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Abstract 

In recent years, several neural network methods, such as brain functional networks, 

have been proposed to efficiently learn non-Euclidean graph structures. In this study, 

we modified the connectivity-based graph convolutional network (cGCN) developed by 

Wang et al. (2021) for autism spectrum disorder (ASD) classification into a regression 

model and used resting-state functional magnetic resonance imaging (rs-fMRI) data to 

predict the scores on the offline Kohs block-design test for a total of 615 subjects aged 

33–89 years. To convert from discrimination to regression, we employed a technique 

that introduces a fully connected layer in the cGCN and connects the long short-term 

memory (LSTM) in the last output phase instead of the Softmax layer. The results 

showed that our cGCN–LSTM was more accurate than the baseline LASSO regression 

model, and that the predictions correlated significantly with the measured scores of the 

cognitive function test. Moreover, we used the leave-one-out and leave-two-out occlusion 

methods to extract important regions of interest (ROIs), as well as networks from the 



model. It was acknowledged that the Kohs block-design test scores were negatively 

correlated with age, but the results suggested the possibility of age-related cognitive 

decline that could not be captured by age prediction models alone. We found that only 

the nodes of the default mode network and cerebellum contain some significant 

within-networks; however, overall, between-network connectivity overwhelmingly 

contributed to the prediction regardless of the weight of the role in the age projection. 

This model and the leave-two-out occlusion method allowed us to identify the regions 

and networks involved in further task-based fMRI experiments in advance. Our 

methodology has the potential to make the design of task fMRI experiments more 

rational and accurate before planning and conducting actual scans. 

 

Keywords: fMRI, Kohs block-design test, score prediction, cGCN, LSTM 

 

1. Introduction 

 In neuroimaging research, a brain connectome called resting-state functional 

connectivity (rs-FC) is being investigated using functional magnetic resonance imaging 

(fMRI) to provide a neural basis for cognitive abilities and biomarkers for neurological 

diseases. It does not require a specific task and can be applied to subjects of all ages, 

ranging from infants to the elderly. It is also relatively easy to scale across imaging sites, 

and a large amount of data is readily available. Because of these advantages, rs-FC is 

highly compatible with recent machine-learning-based disease diagnoses and age 

prediction. When explanatory variables are selected from brain imaging data and 

subject attributes are set as objective variables, a common regression or discriminant 

analysis approach is utilized to solve a binary or multivalued classification problem 

regarding the subject attributes; this can aid diagnosis in clinical settings using 

biomarkers. However, predicting a participant's test scores with respect to task-related 

cognitive functions or score regression is generally considered challenging. This is 

especially true when predicting complex offline executive control performance from 

resting-state data alone, which are recorded using a magnetic resonance imaging (MRI) 

scanner. However, given that default mode network (DMN) connectivity decreases with 



cognitive decline, rs-FC can be used as an indicator of cognitive decline and psychiatric 

disorders. In particular, a model that predicts cognitive test scores that decrease with 

age can be utilized to deduce persons’ cognitive abilities even if the input data are the 

same, thus emphasizing its practical versatility. In addition, by analyzing the internal 

mechanisms of individual prediction models for different tasks, it is possible to explore 

the brain regions and functional networks that have different and important effects on 

various cognitive abilities. 

 Studies predicting cognitive test scores from resting-state fMRI (rs-fMRI) are 

less common than those implementing discriminative modeling of neurological 

disorders such as Alzheimer's disease (AD). Meskaldji et al., 2016a calculated functional 

connectivity (FC) from rs-fMRI and used partial least squares regression (PLSR) to 

predict the scores on the long-term memory test for 57 subjects with mild cognitive 

impairment (MCI); correlation coefficients between actual and predicted scores ranged 

within 0.417–0.646. DMN regions such as the hippocampus, superior frontal lobe, and 

temporal lobe were found to be important for prediction. Subsequently, Meskaldji et al., 

