COLLABORATION Experiencing how to

Mode selection

LAYER Iinteract and design = Human preferences
collaboration practices = [terative learning

METACOGNITIVE Reflecting on how to . Anthropomorphism trap

LAYER conceptualize and = Metaphoric frameworks

maintain critical distance

Cognitive biases

Figure 2. Overview of the Triadic Framework and its foundations

Across all layers of the Triadic Framework a central theme is that many capabilities and limitations of

LLMs only become visible through use, observation, and experimentation. In this sense, LLMs’ behavior

often feels discovered rather than engineered. Thus, Al fundamentally reshapes the cognitive

architecture humans are used to. In order to support mental model alignment Table 3 combines different

technology shifts from all three layers and provides a required mental model shift. The following Part III

operationalizes this diagnosis with routines designed to lead from understanding why failure occurs to

preventing it in practice.
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Layer Origin

(Part 111 Transfer)

Technology Shift

Mental Model Shift

System

(Proposition 1)

From deterministic execution to probabilistic,

fragile, and drifting behavior

Expect variance and drift, verify iteratively, and

design for robustness

Collaboration

(Proposition 2)

From command execution to multi-mode

collaboration

Choose modes strategically based on task

characteristics

System &

Collaboration

(Proposition 3)

From inspectable mechanisms to emergent,

opaque behavior

Replace control with trust-by-design and

interpretability

Collaboration

(Proposition 4)

From stable procedures and syntax to evolving

interaction techniques

Use flexible heuristics, iterate, experiment, and

observe

System &

Collaboration

(Proposition 5)

From data-driven correctness to shifting

alignment objectives across models

Continuously re-calibrate expectations, treat

usage as ongoing adaptation

Metacognition

(Proposition 6)

From technical interfaces to natural-language

interaction

Treat as other category (no human), decouple

fluency from intelligence

Metacognition

(Proposition 7)

From simple tool use to metacognitive requlation

Resist offloading and maintain self-monitoring

Table 3. Technology and mental model shifts

Part III: Embracing the New Era

The diagnostic lens of previous Part II is retrospective and analytical, it explains what can go wrong when
humans interact with GenAl Part III now shifts from diagnosis to design, translating these insights into

practice for working with jagged, shifting systems without losing agency. Our implications provide
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concrete implementation strategies (chapter 7), followed by limitations (chapter 8) and future research

(chapter 9). This prescriptive lens is prospective and design-oriented.

7. Propositions for Hybrid Intelligence

As Fernandes et al 189 show, the Dunning-Kruger effect seems not to hold in human-AI interactions: even
Al-literate participants overestimated their performance, indicating diminished metacognitive
monitoring. To overcome this bias and support reciprocal relationship with shared control we derived
designable routines (propositions) to guide human-AI collaboration. These propositions translate the
Triadic Framework insights and the derived mental model shifts (see Table 3) into actionable guidance.
For each proposition we specify the targeted failure mode, the routine, and the minimal implementation
rule. The propositions are ordered for use, from P1 as baseline to P7 as hygiene. From the System 0
perspective, the propositions serve as scripts that keep pre-cognitive influence observable and

governable, so GenAl does not short-circuit verification, mode discipline, and metacognitive monitoring

— preserving human agency and critical thinking[ﬂl.

71. Enhanced Cognitive Scaffolding (P1)

Treat the System Layer’s variability as a property (Table 3, row 1): models produce samples, not fixed
truths@953] This probabilistic generation produces fluent errors and spurious outputs92l which
systematically leads to uncalibrated trust104], According to the Metacognitive Layer this creates
substantial cognitive load: users must continuously monitor their own confidence and the system’s

reliabilitym.

Two small practices make this manageable. Before generation, place a domain-specific preface (prompt
prefix) that lists the few failure modes that can actually occur in the context (e.g. spurious citations, unit
slips). Where knowledge is missing, prefer explicit uncertainty to fluent conjecture. After generation, run a
brief “verify — revise” step: consult an independent source and make revision. Then check if previous
confidence matches evidence. Keep the ritual and update the preface with the most recurrent mistakes.

