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This work explores a novel approach to mitigating turbulence in fusion plasmas through spatially

modulated plasma pro�les. By imposing a harmonic modulation on plasma parameters, we

introduce conditions that alter the propagation characteristics of turbulent and MHD waves, a

primary source of transport and instabilities in fusion devices. This modulation approach resembles

bandgap formation in solid-state and photonic crystals, where spatial periodicity suppresses wave

propagation within speci�c frequency bands. The mathematical framework developed here

essentially resembles the parametric resonance of the harmonic oscillator. It reveals how a

controlled spatial variation of turbulent wave phase velocity can e�ectively attenuate turbulence and

instabilities. Several methods for implementing this modulation in plasma, including RF waves,

static magnetic �eld perturbations, and modulated density pro�les, are proposed as potential paths

for achieving stable con�nement. This concept could provide a versatile and potentially more

controllable alternative to existing turbulence suppression techniques, with the goal of improving

stability and con�nement across a variety of magnetized fusion con�gurations.

Corresponding author: Ilya Shesterikov, ilyshes@gmail.com

The purpose of this work is to demonstrate the potential and new prospects that open up for fusion

research through the creation of a spatially modulated plasma pro�le. These emerging opportunities

can be used for suppressing instabilities and plasma turbulence (and actually plasma heating). In this

work, we will focus primarily on using the proposed concept to suppress turbulence in plasma. Rather

than providing a ready solution, this work aims to identify potential research directions and

introduces a conceptual framework for mitigating plasma turbulence and instabilities.
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The formation of turbulence and plasma instabilities is one of the fundamental problems of nuclear

fusion. Drift and interchange turbulence, electron-temperature and ion-temperature turbulence are

the main causes of transport in fusion devices. Along with turbulence, there are also MHD instabilities

that cause transport and loss of stability in toroidal devices. Methods for suppressing or reducing

turbulence already exist, such as

formation of transport barriers based on plasma rotation shear, leading to improved con�nement

modes

plasma shaping and magnetic �eld con�guration optimization

However, the formation of transport barriers is a self-organizing process, not always well-

controllable and manageable, and not implementable in all devices. Moreover, transport barriers are

fairly localized in the radial direction—they do not suppress turbulence over a broad radial range.

Plasma shape and magnetic topology optimization is the subject of another constraints, as improper

con�gurations could lead to new instability modes.

In other words, �nding alternative approaches of turbulence and instabilities mitigation that are more

universal, controllable, and comprehensive is very important. This is especially important considering

the variety of magnetic con�nement fusion devices that have emerged recently.

Let’s consider various types of devices that utilize magnetic �elds to con�ne hot plasma, such as

tokamaks, stellarators, pinches, and linear machines.

The following sections will explore strategies for suppressing drift wave turbulence. While the speci�c

details may vary, the core principles of the proposed concept can be extended to other types of wave-

like turbulence, such as interchange turbulence or MHD instabilities.

The time-averaged spatial scale of plasma parameters in fusion plasmas has typically the scale of the

con�nement device, i.e. on the spatial scale of plasma turbulence (which is typically   ) all

plasma parameters appear uniform. Consequently, parameters such as the phase velocity of waves,

pressure gradient, and other quantities that in�uence the development of turbulence also appear

uniform on these small turbulent scales.

Let us now consider a scenario where the turbulent wave phase velocity along the direction of

turbulence propagation is spatially modulated but constant in time. In other words, we superimpose a

harmonically varying pro�le with a wavelength comparable to the turbulence scale onto a smooth,

homogeneous plasma pro�le. The presence of such a modulation signi�cantly alters the nature of

≈ 1 − 2cm
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wave propagation and turbulence development. For instance, taking the drift wave as an example, the

spatial modulation of the plasma density or magnetic �eld is equivalent to modulating the phase

velocity of drift waves, as their phase velocity is described by the electron diamagnetic drift velocity.

0.1. Analogies to other physical systems

Suppressing waves by spatial modulation of their phase velocity is not a new phenomenon in general

physics. This principle is similar to the existence of forbidden energy bands in the crystal lattice of a

solid state[1]. Forbidden electron energy bands are formed due to the spatial periodicity of the

potential energy �eld created by the crystal lattice. Solving the Schrödinger equation for the electron

wave function in a periodic potential �eld gives us the band structure of energy.

Another example is optical photonic crystals[2][3][4]  . The propagation of light in a medium with a

spatially periodic refractive index leads to the formation of the so-called optical band structure, zones

of forbidden and allowed EM wave frequencies that either can or cannot propagate in the crystal. This

is also easily reproduced if we look at the solution of the wave equation in a medium with a spatially

varying refractive index.