2016b used PLSR to predict episodic memory capacity with correlation coefficients 

ranging within 0.53–0.64, and found that the DMN, sensorimotor network (SMN), 

limbic system, and bilateral supplementary motor areas were important regions of 

interest (ROIs). Other relevant research includes the prediction of clinical measures of 

depression using PLSR (Yoshida et al., 2017) and of intelligence quotient (IQ) scores 

from rs-FC using the graph neural network (GNN) model (Hanik et al., 2022); the 

results of these studies suggest that an individual's rs-FC contains important 

behavioral and clinical information. Based on this previous research, this study 

investigates the relationship between rs-FC and cognitive functions that change with 

age by predicting task test scores from rs-FC. We followed but slightly modified the 

connectivity-based graph convolutional network (cGCN) of Wang et al., 2021 from 

discrimination to regression. Thus, we predicted the values of the Kohs block-design 

test (Kohs, 1920) using data from the Brain Dock records of 695 participants at the 

Shimane Institute of Health Science (Minowa et al., 2022). The scores of this test are 

negatively correlated with age, making them the best indicators of age-related cognitive 

decline. Therefore, it was required to regress the effects of age as an important factor. 



 

2. Materials and Methods 

2.1 Participants 

 For the MRI participants, data acquisition, and preprocessing, the datasets 

and the procedures were identical to those of our previous study, Minowa et al., 2022. 

We analyzed 333 male and 282 female healthy participants, of which the age 

composition is the following: 37 subjects aged 30–39, 97 aged 40–49, 107 aged 50–59, 

156 aged 60–69, 166 aged 70–79, and 52 aged 80–89 (mean age: 62.4 ± 13.5 years). The 

dataset is characterized by the fact that it is a periodic examination of primarily old, 

healthy subjects without neurological diseases, given that the correlation between the 

motivation score, called the Apathy score, and age is relatively small (-0.137), 

suggesting that many subjects are particularly healthy for their age. 

 

2.2 MRI data 

 MRI data were acquired using a Philips Ingenia 3.0T scanner which was 

installed at the Shimane Institute of Health Science in 2016. The total duration of the 

rs-fMRI scans for each participant was 350 s, with the following parameters: repetition 

time (TR) = 2500 ms, echo time (TE) = 30 ms, field of view (FOV) (right-left (RL) = 212 

mm, anterior-posterior (AP) = 212 mm, feet-head (FH) = 159.2 mm), acquisition (ACQ) 

matrix M × P = 64 × 63, number of slices = 40, and slice thickness = 3.2 mm. After 

converting the DICOM data into NIfTI images using the dcm2niix DICOM to NIfTI 

converter (The Neuropsychology Lab, University of South Carolina, SC, USA), we 

preprocessed the images via the Configurable Pipeline for the Analysis of Connectomes 

(Craddock et al., 2013) using the default configuration of version 1.7.0. ROI-mean time 

series data were computed from Automated Anatomical Labeling (AAL, 

Tzourio-Mazoyer et al., 2002) and normalized using the method ConnectivityMeasure 

provided by the nilearn.connectome application programming interface (API) (Abraham 

et al., 2014). In this library, the population variance and covariance matrices were 

estimated using the Ledoit–Wolf method and the population correlation matrix was 

calculated. The group average FC was obtained by averaging the FC matrix for all 



subjects. At this time, only training and validation data were used to obtain the group 

FC to prevent information leakage from the test data. All code used in this study is 

available to the public at https://github.com/tokuotsu/cGCN-LSTM.git. 

 

2.3 Kohs block-design test 

 The Brain Dock dataset has several test scores pertaining to neural and 

cognitive decline, which are prevalent in elderly people. However, in this study, we 

addressed the results of the Kohs’ block-design test (the cube combination test). This 

intelligence test involving the matching of puzzle patterns was first published by Kohs 

in 1920. Seventeen tasks are scored based on the time required for each task, with a 

maximum possible score of 131 points. The mental age (MA) is calculated based on the 

score using a conversion table and combined with the calendar age (CA); the intelligence 

quotient (IQ) can be calculated using the following formula: 

𝐼𝑄 =
𝑀𝐴

𝐶𝐴
× 100   

2.4 Prediction modeling 

2.4.1 cGCN regression 

 In this study, we customized the cGCN developed by Wang et al., 2021, to 

perform cognitive index prediction. Features that differ from the original model include 

the use of long short-term memory (LSTM) in the final layer to extract time-series 

features. An overview of this process is shown in Figure 1. 