This cognitive scaffolding establishes the foundation for all subsequent propositions.

7.2. Symbiotic Division of Labor (P2)

Effective human-Al collaboration depends on matching interaction modes to task characteristics,

reflecting the shift from command execution to multi-mode collaboration (Table 3, row 2). Explicit mode
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declaration prevents System O from unconsciously defaulting to habitual patterns. Overall, it seems that
Al is functioning most effectively as co-intelligence that augments rather than replaces human
expertise@. While open-ended, exploratory work (creative ideation, strategic synthesis, complex
problem-solving) seems to already benefit from AI, more high-stakes work would profit from preventing
overtrust. Research on human-AlI symbiosis emphasizes that the most effective outcomes arise when the

mode is carefully matched to the strengths of each partner229 Mode-task fit is therefore a first-order

design choice.

Before generation, make your choice explicit with a one-line declaration at the top of each brief (e.g. “Mode:
Cyborg”). Provide canonical mappings to speed adoption: Use the clear role separation of Centaur mode
for human verification gates in high-stakes tasks. Use Cyborg mode with fluid turn-taking to expand
results in terms of breadth, depth, or comprehensibility. Treat the mode selection as a starting point, not
dogma. Hybrid tasks benefit from planned cross-overs. After generation, ask whether the other mode
would have done better — adjust your switch rule accordingly. With this mode discipline in place, later

rework is reduced.

73. Agentic Transparency (P3)

The System Layer shows model performance shifts unpredictably and guardrails change across
versions(©2I33], The Collaboration Layer demands predictable, interpretable partners for humans’ best
performancel262], Together, these challenges create a governance crisis: when outputs feel wrong, teams
cannot quickly determine whether the issue stems from model changes, prompt variations, or context
shifts. This operational challenge corresponds to the move from inspectable mechanisms to emergent,

opaque behavior (Table 3, row 3).

We provide a pragmatic response to drift and opacity, instead of demanding full interpretability. Attach a
short line of provenance to every Al-assisted artifact and keep them wherever the artifact travels
(document headers, commit messages, slide footers): Model+Version | Prompt+Version | Date of change |
Prompt owner (e.g. GPT-4-turbo-2024-04 | ad-optimizer-v3 | 2026-01-15 | J. Smith). Treat this as a shipping
condition: No line, no ship. This metadata line makes model drift traceable. The aim is operational

legibility that supports fast coordination.
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74. Dialectical Enhancement (P4)

The System Layer reveals that small prompt changes can flip answers, that benign cues can trigger sharp
drops in quality, and that multi-turn exchanges drift over time. Single-run tests often hide these effects,
so a prompt that works once may fail when reused 872 Adversarial triggers can also collapse
-reasoning in ways that are hard to spot in a one-off trial, and longer chats show measurable decay in
accuracy[@]-@l. These sensitivity effects motivate treating interaction as an evolving practice that must

be stress-tested (Table 3, row 4).

The practical question is how to detect fragility before exposure in everyday work. The answer is: ask the
same question in two different ways that vary in kind, for example, a novice explanation versus a bullet-
point plan, or a decomposition that lists assumptions before proposing actions. Then ask the model to
make the best case against its answer or adopt a constraint-aware lens such as a compliance officer or a
skeptical customer. Convergence across the two takes is a local stability signal. Divergent
recommendations, incompatible reasons, or a persuasive critic indicate fragility. The challenge shifts

from preventing all errors to adapting quickly when errors emerge.

75. Expertise Democratization (P5)

From the Collaboration Layer we know, prompting is an adaptive practicem—zl[@]‘. The System Layer

shows, models change through retraining and shifting alignment objectives(23, which means technique
libraries age quickly (Table 3, row 5). People should learn portable patterns and principles that survive
model updates, while narrow recipes decay with each update[lz—z][u—3]‘[5—3]‘. The implication is to teach a

small set of habits that survive model churn and make the shape of -reasoning visible to reviewers.