In the �eld of mechanics, this phenomenon is commonly referred to as parametric instability[5][6][7][8]

[9][10]. Depending on speci�c resonant conditions, it can cause mechanical oscillations to either

amplify or diminish.

1. Mathematical formalism

Let us consider the mathematical formalism of this process. As a test-bed in our discussion we choose

drift waves, although on the place of drift waves can be any other type of plasma waves (interchange-

type turbulence or MHD waves). Without delving into details, we write the wave equation for drift

waves.

The phase velocity of these waves, as can be seen, is determined by the electron diamagnetic drift

velocity, i.e., it is inversely proportional to the magnetic �eld strength and plasma density. Thus, a

spatial periodic variation of these quantities is equivalent to a spatial variation of the phase velocity.

The equation descibing the propagation of the drift wave in the magnetized plasma can be written as

follows:

=
nd2

dt2
u2
p

nd2

dx2
(1)
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here    is the wave phase velocity. The drift wave phase velocity represent the electron diamagnetic

drift velocity:

where   is the plasma pressure.

First, we take the time Fourier transform of both sides of the Eq.1.

Combining both parts we rewrite the equation above in the Fourier space.

Let us rewrite this equation as a traditional equation for a harmonic oscillator.

The drift wave favorably develops in the conditions where   is constant on the wavelength scale.

Let’s now consider the opposite situation, the development in the plasma where   has a periodical

spatial dependence.

Speci�cally, we will determine the conditions for wave development in a case where   slightly di�ers

from some constant value and is a simple spatially periodic function  .

where the constant   and   designates the wave number of the spatial modulation. The sign of   is

not that important since we can always change this sign by the corresponding choice of the reference

frame. Substituting this expression (5) in the Eq.4 gives

or, designating

up

= ,up
∇p × B

neB
2

p = nTe

F { } =
n∂ 2

∂x2

(x)∂ 2
nω

∂x2
(2)

F { } = −
nd2

dt2
ω2

nω

= −u2
p

(x)∂ 2
nω

∂x2
ω2

nω (3)

= − = −
(x)∂ 2

nω

∂x2

ω2

u2
p

nω k2
nω (4)

up

up

up

(x)up

(x) = (1 − εcos (βx))up u0
p (5)

ε ≪ 1 β ε

= − ≈ −( (1 + 2ε cos (βx))
(x)∂ 2

nω

∂x2

ω2

( (1 − εcos (βx)))u0
p

2
nω

ω

u0
p

)2
nω (6)

=k0
ω

u0
p

(7)
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We will see later that the e�ect of modulation is strongest if the wavenumber   is close to the doubled

wavenumber of drift wave  . Therefore we will assume

where   is a small deviation of   from  .

For the simpli�cation we introduce the new designation

and rewrite the equation

The equations of this type are called in mathematics the Mathieu equation.

Using the method of variation of parameters, the solution    to our transformed equation may be

written as

where the rapidly varying components,   and   have been factored out to

isolate the slowly varying amplitudes   and b(x).

Where (a(x)) and (b(x)) are slowly (compared to the factors cos and sin) changing functions of time.

Such a solution, of course, is not exact. We proceed by substituting this form of the solution (13) into

the di�erential equation (12) and considering that both the coe�cients in front of   and 

 must be zero to satisfy the di�erential equation identically. We also omit the second

derivatives of   and   on the grounds that   and   are slowly varying functions.

A more detailed derivation is provided in the Appendix. Neglecting all terms above the �rst order in  ,

we can simplify

= − (1 + 2εcos (βx))
(x)∂ 2

nω

∂x2
k2

0 nω (8)

β

k0

β = 2 + δk0 (9)

δ β 2k0

= − (1 + 2εcos ((2 + δ)x))
(x)∂ 2

nω

∂x2
k2

0 k0 nω (10)

ϵ = 2ε (11)

= − (1 + ϵcos ((2 + δ)x))
(x)∂ 2

nω

∂x2
k2

0 k0 nω (12)

(x)nω

(x) = a(x)cos (( + )x) + b(x)sin (( + )x)nω k0
δ

2
k0

δ

2
(13)

cos (( + )x)k0
δ

2
sin (( + )x)k0

δ

2

a(x)

cos (( + )x)k0
δ

2

sin (( + )x)k0
δ

2

a(x) b(x) a(x) b(x)

−2 ( + ) − b(x) + b(x)(1 − ) = 0
da(x)

dx
k0

δ

2
( + )k0

δ

2

2

k2
0

ϵ

2

2 ( + ) − a(x) + a(x)(1 + ) = 0 (14)
db(x)

dx
k0

δ

2
( + )k0

δ

2

2

k2
0

ϵ

2

δ
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We got the system of two �rst-order linear di�erential equations. To �nd the general solution of a

system, the system can be expressed in matrix form as:

where

 and   are the eigenvalues of the matrix A

Figure 1. The chart of the parametric decay of a

turbulent/instability waves. The e�ective damping occurs in the

range of   around the  -wavenumber  .

 and   are corresponding eigenvectors, and   and   are some constants.

