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In recent years, several neural network methods, such as brain functional networks, have been proposed to

efficiently learn non-Euclidean graph structures. In this study, we modified the connectivity-based graph

convolutional network (cGCN) developed by Wang et al. (2021) for autism spectrum disorder (ASD)

classification into a regression model and used resting-state functional magnetic resonance imaging (rs-

fMRI) data to predict the scores on the offline Kohs block-design test for a total of 615 subjects aged 33–89

years. To convert from discrimination to regression, we employed a technique that introduces a fully

connected layer in the cGCN and connects the long short-term memory (LSTM) in the last output phase

instead of the Softmax layer. The results showed that our cGCN–LSTM was more accurate than the baseline

LASSO regression model and that the predictions correlated significantly with the measured scores of the

cognitive function test. Moreover, we used the leave-one-out and leave-two-out occlusion methods to

extract important regions of interest (ROIs), as well as networks, from the model. It was acknowledged that

the Kohs block-design test scores were negatively correlated with age, but the results suggested the

possibility of age-related cognitive decline that could not be captured by age prediction models alone. We

found that only the nodes of the default mode network and cerebellum contained some significant within-

networks; however, overall, between-network connectivity overwhelmingly contributed to the prediction

regardless of the weight of the role in the age projection. This model and the leave-two-out occlusion

method allowed us to identify the regions and networks involved in further task-based fMRI experiments in

advance. Our methodology has the potential to make the design of task fMRI experiments more rational and

accurate before planning and conducting actual scans.
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1. Introduction

In neuroimaging research, a brain connectome called resting-state functional connectivity (rs-FC) is being

investigated using functional magnetic resonance imaging (fMRI) to provide a neural basis for cognitive

abilities and biomarkers for neurological diseases. It does not require a specific task and can be applied to

subjects of all ages, ranging from infants to the elderly. It is also relatively easy to scale across imaging sites, and

a large amount of data is readily available. Because of these advantages, rs-FC is highly compatible with recent

machine-learning-based disease diagnoses and age prediction. When explanatory variables are selected from

brain imaging data and subject attributes are set as objective variables, a common regression or discriminant

analysis approach is utilized to solve a binary or multivalued classification problem regarding the subject

attributes; this can aid diagnosis in clinical settings using biomarkers. However, predicting a participant's test

scores with respect to task-related cognitive functions or score regression is generally considered challenging.

This is especially true when predicting complex offline executive control performance from resting-state data

alone, which are recorded using a magnetic resonance imaging (MRI) scanner. However, given that default

mode network (DMN) connectivity decreases with cognitive decline, rs-FC can be used as an indicator of

cognitive decline and psychiatric disorders. In particular, a model that predicts cognitive test scores that

decrease with age can be utilized to deduce persons’ cognitive abilities even if the input data are the same, thus

emphasizing its practical versatility. In addition, by analyzing the internal mechanisms of individual prediction

models for different tasks, it is possible to explore the brain regions and functional networks that have different

and important effects on various cognitive abilities.

Studies predicting cognitive test scores from resting-state fMRI (rs-fMRI) are less common than those

implementing discriminative modeling of neurological disorders such as Alzheimer's disease (AD). Meskaldji et

al., 2016a, calculated functional connectivity (FC) from rs-fMRI and used partial least squares regression (PLSR)

to predict the scores on the long-term memory test for 57 subjects with mild cognitive impairment (MCI);

correlation coefficients between actual and predicted scores ranged within 0.417–0.646. DMN regions such as

the hippocampus, superior frontal lobe, and temporal lobe were found to be important for prediction.

Subsequently, Meskaldji et al., 2016b, used PLSR to predict episodic memory capacity with correlation

coefficients ranging within 0.53–0.64, and found that the DMN, sensorimotor network (SMN), limbic system,

and bilateral supplementary motor areas were important regions of interest (ROIs). Other relevant research

includes the prediction of clinical measures of depression using PLSR (Yoshida et al., 2017) and of intelligence

quotient (IQ) scores from rs-FC using the graph neural network (GNN) model (Hanik et al., 2022); the results of

these studies suggest that an individual's rs-FC contains important behavioral and clinical information. Based

on this previous research, this study investigates the relationship between rs-FC and cognitive functions that
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change with age by predicting task test scores from rs-FC. We followed but slightly modified the connectivity-

based graph convolutional network (cGCN) of Wang et al., 2021, from discrimination to regression. Thus, we

predicted the values of the Kohs block-design test (Kohs, 1920) using data from the Brain Dock records of 695

participants at the Shimane Institute of Health Science (Minowa et al., 2022). The scores of this test are

negatively correlated with age, making them the best indicators of age-related cognitive decline. Therefore, it

was required to regress the effects of age as an important factor.