  



 

Figure 1. Overall model flow of the proposed cGCN-LSTM. The values at the cubes' sides 

represent the number of frames (140), the number of ROIs (116), and the number of channels 

(depth); the fourth dimension is omitted. In this flow, a, FC is calculated from the subject's rs-fMRI 

and b, group average FC is computed using only the training data. c, The group average FC is 

obtained by leaving the five nearest neighbors of each ROI, masking them by binarization. d, Graph 

convolution was performed in those ROIs, and e, the outputs are passed through convolution to 

convLSTM. f, As the last step, our own LSTM layer is added to obtain the final value (the 

implementation is our originality to remodel the cGCN by Wang et al., 2021.) 

  

 Graph representations were obtained from the group mean FC using the 

k-nearest neighbor algorithm (k-NN). Specifically, the five representations with the 



largest correlation coefficients were selected for each of the 116 AAL areas; the reason 

for selecting five was that, according to the results of Wang et al., 2021, the accuracy of 

ASD classification was the highest at k=5 and did not improve beyond that. The same 

k-NN graph was used across subjects; in the adjacency matrix of the binary graph in a 

heat map style (Figure 1-c), the bright cells indicate the five nearest neighbors of each 

area (row). The edges in the brain image below are the visualized networks equivalent 

to the binary graph. 

 Next, we explain the graph convolution based on the procedures by Wang et al. 

2021, in Figure 1. The dimensions are shown using rectangles, where 140 of these 

graphics represent the time series (TR), 116 represent the areas of the AAL (ROI), and 8 

represent the number of channels. In addition, there is a fourth dimension used for 

inputting age values but is omitted in this figure. For graph convolution, the following 

equation is obtained: 

𝑥𝑖 = 𝑚𝑎𝑥
𝑗:(𝑖,𝑗)∈ϵ

 ℎΘ(𝑥𝑖|𝑥𝑗 − 𝑥𝑖), 

where 𝑥𝑖 represents the blood-oxygen-level-dependent (BOLD) signal of the 𝑖𝑡ℎ ROI, 

and 𝑥𝑗 represents the BOLD signal of the ROI adjacent to 𝑥𝑖. We limited the number of 

𝑥𝑗   to five. The signal values 𝑥𝑖 and 𝑥𝑗 − 𝑥𝑖 are input into the two-dimensional 

convolution described here as ℎΘ, and the one with the maximum activity among the 

outputs is adopted. We introduced skip connections by setting up these convolutions 

separately, assigning one to be used as an input to the next convolution and the other to 

be used as is, and combining them later. Skip connections, as in the case of U-Net (De 

Luca et al., 2006), transmit even low-level features without gradient loss and bypass the 

previous layer without modification. 

 The mean squared error (MSE) was used as the loss function in this model with 

a batch size of 16 and a maximum number of epochs of 200. Learning was performed 

using the MSE loss; if this did not decrease over 30 epochs, training was terminated at 

an early stop. 

𝑀𝑆𝐸(𝑦, �̂�) =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

, 



where 𝑦𝑖  denotes the observed value and 𝑦�̂�  the predicted value. The final evaluation 

was performed using Pearson's product-moment correlation coefficient 𝑟  and the 

coefficient of determination 𝑅2(𝑦, �̂�) of the actual and predicted values. Each is defined 

as follows: 

𝑟𝑥𝑦 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

, 

𝑅2(𝑦, �̂�) = 1 −
∑ (𝑦𝑖−𝑦�̂�)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

, 

where �̅� and �̅� are the mean values of 𝑥 𝑎𝑛𝑑 𝑦, respectively. Note that the coefficient of 

determination has a maximum value of 1, and can be a negative value, as defined. 