2 + b(x)δ + = 0
da(x)

dx

b(x)ϵk0

2

2 − a(x)δ + = 0 (15)
db(x)

dx

a(x)ϵk0

2

= AY,
dY

dx
(16)

Y = [ ] = + ,
a(x)

b(x)
c1V

⃗ 
1e

xλ1 c2V
⃗ 
2e

xλ2 (17)

λ1 λ2

ϵk0 β 2k0

A = ,
1

2

⎡

⎣

0

−δ +
ϵk0

2

δ +
ϵk0

2

0

⎤

⎦
(18)

V ⃗ 
1 V ⃗ 

2 c1 c2
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The eigenvalues are given by the expression

The condition for the occurrence of a wave attenuation is that   is real (i.e.,  ). The parameter 

 characterizes the spatial attenuation (or ampli�cation) of the wave. Thus, it occurs in the interval of

around the wavenumber   of the   spatial modulation.

The chart in Figure (1) presents the graphical illustration of the mathematical results above. The

e�ective damping of turbulent or instability waves occurs within a range de�ned by    around the

spatial modulation wavenumber  .

2. Practical Signi�cance

2.1. Modulation approach

The obtained result indicates that by creating a spatially modulated phase velocity pro�le, one

establishes conditions to suppress drift waves. The main issue lies in �nding a rational and feasible

method for a modulation of plasma parameters. Here are some technical ways to implement this

approach:

RF electromagnetic waves (Alfvén waves), which lead to perturbations in the plasma’s magnetic

�eld and, therefore, drift wave phase velocity  .

Amplitude modulation of the microwave electromagnetic waves, which lead to perturbations in the

plasma density due to ponderomotive force and, therefore, drift wave phase velocity  .

Externally driving an another plasma instability leading to the perturbation of the plasma magnetic

�eld or density.

A static magnetic �eld perturbation created by external currents.

A spatially-modulated neutral particle beam.

In this paper we are not aiming to discuss the technical details on the implementation of these

approach, this is the subject of separate works.

= ±λ1,2
1

2
−( )

ϵk0

2

2

δ2

− −−−−−−−−−−

√ (19)

λ ≥ 0λ2

λ

− < δ <
ϵk0

2

ϵk0

2
(20)

2k0 (x)up

ϵk0

β = 2k0

up

up
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2.2. Ampli�cation vs. damping

As seen in the Equation 20, the parameter    can be either positive or negative. From a purely

mathematical perspective, this implies that the observed resonance can result in either ampli�cation

or decay of the propagating wave.

Whether the propagating wave instability is ampli�ed or damped is a complex question that depends

on numerous factors and the speci�c plasma modulation approach. The ampli�cation or damping of

the wave is determined by the speci�c physical mechanisms that facilitate or inhibit energy and

momentum exchange between the plasma instability wave and the imposed modulation.

For instance, the steady state static magnetic �eld B spatial modulation created by an external

currents (if this is feasible at all) will lead to the dumping since it is not the subject of the energy

exchange with plasma waves. The low-frequency plasma modulation created by an externally

launched wave have a more complex wave-wave interaction physics and can lead to both

ampli�cation and dumping, depending on the features of dispersion relations of both imposed

modulation (on the one hand) and plasma instability waves (on the other hand).

Summarizing the results obtained above, it can be said that waves propagating in such a medium will

experience attenuation. This result is well-known in many areas of physics that deal with oscillations

or waves, and is therefore quite predictable.

3. Conclusion

This work has demonstrated that introducing a spatially modulated phase velocity pro�le in plasma

holds promising potential for mitigating turbulence, speci�cally drift wave instabilities, in fusion

plasma environments. The framework established here illustrates that spatial modulation creates

conditions akin to bandgaps in solid-state physics, where speci�c frequencies are inhibited, thus

attenuating wave propagation. This principle could serve as an alternative approach to current

turbulence suppression methods, which frequently encounter practical limitations and challenges in

implementation.

The practical feasibility of applying spatial modulation was also explored, o�ering several methods

for implementing these pro�les in plasma, such as using RF waves, modulated microwave

electromagnetic waves, or static magnetic perturbations. These methods provide a foundation for

further investigation into the optimal means of achieving e�ective modulation in various fusion

λ
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device con�gurations. The study underscores the dual potential of modulation, highlighting that

careful tuning of the parameters can either amplify or dampen wave instabilities, depending on

speci�c interactions between imposed modulation and instability waves. Future work should focus on

feasibility study of these speci�c approaches, assessing their practicality, and testing their

e�ectiveness in experimental settings to advance toward stable, high-performance fusion plasmas.