2. Materials and Methods

2.1. Participants

For the MRI participants, data acquisition, and preprocessing, the datasets and procedures were identical to

those of our previous study, Minowa et al., 2022. We analyzed 333 male and 282 female healthy participants, of

whom the age composition is as follows: 37 subjects aged 30–39, 97 aged 40–49, 107 aged 50–59, 156 aged 60–

69, 166 aged 70–79, and 52 aged 80–89 (mean age: 62.4 ± 13.5 years). The dataset is characterized by the fact that

it is a periodic examination of primarily old, healthy subjects without neurological diseases, given that the

correlation between the motivation score, called the Apathy score, and age is relatively small (-0.137),

suggesting that many subjects are particularly healthy for their age.

2.2. MRI data

MRI data were acquired using a Philips Ingenia 3.0T scanner, which was installed at the Shimane Institute of

Health Science in 2016. The total duration of the rs-fMRI scans for each participant was 350 s, with the

following parameters: repetition time (TR) = 2500 ms, echo time (TE) = 30 ms, field of view (FOV) (right-left

(RL) = 212 mm, anterior-posterior (AP) = 212 mm, feet-head (FH) = 159.2 mm), acquisition (ACQ) matrix M × P =

64 × 63, number of slices = 40, and slice thickness = 3.2 mm. After converting the DICOM data into NIfTI images

using the dcm2niix DICOM to NIfTI converter (The Neuropsychology Lab, University of South Carolina, SC,

USA), we preprocessed the images via the Configurable Pipeline for the Analysis of Connectomes (Craddock et

al., 2013) using the default configuration of version 1.7.0. ROI-mean time series data were computed from

Automated Anatomical Labeling (AAL, Tzourio-Mazoyer et al., 2002) and normalized using the method

ConnectivityMeasure provided by the nilearn.connectome application programming interface (API) (Abraham et

al., 2014). In this library, the population variance and covariance matrices were estimated using the Ledoit–Wolf

method, and the population correlation matrix was calculated. The group average FC was obtained by averaging

the FC matrix for all subjects. At this time, only training and validation data were used to obtain the group FC to
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prevent information leakage from the test data. All code used in this study is available to the public at

https://github.com/tokuotsu/cGCN-LSTM.git.

2.3. Kohs block-design test

The Brain Dock dataset has several test scores pertaining to neural and cognitive decline, which are prevalent

in elderly people. However, in this study, we addressed the results of the Kohs’ block-design test (the cube

combination test). This intelligence test, involving the matching of puzzle patterns, was first published by Kohs

in 1920. Seventeen tasks are scored based on the time required for each task, with a maximum possible score of

131 points. The mental age (MA) is calculated based on the score using a conversion table and combined with

the calendar age (CA); the intelligence quotient (IQ) can be calculated using the following formula:

2.4. Prediction modeling

2.4.1. cGCN regression

In this study, we customized the cGCN developed by Wang et al., 2021, to perform cognitive index prediction.

Features that differ from the original model include the use of long short-term memory (LSTM) in the final

layer to extract time-series features. An overview of this process is shown in Figure 1.

IQ = × 100
MA

CA
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Figure 1. Overall model flow of the proposed cGCN-LSTM. The values at the cubes' sides represent the number of

frames (140), the number of ROIs (116), and the number of channels (depth); the fourth dimension is omitted. In this

flow, a, FC is calculated from the subject's rs-fMRI, and b, group average FC is computed using only the training data.

c, The group average FC is obtained by leaving the five nearest neighbors of each ROI, masking them by binarization.

d, Graph convolution was performed in those ROIs, and e, the outputs are passed through convolution to convLSTM.

f, As the last step, our own LSTM layer is added to obtain the final value (the implementation is our originality to

remodel the cGCN by Wang et al., 2021.)