 The model was built using the Keras API, and training was performed using 

two RTX1080Ti graphic processing units. To prevent leakage of the test data, all data 

were divided into three subsets at a training: validation: testing ratio of 3:1:1 using 

5-fold cross-validation (CV), and the final evaluation was performed using test data not 

used in the training phase. As mentioned previously, the group-mean FC was estimated 

from the training and validation data. 

 The above model followed the original model of Wang et al., 2021, to a large 

extent, but with the major change being the incorporation of LSTM in the final layer to 

modify the model from classification to regression. This is because the classification 

model for autistic patients in Wang et al., 2021, must be converted to a cognitive 

function score regression model in the present study. For the original model, convolution 

was performed separately on all time series, and their outputs were averaged as the 

final result. The inability to directly set a fully connected layer in the network 

architecture for regression was due to the specification of the existing 

Tensorflow-gpu==1.4 library; this may be why that type of layer was not used in the 

implementation of Wang et al., 2021. In the original GCN for classification, averaging of 

each time series was performed using the recurrent neural network (RNN) in the 

temporal pooling layer, convLSTM, before being passed on to the final softmax layer. 

Alternatively, we incorporated an entire network of LSTM in the form of cGCN-LSTM 

for all joins at the last stage instead of using the softmax function. Therefore, the final 



result could be obtained through additional learning, including average computation, to 

clarify the issue of setting dense connections. Thus, by connecting to a new LSTM, 

time-series features could be extracted through the fully connected layer such that the 

regression process can be achieved, as in the case of age prediction with RNNs. The 

procedures with parameter settings for the cGCN-LSTM are shown in Figure A of the 

Supplementary Materials. 

 

2.4.2 LASSO regression 

 We used least absolute shrinkage and selection operator (LASSO) regression as 

the baseline model and whole-brain functional connectivity strength (FCS) as the 

feature; FCS is the sum of connection strengths above a threshold value known as 

weighted order centrality. A node with a high FCS value can be considered a functional 

hub for a large network (Buckner et al., 2008). Li et al., 2020 also reported that changes 

in the FCS in the left precuneus are associated with age-related cognitive decline. In the 

present study, the threshold for calculating the FCS was set at 0.2 based on Li et al., 

2020, and the correlation coefficients larger than the threshold were summed for each 

area, which was used as input information for the LASSO regression. In addition, a 5 × 

5 nested CV was performed to reduce bias in each training dataset and to perform a 

hyperparameter search simultaneously. In this CV, the hyperparameter α, which 

determines the strength of regularization in the inner loop, was varied from 10−5 to 1 

in 100 steps. The final results were obtained by training the entire inner loop using the 

parameter with the highest accuracy, and making predictions based on the outer test 

data that were not used for training. Shuffling was performed at random with the same 

seed as the cGCN five times in the outer loop, allowing for model-to-model comparisons. 

 

2.5 Occlusion methods 

 The interpretation of models in machine learning, particularly in deep learning, 

remains an open problem. In this study, we used a method called occlusion to extract 

important ROIs in the model. We determined the ROIs that were important for 

prediction by taking each of the 116 areas in the AAL atlas, setting the mean time series 



in each area (ROI) to zero, and sequentially alternating the input to the learned model 

with the data containing the missing parts. When excluded from the modeling, the ROI 

resulting in the largest decrease in prediction accuracy was considered the most 

important in the prediction model. Moreover, in the current study, we decided to obtain 

the impact of losing an edge by excluding two ROIs simultaneously. This method has not 

been used in previous studies and may be crucial for visualizing and evaluating the 

interiors of deep learning models, which are considered difficult to evaluate. The effect 

of this leave-two-out occlusion method, particularly in our cGCN-LSTM model, is that 

the time-series changes in the two ROIs are eventually incorporated into the result 

output at the fully connected layer, thereby reflecting some interaction between them. 

Furthermore, if the two ROIs are coupled in a close functional relationship, that is, they 

are included in a k-NN cluster with k=5, the graph convolution will include the spatial 

and temporal characteristics of the two ROIs, which can further reflect this interaction. 