Appendix

substituting this form of the solution (13) into the di�erential equation (12) and considering that both

the coe�cients in front of   and   must be zero to satisfy the di�erential

equation identically. We also omit the second derivatives of   and

Substituting the solution of the form (13) into the di�erential equation (12) gives

cos (( + )x)k0
δ

2
sin (( + )x)k0

δ

2

a(x)

= cos(( + )x)−
d (x)nω

dx

da(x)

dx
k0

δ

2

a(x)( + ) sin(( + )x)+k0
δ

2
k0

δ

2

sin(( + )x)+
db(x)

dx
k0

δ

2

b(x)( + ) cos(( + )x) (21)k0
δ

2
k0

δ

2
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We omit the second derivatives of   and   and rewrite the last equation.

Combining similar terms together we get

a(x) b(x)

= − ( + ) sin(( + )x)−
(x)d2

nω

dx2

da(x)

dx
k0

δ

2
k0

δ

2

( + ) sin(( + )x)−
da(x)

dx
k0

δ

2
k0

δ

2

a(x)( + cos(( + )x)+k0
δ

2
)2 k0

δ

2

( + ) cos(( + )x)+
db(x)

dx
k0

δ

2
k0

δ

2

( + ) cos(( + )x)−
db(x)

dx
k0

δ

2
k0

δ

2

b(x)( + sin(( + )x) (23)k0
δ

2
)2 k0

δ

2
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Now, we turn to simplify the RHS of the equation (12).

= −2 ( + ) sin(( + )x)−
(x)d2

nω

dx2

da(x)

dx
k0

δ

2
k0

δ

2

a(x)( + cos(( + )x)+k0
δ

2
)2 k0

δ

2

2 ( + ) cos(( + )x)−
db(x)

dx
k0

δ

2
k0

δ

2

b(x)( + sin(( + )x) (24)k0
δ

2
)2 k0

δ

2

= ( − 2 ( + ) − b(x)( + ) sin(( + )x)−
(x)d2

nω

dx2

da(x)

dx
k0

δ

2
k0

δ

2
)2 k0

δ

2
. . . . .

(2 ( + ) − a(x)( + ) cos(( + )x) (25)
db(x)

dx
k0

δ

2
k0

δ

2
)2 k0

δ

2

(1 + ϵ cos((2 + δ)x))k0 nω

=

(1 + ϵ cos((2 + δ)x)) (a(x) cos(( + )x) + b(x) sin(( + )x)) (26)k0 k0
δ

2
k0

δ

2

(1 + ϵ cos((2 + δ)x))k0 nω

=

(1 + ϵ cos((2 + δ)x)) (a(x) cos(( + )x) + b(x) sin(( + )x)) =k0 k0
δ

2
k0

δ

2

a(x) cos(( + )x) + b(x) sin(( + )x)+k0
δ

2
k0

δ

2

ϵ cos((2 + δ)x) (a(x) cos(( + )x) + b(x) sin(( + )x)) (27)k0 k0
δ

2
k0

δ

2
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Here we neglect the high order oscillations with the wavenumber of    and consider that both the

coe�cients in front of    and    must be zero to satisfy the di�erential

equation identically.

We get the system of two di�erential equation with respect to   and  .

(1 + ϵ cos((2 + δ)x))k0 nω

=

(a(x) cos(( + )x) + b(x) sin(( + )x))+k0
δ

2
k0

δ

2

( cos(( + )x))−
ϵ a(x)

2
k0

δ

2

( sin(( + )x))
ϵ b(x)

2
k0

δ

2
=

a(x)(1 + ) cos(( + )x) + b(x)(1 − ) sin(( + )x) (29)
ϵ

2
k0

δ

2

ϵ

2
k0

δ

2

3k0

cos (( + )x)k0
δ

2
sin (( + )x)k0

δ

2

( − 2 ( + ) − b(x)( + ) sin(( + )x)−
da(x)

dx
k0

δ

2
k0

δ

2
)2 k0

δ

2

(2 ( + ) − a(x)( + ) cos(( + )x)
db(x)

dx
k0

δ

2
k0

δ

2
)2 k0

δ

2
=

− (a(x)(1 + ) cos(( + )x) + b(x)(1 − ) sin(( + )x)) (30)k2
0

ϵ

2
k0

δ

2

ϵ

2
k0

δ

2

a(x) b(x)
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