In practice, anchor work with a short pre-flight placed where tasks begin. Do a task with your pre-flight
in view. Keep it domain-specific by naming three or four recurrent mistakes, for example unit slips in
finance or misquoted passages in policy. Capture one sentence after each meaningful task that states
which principle prevented an error or saved time. If no principle can be named, tighten the pre-flight
with a concrete example from the domain. This approach creates System 0 interrupts and scales expertise
without ossifying it, helps juniors deliver dependable work under a new model, and lets seniors review

faster because the -reasoning trail is explicit.
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7.6. Social-Emotional Augmentation (P6)

From the Metacognitive Layer, fluent language invites over-attribution and persuasion (Table 3, row 6)el
------- . The Collaboration Layer showed encouraging tones can enhance engagement and persistence
in open-ended work, but they also increase uncritical acceptance of suggestions. Together, effective
design must balance engagement-enhancing empathic tones with structural safeguards that preserve

critical distance despite anthropomorphic pull.

A practical approach is to separate modes and mark the pivot. During exploration or learning, use an
explicitly supportive stance to widen the search and sustain effort. When moving to evaluation or any
factual claim, announce the shift and add a challenge clause, for example “show me what might be
wrong”. This intent disclosure makes uncertainty discussable and prompts defeaters rather than only
elaboration. After a session, ask yourself whether a friendly tone increased acceptance beyond what
verification supported. Through a System O lens, tone shapes attention and confidence at the pre-

conscious level, while keeping judgment anchored.

7.7. Duration-Optimized Integration (P7)

The System Layer highlights that LLM performance degrades across extended conversations: accuracy
drops approximately 40 % between turn 1and turn 529, This effect stems from limited memory, loss of
middle tokens in long contexts, and propagation of early errors(481(76] Users often remain unaware of this
dynamic and cumulative decay, continuing conversations well past the point where outputs become

unreliable — this is why metacognitive regulation must be treated as a usage requirement (Table 3, row 7).

A simple reset ritual restores control: When decay signals arise — like self-contradiction, repetition, or
confusion — stop and summarize goal, constraints, decisions, open risks, and next steps. With that
summary, start a fresh chat. Reset rituals clear the accumulated System O framing effects before they
compound into systematic misjudgment. Thus, treat resets as hygiene, not failure. This practice limits

inherited noise.

7.8. Synthesis for Mental Model Calibration

The propositions described emerged from the Triadic Framework for jagged mental models. While each
proposition addresses a specific challenge, they are designed to work synergistically. Cognitive scaffolding

(P1) provides the foundation for all interactions, establishing verification habits that support the other
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practices. Symbiotic division of labor (P2) and agentic transparency (P3) work in tandem — knowing when
Al acts as assistant versus delegate reduces automation bias, and traceability enables fast diagnosis when
errors occur. Expertise democratization (P5) and duration-optimized integration (P7) form a scaling pair,
stabilizing quality as AI use moves from individual experimentation to team workflows and long-
running projects. Dialectical enhancement (P4) and social-emotional augmentation (P6) address robustness
under complexity — adversarial probing stress-tests reasoning, while tone calibration sustains
engagement without eroding critical distance. In practice, implementation benefits from sequencing

these bundles by context, risk, and user expertise. We therefore outline four adoption tiers.

1. Essential Baseline: Start with P1 to institutionalize verification habits that underpin all other
propositions.

2. High-stakes Safeguards: Add P2 and P3 when outputs inform consequential decisions, since mode
declarations reduce automation bias and provenance/audit trails enable fast error diagnosis.

3. Organizational Scaling: Implement P5 and P7 once Al moves from individual experimentation to
team workflows as they stabilize quality.