Graph representations were obtained from the group mean FC using the k-nearest neighbor algorithm (k-NN).

Specifically, the five representations with the largest correlation coefficients were selected for each of the 116

AAL areas; the reason for selecting five was that, according to the results of Wang et al., 2021, the accuracy of

ASD classification was the highest at k=5 and did not improve beyond that. The same k-NN graph was used
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across subjects; in the adjacency matrix of the binary graph in a heat map style (Figure 1-c), the bright cells

indicate the five nearest neighbors of each area (row). The edges in the brain image below are the visualized

networks equivalent to the binary graph.

Next, we explain the graph convolution based on the procedures by Wang et al. 2021, in Figure 1. The

dimensions are shown using rectangles, where 140 of these graphics represent the time series (TR), 116

represent the areas of the AAL (ROI), and 8 represent the number of channels. In addition, there is a fourth

dimension used for inputting age values, but it is omitted in this figure. For graph convolution, the following

equation is obtained:

where    represents the blood-oxygen-level-dependent (BOLD) signal of the    ROI, and    represents the

BOLD signal of the ROI adjacent to   . We limited the number of   to five. The signal values   and   are

input into the two-dimensional convolution described here as    , and the one with the maximum activity

among the outputs is adopted. We introduced skip connections by setting up these convolutions separately,

assigning one to be used as an input to the next convolution and the other to be used as is, and combining them

later. Skip connections, as in the case of U-Net (De Luca et al., 2006), transmit even low-level features without

gradient loss and bypass the previous layer without modification.

The mean squared error (MSE) was used as the loss function in this model with a batch size of 16 and a

maximum number of epochs of 200. Learning was performed using the MSE loss; if this did not decrease over

30 epochs, training was terminated at an early stop.

where    denotes the observed value and    the predicted value. The final evaluation was performed using

Pearson's product-moment correlation coefficient   and the coefficient of determination   of the actual

and predicted values. Each is defined as follows:

where   and   are the mean values of    , respectively. Note that the coefficient of determination has a

maximum value of 1 and can be a negative value, as defined.
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The model was built using the Keras API, and training was performed using two RTX1080Ti graphic processing

units. To prevent leakage of the test data, all data were divided into three subsets at a training: validation:

testing ratio of 3:1:1 using 5-fold cross-validation (CV), and the final evaluation was performed using test data

not used in the training phase. As mentioned previously, the group-mean FC was estimated from the training

and validation data.

The above model followed the original model of Wang et al., 2021, to a large extent, but with the major change

being the incorporation of LSTM in the final layer to modify the model from classification to regression. This is

because the classification model for autistic patients in Wang et al., 2021, must be converted to a cognitive

function score regression model in the present study. For the original model, convolution was performed

separately on all time series, and their outputs were averaged as the final result. The inability to directly set a

fully connected layer in the network architecture for regression was due to the specification of the existing

Tensorflow-gpu==1.4 library; this may be why that type of layer was not used in the implementation of Wang et

al., 2021. In the original GCN for classification, averaging of each time series was performed using the recurrent

neural network (RNN) in the temporal pooling layer, convLSTM, before being passed on to the final softmax

layer. Alternatively, we incorporated an entire network of LSTM in the form of cGCN-LSTM for all joins at the

last stage instead of using the softmax function. Therefore, the final result could be obtained through additional

learning, including average computation, to clarify the issue of setting dense connections. Thus, by connecting

to a new LSTM, time-series features could be extracted through the fully connected layer such that the

regression process can be achieved, as in the case of age prediction with RNNs. The procedures with parameter

settings for the cGCN-LSTM are shown in Figure A of the Supplementary Materials.

2.4.2. LASSO regression

We used least absolute shrinkage and selection operator (LASSO) regression as the baseline model and whole-

brain functional connectivity strength (FCS) as the feature; FCS is the sum of connection strengths above a

threshold value known as weighted order centrality. A node with a high FCS value can be considered a

functional hub for a large network (Buckner et al., 2008). Li et al., 2020, also reported that changes in the FCS in

the left precuneus are associated with age-related cognitive decline. In the present study, the threshold for

calculating the FCS was set at 0.2 based on Li et al., 2020, and the correlation coefficients larger than the

threshold were summed for each area, which was used as input information for the LASSO regression. In

addition, a 5 × 5 nested CV was performed to reduce bias in each training dataset and to perform a

hyperparameter search simultaneously. In this CV, the hyperparameter α, which determines the strength of

regularization in the inner loop, was varied from    to 1 in 100 steps. The final results were obtained by

training the entire inner loop using the parameter with the highest accuracy and making predictions based on

10−5
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the outer test data that were not used for training. Shuffling was performed at random with the same seed as

the cGCN five times in the outer loop, allowing for model-to-model comparisons.