 

3. Results 

3.1 Predictive results of the Kohs block-design test 

 Figure 2 shows the observed Kohs block-design test scores on the horizontal 

axis and the predicted scores on the vertical axis, with the LASSO results indicated by 

black crosses and the cGCN-LSTM results by red circles. The left panel of the figure 

shows the results obtained using the sum of the age and rs-fMRI data as the input, 

whereas the right panel shows the output when using only rs-fMRI data as the input. In 

each model, linear regression was performed using the least-squares method, and the 

shaded areas indicated 95% confidence intervals. Pearson's correlation and coefficient of 

determination are listed in the order of LASSO and cGCN-LSTM in the upper right 

corner. The asterisk symbols added to the correlation coefficients indicate p<0.01 when 

there are two, and p<0.05, when there is one. 



 

Figure 2. Prediction results of the Kohs block-design test scores. The horizontal axis represents 

the observed scores and the vertical axis denotes the predicted scores. The left side of the figure 

corresponds to the sum of age and rs-FC data as input, while the right side of the figure is based 

solely on rs-FC data input. 

 

 The model with both rs-fMRI data and age as inputs recorded a correlation 

coefficient of 0.63 for the cGCN-LSTM and 0.56 for the LASSO regression model on the 

Kohs test score. The cGCN-LSTM regression model outperformed the LASSO 

regression model; however, the difference between the models was marginal. However, 

when age was removed and only the rs-fMRI data were input, we found a significant 

deterioration in accuracy in the LASSO regression model compared to cGCN-LSTM, as 

the correlation coefficient for the cGCN-LSTM was 0.34 for the Kohs test score and 0.13 

for the LASSO. This confirms the finding of Omidvarnia et al., 2023, that the LASSO 

results for rs-FC data had poorer cognitive predictive power relative to individual basic 

phenotype features. In comparison, the drop in the accuracy of resting-state FCs using 

cGCN-LSTM was small and captured the characteristics of resting-state FCs. Thus, the 

results indicate that depending on the choice of model, there is still potential for 

predicting cognitive ability using rs-FC data. 

 

3.2 Important ROIs 

 Table 1 and Figure 3 show the decrease in accuracy for each ROI, the name of 

the ROI, the resting-state network to which the ROI belongs, and its importance rank in 

the age regression as applied to the trained cGCN-LSTM model. To test whether the 



model can predict the covariate of age, age alone was also predicted using the model 

(Supplementary Materials, Figure B). Interestingly, the results showed a Spearman 

correlation of -0.0216 between the Kohs block-design test score and age, which was not 

significant. In Table 1, the rightmost column represents the ROI ranking in the age 

regression, with the top 20 rankings in italics. 

 It is now clear that ROIs have been extracted from various intrinsic networks, 

and some of them, such as those containing the left Heschl's gyrus (Heschl_L) and right 

anterior cingulate cortex (Cingulum_Ant_R), contribute the most to age estimation. 

Other extracted ROIs, such as those containing the right medial orbitofrontal cortex 

(Frontal_Med_Orb_R), Vermis 4 and 5 (Vermis_4_5), and Right Cerebellum 6 

(Cerebelum_6_R), occupied low ranking positions in age estimation, despite its 

importance in Kohs test score prediction. 

 

Table 1. Important ROIs for the prediction of Kohs block-design test scores. From left to right, 

the importance rank in score prediction, the decreasing range of Pearson's correlation coefficient, the 

name of the ROI, its attribution to a predefined intrinsic functional network in AAL, and its rank in 

age regression; the latter rank is marked in italics if within the top 20. 

rank 
reduction in R 

value 
ROI 

Intrinsic functional 

network 

Rank(age 

prediction) 