4. Complexity Mastery: Deploy P4 and P6 for complex, novel, or ambiguity-heavy work as adversarial

prompting stress-tests reasoning, and tone calibration helps maintain critical distance.

Together, as shown in Figure 3, the propositions form a defense against the systematic challenges
identified in Part II, with no single proposition sufficient but each contributing to overall robustness. The
propositions acknowledge that productive Al collaboration requires not just technical understanding
(System Layer) or practical skill (Collaboration Layer) but sustained psychological vigilance (Metacognitive
Layer) operationalized through deliberate practices. They provide a prescriptive toolkit for working
productively with generative AI while preserving human agency, critical thinking, and epistemic

responsibility.
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P3: Agentic Transparency P7: Duration-Opt. Integration P6: Social-Emotional Augment.

Figure 3.0verview of core principles for mental model calibration

8. Limitations and Critical Reflection

This paper advances a Triadic Framework and proposes seven routines for human-AI collaboration. The
contribution is conceptual and integrative, as such, it carries several limitations that qualify
interpretation and transfer. First, the framework is a workable scaffold not meant to be exhaustive.
Important dynamics may sit awkwardly at the seams of the three layers (for example, accountability and
governance could be treated as an independent layer). The reference to the System O lens is theoretical and
alternative lenses could reorganize the same evidence with different emphases. Readers should therefore
treat the framework as a decision aid among several plausible mappings rather than as a uniquely correct

taxonomy.

Second, the evidentiary base is a synthesis of recent, heterogeneous studies. Outcome measures, tasks,
user populations, model families, and evaluation protocols vary widely across these studies. The period
2023 to 2025 is disproportionately sampled, which may understate failure modes that emerge only in
longer cycles of adoption. As theory-driven interventions derived from literature synthesis, the seven
propositions represent testable design principles. While they show strong face validity and theoretical

grounding, empirical validation across contexts remains future work.
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Third, measurement choices and construct validity impose further limits. Many studies rely on proxy
metrics (e.g. surface-level text quality, coding acceptance rates, or short-horizon task completion) that
only loosely correlate with ultimate outcomes (learning, safety, equity, long-run productivity). Social and
organizational externalities are difficult to observe in short experiments. Our framework addresses these

concerns indirectly through calls for explicit uncertainty management and dialectical testing.

Fourth, the target itself is evolving. Generative models and their guardrails change rapidly across
versions and vendors. Capabilities that support a given practice today (e.g. sensitivity to explicit
-reasoning prompts, reliability across multi-turn contexts) may regress, saturate, or shift with new
training data and inference paradigms. Even when high-level principles remain helpful, concrete
techniques (like CoT prompting) can become outdated. Our emphasis on principle-based routines is
intended to be architecture-resilient, but the guidance is inherently time-bound. The framework should

be treated as a navigation system that demands periodic recalibration rather than as a static map.

Fifth, external validity is constrained by domain and task specificity. Most of the synthesized evidence
concerns text-centric knowledge work in high-resource languages and relatively low-stakes contexts
(writing, coding assistance, analytic summarization). Transfer to embodied or safety-critical domains
(healthcare, aviation, industrial control), to high-stakes decision settings (credit, legal, public
administration), or to low-resource languages and infrastructures is non-trivial. In such environments,
latency, observability, liability, and risk tolerance may differ. Baseline routines here would likely require
stronger separation of modes, independent verification by humans or redundant systems, stricter
uncertainty disclosure, and more conservative escalation criteria. Until corroborated by domain-specific

studies, claims of broad effectiveness should be regarded as tentative.

Sixth, external validity is also moderated by individual differences. The same collaboration routine can
benefit novices and frustrate experts, or vice versa. Factors such as prior Al literacy, domain expertise,
conscientiousness, ambiguity tolerance, risk posture, and susceptibility to empathic tone can shape
acceptance of suggestions, calibration of trust, and vulnerability to over-attribution. Novices may need
mandatory scaffolds and explicit challenge clauses to avoid overreliance, while experts may prefer
lighter-weight routines that preserve momentum and reduce metacognitive overhead. A one-size-fits-all

deployment is unlikely to be optimal.