2.5. Occlusion methods

The interpretation of models in machine learning, particularly in deep learning, remains an open problem. In

this study, we used a method called occlusion to extract important ROIs in the model. We determined the ROIs

that were important for prediction by taking each of the 116 areas in the AAL atlas, setting the mean time series

in each area (ROI) to zero, and sequentially alternating the input to the learned model with the data containing

the missing parts. When excluded from the modeling, the ROI resulting in the largest decrease in prediction

accuracy was considered the most important in the prediction model. Moreover, in the current study, we

decided to obtain the impact of losing an edge by excluding two ROIs simultaneously. This method has not been

used in previous studies and may be crucial for visualizing and evaluating the interiors of deep learning

models, which are considered difficult to evaluate. The effect of this leave-two-out occlusion method,

particularly in our cGCN-LSTM model, is that the time-series changes in the two ROIs are eventually

incorporated into the result output at the fully connected layer, thereby reflecting some interaction between

them. Furthermore, if the two ROIs are coupled in a close functional relationship, that is, they are included in a

k-NN cluster with k=5, the graph convolution will include the spatial and temporal characteristics of the two

ROIs, which can further reflect this interaction.

3. Results

3.1. Predictive results of the Kohs block-design test

Figure 2 shows the observed Kohs block-design test scores on the horizontal axis and the predicted scores on

the vertical axis, with the LASSO results indicated by black crosses and the cGCN-LSTM results by red circles.

The left panel of the figure shows the results obtained using the sum of the age and rs-fMRI data as the input,

whereas the right panel shows the output when using only rs-fMRI data as the input. In each model, linear

regression was performed using the least-squares method, and the shaded areas indicate 95% confidence

intervals. Pearson's correlation and the coefficient of determination are listed in the order of LASSO and cGCN-

LSTM in the upper right corner. The asterisk symbols added to the correlation coefficients indicate p<0.01 when

there are two, and p<0.05 when there is one.
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Figure 2. Prediction results of the Kohs block-design test scores. The horizontal axis represents the observed

scores, and the vertical axis denotes the predicted scores. The left side of the figure corresponds to the sum of age

and rs-FC data as input, while the right side of the figure is based solely on rs-FC data input.

The model with both rs-fMRI data and age as inputs recorded a correlation coefficient of 0.63 for the cGCN-

LSTM and 0.56 for the LASSO regression model on the Kohs test score. The cGCN-LSTM regression model

outperformed the LASSO regression model; however, the difference between the models was marginal.

However, when age was removed and only the rs-fMRI data were input, we found a significant deterioration in

accuracy in the LASSO regression model compared to cGCN-LSTM, as the correlation coefficient for the cGCN-

LSTM was 0.34 for the Kohs test score and 0.13 for the LASSO. This confirms the finding of Omidvarnia et al.,

2023, that the LASSO results for rs-FC data had poorer cognitive predictive power relative to individual basic

phenotype features. In comparison, the drop in the accuracy of resting-state FCs using cGCN-LSTM was small

and captured the characteristics of resting-state FCs. Thus, the results indicate that depending on the choice of

model, there is still potential for predicting cognitive ability using rs-FC data.

3.2. Important ROIs

Table 1 and Figure 3 show the decrease in accuracy for each ROI, the name of the ROI, the resting-state network

to which the ROI belongs, and its importance rank in the age regression as applied to the trained cGCN-LSTM

model. To test whether the model can predict the covariate of age, age alone was also predicted using the model

(Supplementary Materials, Figure B). Interestingly, the results showed a Spearman correlation of -0.0216

between the Kohs block-design test score and age, which was not significant. In Table 1, the rightmost column

represents the ROI ranking in the age regression, with the top 20 rankings in italics.