1 -0.04029 Heschl_L auditory 2 

2 -0.03715 Frontal_Med_Orb_R DMN 107 

3 -0.03526 Vermis_4_5 CN 116 

4 -0.0337 Cingulum_Ant_R DMN/SN 1 

5 -0.03355 Cuneus_R VN 10 

6 -0.03247 Cerebelum_6_R SN 67 

7 -0.03191 Olfactory_R SMN 28 

8 -0.03186 Vermis_9 CN 6 

9 -0.03132 Cuneus_L VN 111 

10 -0.03039 Temporal_Pole_Mid_L DMN 41 

11 -0.03022 Cerebelum_3_R CN 13 

12 -0.0299 Occipital_Mid_L VN 56 

13 -0.02981 Angular_R DMN 84 



14 -0.02977 Cerebelum_Crus2_R EN 52 

15 -0.02921 Rolandic_Oper_L DAN/SMN 60 

16 -0.02912 Temporal_Pole_Mid_R DMN 12 

17 -0.02908 Pallidum_L subcortical 53 

18 -0.02906 Temporal_Mid_R DMN 102 

19 -0.02896 Pallidum_R subcortical 106 

20 -0.02871 Amygdala_L subcortical 32 

 

 

Figure 3. Visualization of important ROIs for the prediction of Kohs block-design test scores. 

Visualization was performed for the top 20. (Slices at MNI coordinates z=-60, -51, -42, -33,-24, -15, 

-6, 3, 12, 21, 30, 39, 48, 57, 66) The python package nilearn was used to create the figures. 

 

 The results of leave-two-out occlusion are shown in Figure 4. For a total of 6786 

edges in the two ROI selections, we visualized 100 edges that were particularly 

important using the occlusion method. The left panel shows the edges grouped by brain 

structure, and the right panel shows the edges grouped by functional network. The 

figure indicates that the interconnections between the temporal lobe, frontal lobe, and 

cerebellum are critical for score prediction. Interestingly, significant interconnections 

between specific ROIs in the auditory network and the DMN are also found. It has also 



been confirmed that the salience network (SN), executive network (EN), and visual 

network (VN) have key links. 

 

 

Figure 4. The most important region pairs (edges) for the prediction of Kohs block-design test 

scores and their relationship to the intrinsic networks. The visualization was made by using a 

Python library, nxviz (https://ericmjl.github.io/nxviz/) 

 

 

4. Discussion 

4.1 ROI and Networks 

 When focusing on the crucial ROIs and networks in the predictive model of the 

Kohs block-design test, whose scores declined with age, it was again confirmed that they 

were mentioned (Rozencwajg, 1991) in relation to general cognitive function. In 

particular, the fact that the DMN regions were extracted in this study confirms that this 

network is central to aging (Hafkemeijer et al., 2012; Hohenfeld et al., 2018). 

Furthermore, this study identified the cerebellum as an important brain region for 

predicting cognition-related ratings. Previous longitudinal MRI studies have shown 

that the cerebellum and the hippocampus have higher rates of volume loss in older 

adults (Raz et al., 2005). In terms of function, the cerebellum is assigned the role of 

high-speed information processing and modification of motor function in response to 

sensory and perceptual feedback and is considered to be a critical region in perceptual 

and motor tasks (Eckert et al., 2010). In particular, the cognitive function test used in 



this study is believed to reflect, to some extent, motor processing ability along with 

processing speed, as the faster a person can answer the test, the higher the score. 

Considering the characteristics of this test, it is assumed that the information 

processing function of the cerebellum may be important. It should be further noted that 

only the DMN and cerebellum listed here contain some significant within-network 

connectivity, but overall, between-network connectivity overwhelmingly contributes to 

the prediction, which, coupled with the fact that important areas are distributed across 

the whole brain, requires further scrutiny.  

 This also raises the question of interpreting the importance of the VN in score 

prediction. Interestingly, Gao et al., 2020, who used rs-fMRI to predict processing speed 

(PS) in older adults, noted that the fast PS group showed higher intra-network 

connectivity within each of the motor and visual networks, but lower connectivity 

between the two networks, compared to the slow PS group. The results of our study 

showed an increase in the number of important connections from the nodes of the 

occipital lobe and VN in the score evaluation compared with age prediction 

(Supplementary Materials: Table A and Figure C), which at first glance appears to be 

consistent with the results of Gao et al., 2020. Certainly, in the task of aligning blocks 

while looking at a sample, it is possible that higher visual processing ability may have 

been more advantageous in terms of earning Kohs test scores. However, as noted earlier, 

the important FC within the network is limited to the DMN and cerebellar network and 

is not found in the VN. 

