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Abstract

P versus NP is considered as one of the most important open problems in computer science. This consists in knowing

the answer of the following question: Is P equal to NP? It was essentially mentioned in 1955 from a letter written by

John Nash to the United States National Security Agency. However, a precise statement of the P versus NP problem

was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this

problem have failed. Another major complexity classes are L and NL. Whether L = NL is another fundamental question

that it is as important as it is unresolved. We prove the breakthrough result that L = NL. Besides, we show that every

NP problem is in L with oracle access to L.
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1. Introduction

In 1936, Turing developed his theoretical computational model [1]. The deterministic and nondeterministic Turing machines

have become in two of the most important definitions related to this theoretical model for computation [1]. A deterministic

Turing machine has only one next action for each step defined in its program or transition function [1]. A nondeterministic

Turing machine could contain more than one action defined for each step of its program, where this one is no longer a

function, but a relation [1].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings over Σ [2]. A Turing machine M
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 has an associated input alphabet Σ [2]. For each string w in Σ∗ there is a computation associated with M on input w [2].

We say that M accepts w if this computation terminates in the accepting state, that is M(w) = "yes" [2]. Note that, M fails to

accept w either if this computation ends in the rejecting state, that is M(w) = "no", or if the computation fails to terminate,

or the computation ends in the halting state with some output, that is M(w) = y (when M outputs the string y on the input w

) [2].

Another relevant advance in the last century has been the definition of a complexity class. A language over an alphabet is

any set of strings made up of symbols from that alphabet [3]. A complexity class is a set of problems, which are

represented as a language, grouped by measures such as the running time, memory, etc [3]. The language accepted by a

Turing machine M, denoted L(M), has an associated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ :M(w) = "yes"}.

Moreover, L(M) is decided by M, when w ∉ L(M) if and only if M(w) = "no" [3]. We denote by tM(w) the number of steps in

the computation of M on input w [2]. For n ∈ N we denote by TM(n) the worst case run time of M; that is:

TM(n) = max{tM(w):w ∈ Σn}

where Σn is the set of all strings over Σ of length n [2]. We say that M runs in polynomial time if there is a constant k such

that for all n, TM(n) ≤ nk + k [2]. In other words, this means the language L(M) can be decided by the Turing machine M in

polynomial time. Therefore, P is the complexity class of languages that can be decided by deterministic Turing machines

in polynomial time [3]. A verifier for a language L1 is a deterministic Turing machine M, where:

L1 = {w :M(w, u) = "yes" for some string u}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in

the length of w [2]. A verifier uses additional information, represented by the string u, to verify that a string w is a member

of L1. This information is called certificate. NP is the complexity class of languages defined by polynomial time verifiers [4].

It is fully expected that P ≠ NP [4]. Indeed, if P = NP then there are stunning practical consequences [4]. For that reason, 

P = NP is considered as a very unlikely event [4]. Certainly, P versus NP is one of the greatest open problems in science

and a correct solution for this incognita will have a great impact not only in computer science, but for many other fields as

well [5]. Whether P = NP or not is still a controversial and unsolved problem [6]. We provide some results in order to

understand better this outstanding problem in computer science.

1.1. The Hypothesis

A function f:Σ∗ → Σ∗ is a polynomial time computable function if some deterministic Turing machine M, on every input w

, halts in polynomial time with just f(w) on its tape [1]. Let {0, 1}∗ be the infinite set of binary strings, we say that a

language L1 ⊆ {0, 1}∗ is polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤pL2, if there is a polynomial

time computable function f: {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.
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An important complexity class is NP--complete [7]. If L1 is a language such that L ′ ≤pL1 for some L ′ ∈ NP--complete, then 

L1 is NP--hard [3]. Moreover, if L1 ∈ NP, then L1 ∈ NP--complete [3]. A principal NP--complete problem is SAT [7]. An

instance of SAT is a Boolean formula ϕ which is composed of:

1. Boolean variables: x1, x2, …, xn;

2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as ∧ (AND), ∨ (OR), ⇁

(NOT), ⇒ (implication), ⇔ (if and only if);

3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A satisfying truth assignment is a truth

assignment that causes ϕ to be evaluated as true. A Boolean formula with a satisfying truth assignment is satisfiable. The

problem SAT asks whether a given Boolean formula is satisfiable [7]. We define a CNF Boolean formula using the

following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [3]. A Boolean formula is in conjunctive normal

form, or CNF, if it is expressed as an AND of clauses, each of which is the OR of one or more literals [3]. A Boolean

formula is in 2-conjunctive normal form or 2CNF, if each clause has exactly two distinct literals [3]. For example, the

Boolean formula:

(x1 ∨ ⇁ x2) ∧ (x3 ∨ x2) ∧ ( ⇁ x1 ∨ ⇁ x3)

is in 2CNF. The first of its three clauses is (x1 ∨ ⇁ x2), which contains the two literals x1, and ⇁ x2.