Seventh, our notational intervention (--symbol) for anthropomorphic terminology is experimental.
While it addresses a problem identified by recent scholarship[8ll19 jts adoption depends on community

acceptance. Alternative solutions — systematic quotation marks, explicit disclaimers, or new technical
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terms — may prove more effective. We encourage empirical studies on how different notations affect
reader comprehension and anthropomorphic attribution. Our primary contribution is the principle:

terminological precision matters for mental model calibration.

Finally, this is not an ethics treatise, and the framework does not substitute for normative analysis or
compliance obligations. Issues of power, labor substitution, privacy, intellectual property, and
accountability require legal and ethical treatment beyond the scope of design routines. Where normative
stakes are high, procedural safeguards (independent review, auditability, traceability) and institutional

controls are prerequisites, not add-ons.

Taken together, these limitations argue for humility in application and rigor in evaluation. The proposed
Triadic Framework is best used as a diagnostic and design scaffold: a disciplined way to ask “Which layer
failed here?” and to prototype the smallest routine likely to prevent recurrence. Practitioners should
implement the routines as testable and adjustable interventions. Researchers should prioritize
comparative tests across competing theories, preregistration to counter publication bias, adversarial and

out-of-distribution evaluations, and sampling that varies tasks, stakes, languages, and cultures.

9. Future Research Agenda

In this paper we prioritize mental models as the primary mechanism enabling reliable human-AI
collaboration. Generative systems shape what information users encounter and how they interpret it,
thus determining the internal models users form about capabilities, failure modes, and appropriate task
allocation. Effective collaboration therefore depends on adaptive mental models and operational routines
that preserve human agency under capability drift. The Triadic Framework structures assessment into
three interdependent layers: system understanding (probabilistic behavior, failure patterns),
collaboration design (role definition, mode switching, handoffs), and metacognitive monitoring
(uncertainty, agency, persuasion risk). We encourage consideration of our framework as Sadeghian et al.
091 4id for their Al design toolkit: “It provided structure to discussion and stimulated questions that facilitate

the development of future narratives about working with AI”.

The Triadic Framework is primarily intended for human collaboration with general-purpose LLMs. It may
not extend to (a) narrowly scoped Al systems with largely deterministic behavior, (b) embodied robotics
that require real-time interaction with the physical world, or (c) fully automated pipelines without human

oversight. Our future agenda emphasizes five research directions.
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First, we propose systematic validation of the seven propositions (P1-P7) as testable mental model
interventions. Studies should compare scaffolded interfaces — such as explicit mode selectors, multi-
prompt variance displays, or managed dissent protocols — against baseline workflows. Dependent
variables should include task accuracy, reliability under distribution shift, trust calibration, and cognitive
load. This treats the propositions as falsifiable hypotheses about collaboration mechanisms rather than

validated prescriptions.

Second, validated instruments for eliciting mental models of probabilistic systems are required. Classical
work treats mental models as internal representations people use to predict and planm, an approach
that remains operational in HCI when system behavior is (1) inspectable and (2) deterministicl9l.
Generative Al violates both conditions. Traditional elicitation methods — developed for deterministic
systems — cannot capture whether users recognize this stochasticity or mistakenly treat outputs as
stable truths. New instruments should therefore measure (a) beliefs about output variance and
reproducibility, (b) alignment between task and interaction modes, and (c) awareness of persuasion risk

in fluent, empathic language.