 

4.2 cGCN-LSTM and Leave-two-out occlusion 

 As noted, a graph structure with group resting-state FC shows the possibility 

of successfully capturing the characteristics of functional networks. However, in the 

model with rs-fMRI and age as simultaneous inputs, the correlation coefficient of the 

LASSO regression model was 0.56 and that of the cGCN regression model was 0.63, 

with the latter outperforming the former. This difference was greatly magnified when 

age was removed as a factor, with a correlation coefficient of 0.13 for the LASSO 

regression model and 0.34 for the cGCN regression model when only rs-FC data were 



input. It should be noted that Omidvarnia et al., 2023, reported that rs-FC plus age has 

predictive power for cognitive ability test scores but that modeling with rs-FC alone is 

much less accurate. However, unlike in this previous study, when a graph neural 

network (cGCN) is followed by a recurrent deep learning model (LSTM), i.e., 

cGCH-LSTM, the drop in accuracy is smaller than that of other algorithms. 

 One of the reasons for the lower accuracy in the LASSO regression model is its 

inability to capture the characteristics of time-series changes. In LASSO regression, 

FCS is used as input, but it is solely the sum of connection strengths above a threshold, 

which is a generalization of weighted order centrality. Therefore, it is important as a 

measure of connection weights between brain regions; however, it includes neither the 

functional and structural distances between ROIs nor time series information. 

Therefore, the FCS may have less information to guarantee the precision of regression 

modeling. 

 In contrast, the proposed cGCN-LSTM can fully utilize the following three 

advantages of the original cGCN. i) The same weights can be used for all subjects by 

applying a mask using group-averaged FC, thereby accelerating and simplifying 

learning. ii) We can take advantage of the selective use of features from ROIs that are 

functionally rather than structurally close to each other. iii) The parallelization of each 

time series in the cGCN, originally a discriminative model for patients with autism, 

boasts high accuracy even in a small number of frames compared with convolutional 

recurrent neural network (convRNN) models. Furthermore, as in the present study, it 

provides a foundation for a certain level of performance in regression problems, which is 

applied to cognitive decline or aging due to changes in functional connectivity. In this 

study, instead of averaging each time series prior to the final softmax layer, we could 

also obtain a new representation with the mean of the parallel convolutional series by 

introducing a fully connected layer to add LSTM at the end of the model. These are the 

advantages of our cGCN-LSTM model, which retains sufficient explanatory power even 

when the model is based only on rs-FC. Moreover, depending on further improvements, 

it may be possible to predict with even higher accuracy which brain regions contribute 

the most to a particular cognitive behavior from non-task-based resting-state fMRI 

data. 



 Regions that function only during a task and affect its performance can only be 

precisely determined using task-based fMRI experiments. However, the two-edge 

occlusion proposed in this study not only predicts task performance without requiring 

the relevant task in the scanning, but also evaluates which interregional relations 

contribute to the participant’s activity. Such a task-free but task-related domain 

assessment is possible because cGCN-LSTM can predict cognitive test scores even when 

confounding factors such as age are excluded. 

 

4.3 Limitations and Future perspectives 

 This section addresses the limitations and future challenges of this study. One 

limitation of this model is that a fixed number of nearest-neighbor areas (five in this 

study) were selected for each ROI and convolution was performed. Although this 

contributed to computational efficiency, it also created certain restrictions that made 

the graph structure potentially underoptimized. In addition, because of this restriction, 

when inference was performed on new data, the graph structure at the time of training 

was reused, which might not have captured the changes in FC between subjects. 