A logarithmic space Turing machine has a read-only input tape, a write-only output tape, and read/write work tapes [1]. The

work tapes may contain at most O(logn) symbols [1]. In computational complexity theory, L is the complexity class

containing those decision problems that can be decided by a deterministic logarithmic space Turing machine [4]. NL is the

complexity class containing the decision problems that can be decided by a nondeterministic logarithmic space Turing

machine [4]. The complexity class coNL can be defined as the set of languages such that every element inside of the

language will be accepted for every possible path by a nondeterministic logarithmic space Turing machine [4].

A function f:Σ∗ → Σ∗ is a logarithmic space computable function if some deterministic Turing machine M, on every input 

w, halts using logarithmic space in its work tapes with just f(w) on its output tape [1]. Let {0, 1}∗ be the infinite set of binary

strings, we say that a language L1 ⊆ {0, 1}∗ is logarithmic space reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤lL2, if

there is a logarithmic space computable function f: {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

The logarithmic space reduction is used for the completeness of the complexity classes L, NL and P among others.

The two-way Turing machines may move their head on the input tape into two-way (left and right directions) while the

one-way Turing machines are not allowed to move the input head on the input tape to the left [8]. Hartmanis and Mahaney

have investigated the classes 1L and 1NL of languages recognizable by deterministic one-way logarithmic space Turing
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machine and nondeterministic one-way logarithmic space Turing machine, respectively [8]. They have shown that 

1L ≠ 1NL (by looking at a uniform variant of the string non-equality problem from communication complexity theory) and

have defined a natural complete problem for 1NL under deterministic one-way logarithmic space reductions [8].

Furthermore, they have proven that 1NL ⊆ L if and only if L = NL [8].

We can give a certificate-based definition for NL [2]. The certificate-based definition of NL assumes that a logarithmic

space Turing machine has another separated read-only tape, that is called "read-once", where the head never moves to

the left on that special tape [2].

Definition 1. A language L1 is in NL if there exists a deterministic logarithmic space Turing machine M with an additional

special read-once input tape polynomial p:N → N such that for every x ∈ {0, 1}∗:

x ∈ L1 ⇔ ∃u ∈ {0, 1}p( |x | ) then M(x, u) = "yes"

where by M(x, u) we denote the computation of M, x is placed on its input tape, the certificate string u is placed on its

special read-once tape, and M uses at most O(log|x | ) space on its read/write tapes for every input x where |… |  is the bit-

length function. The Turing machine M is called a logarithmic space verifier.

An oracle Turing Machine M has an additional tape, the oracle tape, and three states q?, qyes and qno [9]. When M enters 

q? (M is said to query the oracle), then M goes to the state qyes or the state qno according to whether the string written in

the oracle tape belongs or does not belong to a set called the oracle [9]. A language accepted by an oracle Turing

Machine M with oracle A is denoted by LA(M) [9]. The class of languages accepted by deterministic and nondeterministic

oracle Turing Machine M working in space S(n), with oracle A, is denoted by DSPACEA(S(n)) and NSPACEA(S(n)),

respectively [9]. In this definition, we bound the space of the oracle tape by a space 2O(S (n) ) [9]. A nondeterministic oracle

Turing machine can query 22O (S (n ) )
 strings in the tree of all possible computations [9].

There is another definition such that the oracle tape is not space-bounded and the machine works deterministically from

the time it begins to write on the oracle tape [9]. The complexity classes DSPACE⟨A⟩(S(n)) and NSPACE⟨A⟩(S(n)) are the

respective complexity classes based on this definition on an oracle A [9]. It is trivial to see that 

DSPACE⟨A⟩(S(n)) = DSPACEA(S(n)) [9]. Moreover, L = NL if and only if

∀S(n) ∀A DSPACEA(S(n)) = NSPACEA(S(n))

and ∀S(n) ∀A DSPACE⟨A⟩(S(n)) = NSPACE⟨A⟩(S(n))

for space constructible S(n) ≥ logn [9].

We state the following Hypothesis:

Hypothesis 1. There is a language L1 ∈ 1NL--complete that is in L. Moreover, there is a nonempty language L2 ∈ coNL,

such that there is another language L3 which is closed under logarithm space reductions in NP--complete with a

deterministic logarithmic space Turing machine M using an additional special read-once input tape polynomial p:N → N,

where:
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L3 = {w :M(w, u) = y,  ∃u ∈ {0, 1}p( |w| ) such that y ∈ L2}

when by M(w, u) we denote the computation of M, w is placed on its input tape, and the certificate string u is placed on the

special read-once tape of M. In this way, there is a NP--complete language defined by a logarithmic space verifier M such

that when the input is an element of the language, then there exists a certificate u such that M outputs a string which

belongs to a single language in coNL.

We show the principal consequences of this Hypothesis:

Theorem 2. If the Hypothesis 1 is true, then L = NL and NP ⊆ L⟨L⟩.