It is now clear that ROIs have been extracted from various intrinsic networks, and some of them, such as those

containing the left Heschl's gyrus (Heschl_L) and right anterior cingulate cortex (Cingulum_Ant_R), contribute
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the most to age estimation. Other extracted ROIs, such as those containing the right medial orbitofrontal cortex

(Frontal_Med_Orb_R), Vermis 4 and 5 (Vermis_4_5), and Right Cerebellum 6 (Cerebelum_6_R), occupied low

ranking positions in age estimation, despite their importance in Kohs test score prediction.
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rank reduction in R value ROI Intrinsic functional network Rank(age prediction)

1 -0.04029 Heschl_L auditory 2

2 -0.03715 Frontal_Med_Orb_R DMN 107

3 -0.03526 Vermis_4_5 CN 116

4 -0.0337 Cingulum_Ant_R DMN/SN 1

5 -0.03355 Cuneus_R VN 10

6 -0.03247 Cerebelum_6_R SN 67

7 -0.03191 Olfactory_R SMN 28

8 -0.03186 Vermis_9 CN 6

9 -0.03132 Cuneus_L VN 111

10 -0.03039 Temporal_Pole_Mid_L DMN 41

11 -0.03022 Cerebelum_3_R CN 13

12 -0.0299 Occipital_Mid_L VN 56

13 -0.02981 Angular_R DMN 84

14 -0.02977 Cerebelum_Crus2_R EN 52

15 -0.02921 Rolandic_Oper_L DAN/SMN 60

16 -0.02912 Temporal_Pole_Mid_R DMN 12

17 -0.02908 Pallidum_L subcortical 53

18 -0.02906 Temporal_Mid_R DMN 102

19 -0.02896 Pallidum_R subcortical 106

20 -0.02871 Amygdala_L subcortical 32

Table 1. Important ROIs for the prediction of Kohs block-design test scores. From left to right, the importance rank

in score prediction, the decreasing range of Pearson's correlation coefficient, the name of the ROI, its attribution to a

predefined intrinsic functional network in AAL, and its rank in age regression; the latter rank is marked in italics if

within the top 20.
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Figure 3. Visualization of important ROIs for the prediction of Kohs block-design test scores. Visualization was

performed for the top 20. (Slices at MNI coordinates z=-60, -51, -42, -33,-24, -15, -6, 3, 12, 21, 30, 39, 48, 57, 66) The

python package nilearn was used to create the figures.

The results of leave-two-out occlusion are shown in Figure 4. For a total of 6786 edges in the two ROI selections,

we visualized 100 edges that were particularly important using the occlusion method. The left panel shows the

edges grouped by brain structure, and the right panel shows the edges grouped by functional network. The

figure indicates that the interconnections between the temporal lobe, frontal lobe, and cerebellum are critical

for score prediction. Interestingly, significant interconnections between specific ROIs in the auditory network

and the DMN are also found. It has also been confirmed that the salience network (SN), executive network (EN),

and visual network (VN) have key links.
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Figure 4. The most important region pairs (edges) for the prediction of Kohs block-design test scores and their

relationship to the intrinsic networks. The visualization was made by using a Python library, nxviz

(https://ericmjl.github.io/nxviz/)

4. Discussion

4.1. ROI and Networks

When focusing on the crucial ROIs and networks in the predictive model of the Kohs block-design test, whose

scores declined with age, it was again confirmed that they were mentioned (Rozencwajg, 1991) in relation to

general cognitive function. In particular, the fact that the DMN regions were extracted in this study confirms

that this network is central to aging (Hafkemeijer et al., 2012; Hohenfeld et al., 2018). Furthermore, this study

identified the cerebellum as an important brain region for predicting cognition-related ratings. Previous

longitudinal MRI studies have shown that the cerebellum and the hippocampus have higher rates of volume

loss in older adults (Raz et al., 2005). In terms of function, the cerebellum is assigned the role of high-speed

information processing and modification of motor function in response to sensory and perceptual feedback

and is considered to be a critical region in perceptual and motor tasks (Eckert et al., 2010). In particular, the

cognitive function test used in this study is believed to reflect, to some extent, motor processing ability along

with processing speed, as the faster a person can answer the test, the higher the score. Considering the

characteristics of this test, it is assumed that the information processing function of the cerebellum may be

important. It should be further noted that only the DMN and cerebellum listed here contain some significant

within-network connectivity, but overall, between-network connectivity overwhelmingly contributes to the

prediction, which, coupled with the fact that important areas are distributed across the whole brain, requires

further scrutiny.