Although the prediction results showed a sufficiently significant correlation, the scores 

of the Kohs block-design test did not provide a very high prediction accuracy (0.34), and 

further improvement is needed as it would affect the interpretation of the model and 

ROIs. The unexpectedly small influence of the prefrontal cortex on the model may be 

partly due to the lack of precision. To improve the accuracy, it may be important to 

adopt a different data format. For example, recent studies have shown that FC is not 

stationary, but varies with time, called dynamic FC (dFC). Further improvements can 

be expected using a sliding window approach in dFC to select relevant ROIs according 

to the time-series changes in FC. This can be easily imagined from the poor results of 

cGCN-LSTM (Supplementary Materials, Figure B) compared with age prediction using 

dFC (Minowa et al., 2022). 

 Furthermore, because there was a correlation between the scores of Koh's test 

and age in this study, additional age prediction was executed to subtract brain regions 

that change with age from the relevant brain regions in the cognitive function test 



prediction. However, this also requires further verification, as it is expected that there 

would be some brain areas excluded from consideration where these factors change in a 

coordinated manner. Furthermore, by using the occlusion method, it is possible to 

search for ROIs (vertices) and their pairs (edges) that have a large impact on the 

predicted values. However, even if the amount of impact is known, the causal 

relationship must be interpreted by the researchers themselves, and a new method to 

objectively evaluate this relationship is needed. 

 Despite these undeniable shortcomings, we were able to build a regression 

model worthy of proposal using a deep learning model called cGCN-LSTM. We were 

able to predict the scores of the offline Kohs block-design test using only the rs-FC data 

of 695 healthy subjects. This model and the leave-two-out occlusion allowed us to 

identify the regions and networks involved in further task-based fMRI experiments. 

Our methodology has the potential to make the design of task fMRI experiments more 

rational and accurate before planning and conducting actual scans. 
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Figure A. Procedures with layer, shape, parameter and connection setting of our cGCN-LSTM. 

LSTM is added in place of time series averages. 



 

Figure B. Results of age prediction. The horizontal axis represents the observed ages and the 

vertical axis denotes the predicted ages. 

 

Table A. Important ROIs for the age prediction 

rank r reduction ROI network 

1 -0.033968253 Cingulum_Ant_R DMN/SN 

2 -0.032056298 Heschl_L auditory 

3 -0.023317771 Cerebelum_3_L CN 

4 -0.023036771 Cerebelum_9_R DMN 

5 -0.020415184 Temporal_Sup_R DAN 

6 -0.019949884 Vermis_9 CN 

7 -0.019709637 Temporal_Pole_Sup_R SN 

8 -0.019566773 Lingual_R VN 

9 -0.018090764 Cingulum_Post_R DMN 

10 -0.017188389 Cuneus_R VN 

11 -0.015721649 Vermis_1_2 CN 

12 -0.015358761 Temporal_Pole_Mid_R DMN 

13 -0.015281032 Cerebelum_3_R CN 

14 -0.015240625 Frontal_Med_Orb_L DMN 



15 -0.015224133 ParaHippocampal_R DMN 

16 -0.014870114 Temporal_Sup_L DAN 

17 -0.014671268 Frontal_Mid_Orb_L FPN 

18 -0.014628147 Temporal_Inf_L DAN 

19 -0.014407255 Frontal_Mid_R SN/FPN 

20 -0.02871 Amygdala_L subcortical 

 

 

Figure C. The most important region pairs (edges) for age prediction and their relationship to 

the intrinsic networks. The visualization was made using a Python library, nxviz 

(https://ericmjl.github.io/nxviz/) 

 

Note: 

This paper is an abstract of the master’s thesis of the first author, who is now an alumnus of 

the Tokyo Institute of Technology, Japan.  

 

Data availability 

Limited phenotypic data (subject ID, age, and sex) and inputs (ROI mean time-series data 

based on the AAL and HO atlases only) of the neural networks generated for this study are 

available with all Python code for data analysis at https://github.com/yutads/shimane. 

However, functional MRI images are not available to the public online because of the 

conditions for approval of the study set by institutional review boards. The scripts for 

computing the cGCN-LSTM are available at https://github.com/tokuotsu/cGCN-LSTM.git. 
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