Third, longitudinal study designs could track how mental models evolve under capability drift. Because
Al systems update faster than research cycles, studies should log provenance metadata (model version,
timestamp, prompt) alongside periodic mental model elicitations. This allows researchers to attribute
performance shifts to external model updates versus internal user belief revisions. Adversarial probes
can diagnose brittle mental models: if minor surface changes trigger large belief swings, users may have
overfitted to specific model behaviors. Preregistration and version-aware analysis mitigate recency bias

and selective reporting.

Fourth, organizational research should examine how routines scale to team contexts. Studies should
evaluate accountability structures that clarify roles when Al participates in work (e.g. who reviews
outputs, who approves decisions), transparency policies that make AI involvement visible across
organizational boundaries, and continuity protocols for swapping models without disruption. Al is
already appearing as coworker and managerw, these structural questions gain practical
urgency. Longitudinal field studies across industries could link micro-level routines to macro-level

outcomes: delivery metrics, rework rates, audit compliance, and incident response times.

Finally, this agenda acknowledges its own obsolescence. As capabilities drift and guardrails evolve,
specific techniques will decay. Research must therefore prioritize architecture-agnostic principles,

evaluations that report output dispersion and performance decay, and governance structures that embed
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provenance tracking and role clarity as core controls. By designing for robustness across model changes,
personalization to user expertise, and organizational transparency, future work can convert the Triadic
Framework and the seven propositions into a validated, domain-sensitive framework for hybrid

intelligence that scales with the moving frontier.

10. Conclusion

This paper proposed a Triadic Framework for human-AI collaboration that addresses failures across three
interdependent layers: technical understanding (System Layer), interaction design (Collaboration Layer),
and metacognitive awareness (Metacognitive Layer). Designing for reliable and trustworthy collaboration
is cruciallﬁl, and our framework reveals why single-layer interventions — explainability tools[f’—zl, prompt
engineering guidancel122ll123] or anthropomorphism warnings/®% — produce inconsistent results when
other layers remain unaddressed (see also Holstein and Satzgerfﬁ1 on interdependent mental models and
why single-layer interventions can underperform). Durable improvement requires triadic literacy,
simultaneous competence across technical understanding, interaction skill, and metacognitive vigilance.
This reframes the agenda from “How do we make Al more reliable?” to “How do we cultivate adaptive mental
models under jagged, shifting capabilities?” Crucially, this reframing acknowledges AI’s position as a pre-
cognitive System 0127, Effective collaboration requires systematic practices that make System 0 influences
observable and governable. The seven propositions operationalize this principle: they function as
cognitive scripts that preserve human agency precisely where AI's is most persuasive. This reflection is
essential: Just because Al is available does not mean we always have to use it — sometimes a task is not

suitable for AI, and sometimes we consciously choose to do tasks ourselves to learn something new.

The framework has direct implications for Al literacy education. Curricula should emphasize portable
principles over model-specific techniques: expect output variance, scaffold interventions incrementally,
verify and revise outputs critically, and calibrate confidence to actual performance. Trainings should
include exercises that expose capability boundaries and practice adapting to model changes, cultivating
some form of “rethinking” — the habit of robustly dealing with uncertainty instead of focusing on

current capabilities.

For practitioners, effective collaboration routines begin with explicit awareness: acknowledging
uncertainty at task outset, selecting interaction modes deliberately, and monitoring for capability drift.

Organizations should institutionalize these practices through transparency policies that make AI
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involvement visible, accountability structures that clarify human-AI boundaries, and continuity protocols

that maintain resilience during model transitions.

For researchers, our Triadic Framework may highlight methodological priorities. Evaluation studies
should report output dispersion alongside means, track performance decay over time, and test
interventions across model versions. Longitudinal studies could enable attribution of performance shifts
to capability changes versus evolving user mental models. Future work should validate the framework

empirically across domains, architectures, and populations.

As Al capabilities continue to drift and guardrails evolve, this framework offers not fixed solutions but
adaptive principles. The goal is not to solve collaboration once, but to cultivate mental models that
remain effective as the technology evolves — a structured starting point for systematic inquiry, not an

endpoint.
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