qeios.com doi.org/10.32388/GDWCBK 13

https://www.qeios.com/
https://doi.org/10.32388/GDWCBK


This also raises the question of interpreting the importance of the VN in score prediction. Interestingly, Gao et

al., 2020, who used rs-fMRI to predict processing speed (PS) in older adults, noted that the fast PS group showed

higher intra-network connectivity within each of the motor and visual networks, but lower connectivity

between the two networks, compared to the slow PS group. The results of our study showed an increase in the

number of important connections from the nodes of the occipital lobe and VN in the score evaluation compared

with age prediction (Supplementary Materials: Table A and Figure C), which at first glance appears to be

consistent with the results of Gao et al., 2020. Certainly, in the task of aligning blocks while looking at a sample,

it is possible that higher visual processing ability may have been more advantageous in terms of earning Kohs

test scores. However, as noted earlier, the important FC within the network is limited to the DMN and cerebellar

network and is not found in the VN.

4.2. cGCN-LSTM and Leave-two-out occlusion

As noted, a graph structure with group resting-state FC shows the possibility of successfully capturing the

characteristics of functional networks. However, in the model with rs-fMRI and age as simultaneous inputs, the

correlation coefficient of the LASSO regression model was 0.56 and that of the cGCN regression model was 0.63,

with the latter outperforming the former. This difference was greatly magnified when age was removed as a

factor, with a correlation coefficient of 0.13 for the LASSO regression model and 0.34 for the cGCN regression

model when only rs-FC data were input. It should be noted that Omidvarnia et al., 2023, reported that rs-FC plus

age has predictive power for cognitive ability test scores but that modeling with rs-FC alone is much less

accurate. However, unlike in this previous study, when a graph neural network (cGCN) is followed by a recurrent

deep learning model (LSTM), i.e., cGCH-LSTM, the drop in accuracy is smaller than that of other algorithms.

One of the reasons for the lower accuracy in the LASSO regression model is its inability to capture the

characteristics of time-series changes. In LASSO regression, FCS is used as input, but it is solely the sum of

connection strengths above a threshold, which is a generalization of weighted order centrality. Therefore, it is

important as a measure of connection weights between brain regions; however, it includes neither the

functional and structural distances between ROIs nor time series information. Therefore, the FCS may have less

information to guarantee the precision of regression modeling.

In contrast, the proposed cGCN-LSTM can fully utilize the following three advantages of the original cGCN. i)

The same weights can be used for all subjects by applying a mask using group-averaged FC, thereby

accelerating and simplifying learning. ii) We can take advantage of the selective use of features from ROIs that

are functionally rather than structurally close to each other. iii) The parallelization of each time series in the

cGCN, originally a discriminative model for patients with autism, boasts high accuracy even with a small

number of frames compared with convolutional recurrent neural network (convRNN) models. Furthermore, as
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in the present study, it provides a foundation for a certain level of performance in regression problems, which is

applied to cognitive decline or aging due to changes in functional connectivity. In this study, instead of

averaging each time series prior to the final softmax layer, we could also obtain a new representation with the

mean of the parallel convolutional series by introducing a fully connected layer to add LSTM at the end of the

model. These are the advantages of our cGCN-LSTM model, which retains sufficient explanatory power even

when the model is based only on rs-FC. Moreover, depending on further improvements, it may be possible to

predict with even higher accuracy which brain regions contribute the most to a particular cognitive behavior

from non-task-based resting-state fMRI data.

Regions that function only during a task and affect its performance can only be precisely determined using

task-based fMRI experiments. However, the two-edge occlusion proposed in this study not only predicts task

performance without requiring the relevant task in the scanning but also evaluates which interregional

relations contribute to the participant’s activity. Such a task-free but task-related domain assessment is possible

because cGCN-LSTM can predict cognitive test scores even when confounding factors such as age are excluded.

4.3. Limitations and Future Perspectives

This section addresses the limitations and future challenges of this study. One limitation of this model is that a

fixed number of nearest-neighbor areas (five in this study) were selected for each ROI, and convolution was

performed. Although this contributed to computational efficiency, it also created certain restrictions that made

the graph structure potentially underoptimized. In addition, because of this restriction, when inference was

performed on new data, the graph structure at the time of training was reused, which might not have captured

the changes in FC between subjects. Although the prediction results showed a sufficiently significant

correlation, the scores of the Kohs block-design test did not provide very high prediction accuracy (0.34), and

further improvement is needed as it would affect the interpretation of the model and ROIs. The unexpectedly

small influence of the prefrontal cortex on the model may be partly due to the lack of precision. To improve

accuracy, it may be important to adopt a different data format. For example, recent studies have shown that FC

is not stationary but varies with time, called dynamic FC (dFC). Further improvements can be expected using a

sliding window approach in dFC to select relevant ROIs according to the time-series changes in FC. This can be

easily imagined from the poor results of cGCN-LSTM (Supplementary Materials, Figure B) compared with age

prediction using dFC (Minowa et al., 2022).

Furthermore, because there was a correlation between the scores of Koh's test and age in this study, additional

age prediction was executed to subtract brain regions that change with age from the relevant brain regions in

the cognitive function test prediction. However, this also requires further verification, as it is expected that

there would be some brain areas excluded from consideration where these factors change in a coordinated
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manner. Furthermore, by using the occlusion method, it is possible to search for ROIs (vertices) and their pairs

(edges) that have a large impact on the predicted values. However, even if the amount of impact is known, the

causal relationship must be interpreted by the researchers themselves, and a new method to objectively

evaluate this relationship is needed.

Despite these undeniable shortcomings, we were able to build a regression model worthy of proposal using a

deep learning model called cGCN-LSTM. We were able to predict the scores of the offline Kohs block-design test

using only the rs-FC data of 695 healthy subjects. This model and the leave-two-out occlusion allowed us to

identify the regions and networks involved in further task-based fMRI experiments. Our methodology has the

potential to make the design of task fMRI experiments more rational and accurate before planning and

conducting actual scans.

Data availability

Limited phenotypic data (subject ID, age, and sex) and inputs (ROI mean time-series data based on the AAL and

HO atlases only) of the neural networks generated for this study are available with all Python code for data

analysis at https://github.com/yutads/shimane. However, functional MRI images are not available to the public

online because of the conditions for approval of the study set by institutional review boards. The scripts for

computing the cGCN-LSTM are available at https://github.com/tokuotsu/cGCN-LSTM.git.
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Supplementary Materials

Figure A. Procedures with layer, shape, parameter, and connection setting of our cGCN-LSTM. LSTM is added in
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place of time series averages.

Figure B. Results of age prediction. The horizontal axis represents the observed ages, and the vertical axis denotes

the predicted ages.
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rank r reduction ROI network

1 -0.033968253 Cingulum_Ant_R DMN/SN

2 -0.032056298 Heschl_L auditory

3 -0.023317771 Cerebelum_3_L CN

4 -0.023036771 Cerebelum_9_R DMN

5 -0.020415184 Temporal_Sup_R DAN

6 -0.019949884 Vermis_9 CN

7 -0.019709637 Temporal_Pole_Sup_R SN

8 -0.019566773 Lingual_R VN

9 -0.018090764 Cingulum_Post_R DMN

10 -0.017188389 Cuneus_R VN

11 -0.015721649 Vermis_1_2 CN

12 -0.015358761 Temporal_Pole_Mid_R DMN

13 -0.015281032 Cerebelum_3_R CN

14 -0.015240625 Frontal_Med_Orb_L DMN

15 -0.015224133 ParaHippocampal_R DMN

16 -0.014870114 Temporal_Sup_L DAN

17 -0.014671268 Frontal_Mid_Orb_L FPN

18 -0.014628147 Temporal_Inf_L DAN

19 -0.014407255 Frontal_Mid_R SN/FPN

20 -0.02871 Amygdala_L subcortical

Table A. Important ROIs for the age prediction
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Figure C. The most important region pairs (edges) for age prediction and their relationship to the intrinsic

networks. The visualization was made using a Python library, nxviz (https://ericmjl.github.io/nxviz/)

___

Note

This paper is an abstract of the master’s thesis of the first author, who is now an alumnus of the Tokyo Institute

of Technology, Japan.
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