Proof. If there is a language L1 ∈ 1NL--complete in L, then L = NL [8]. We can simulate the computation M(w, u) = y in the

Hypothesis 1 by a nondeterministic logarithmic space oracle Turing machine N such that the string y is written in the

oracle tape in the computation of N(w), since we can read the certificate string u within the read-once tape by a work tape

in a nondeterministic logarithmic space generation of symbols contained in u [4]. Certainly, we can simulate the reading of

one symbol from the string u into the read-once tape just nondeterministically generating the same symbol in the work

tapes using a logarithmic space [4]. We could remove each symbol or a logarithmic amount of symbols generated in the

work tapes, when we try to generate the next symbol contiguous to the right on the string u. In this way, the generation

will always be in logarithmic space. This proves that L3 is in NLcoNL since the string y written in the oracle tape is queried

whether y ∈ L2 or not. That is equivalent to say that L3 is in L⟨L⟩ when the Hypothesis 1 is true, since 

NLcoNL = NLL = LL = L⟨L⟩ as a consequence of L = NL [9]. Due to L3 is closed under logarithm space reductions in 

NP--complete, then every NP problem is logarithmic space reduced to L3. This implies that NP ⊆ L⟨L⟩ since L is closed

under logarithm space reductions as well. ◻

1.2. The Problems

We describe the problems that we use and their complexity properties. We will say that the representation of a directed,

acyclic graph, G is topological sorted if for any pair of edges (a, b) and (b, c) in G, (a, b) is listed before (b, c) [8].

Definition 3. TAGAP

INSTANCE: A source vertex s, a sink vertex t and a directed and acyclic graph G that is a topological sorted

representation.

QUESTION: Is there a directed path from s to t in G?

REMARKS: TAGAP ∈ 1NL--complete [8]. In a directed graph, one can distinguish the outdegree (number of outgoing

edges), from the indegree (number of incoming edges); a source vertex is a vertex with indegree zero, while a sink vertex

is a vertex with outdegree zero. Juris Hartmanis and Stephen Ross Mahaney proved that TAGAP ∈ 1NL--complete using

an initial configuration as the source vertex and any halting configuration as the sink vertex [8].

A subpath is a path making up part of a larger path
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Definition 4. SUBPATH TAGAP (SPG)

INSTANCE: Two vertices s and t and a directed and acyclic graph G that is a topological sorted representation.

QUESTION: Is every path in G a subpath of some directed path from s to t?

REMARKS: We know that SPG ∈ coNL. Certainly, we can add the single edge (t, s) and decide whether there is always a

cycle that contains any subpath in the modified graph by a nondeterministic logarithmic space Turing machine.

The logic operator ⊕ (XOR) is used in some Boolean formulas instead of using ∨ (OR).

Definition 5. ⊕ 2UNSAT

INSTANCE: A Boolean formula ϕ that is the conjunction of a set of clauses c1, c2, …, cm where each ci consists of either a

literal or is the XOR (EXCLUSIVE OR) of two literals.

QUESTION: Is it the case that ϕ is not satisfiable?

REMARKS: ⊕ 2UNSAT ∈ L [10], [11].

An independent set of an undirected graph G is a set of vertices of G such that no two vertices in the independent set are

joined by an edge in G.

Definition 6. INDEPENDENT SET (ISET)

INSTANCE: A positive integer K and an undirected graph G.

QUESTION: Does G contain an independent set with K vertices or more?

REMARKS: ISET ∈ NP--complete [7].

2. Results

Theorem 7. TAGAP ∈ L.

Proof. Consider a general directed and acyclic graph G that is a topological sorted representation with a source vertex s

 and a sink vertex t. We reduce it to a CNF expression ϕ such that for each edge (a, b) in G, we create the clause 

( ⇁ xa ⊕ xb). Finally, we add the two clauses with a single literal (xs) and ( ⇁ xt). Since the graph G is topological sorted,

then a directed path s, v, w, …, t is logically equivalent to

xs ⇒ xv ⇒ xw ⇒ … ⇒ xt

in the CNF expression ϕ. However, that is false when the clauses (xs) and ( ⇁ xt) are satisfied in the Boolean formula ϕ at

the same time. If there is no directed path between the vertices s and t, then ϕ can be satisfiable since the vertices

reachable from s can be assigned in their variable representations as true and the vertices that reach to t can be assigned
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in their variable representation as false when s is a source vertex and t is a sink vertex. For that reason, there is a directed

path from s and t if and only if ϕ is not satisfiable. This reduction can be made in logarithmic space and thus, TAGAP ∈ L

 because of ⊕ 2UNSAT ∈ L. ◻

Theorem 8. There is a deterministic logarithmic space Turing machine M, where:

ISET = {w :M(w, u) = y, ∃u such that y ∈ SPG}

when by M(w, u) we denote the computation of M, w is placed on its input tape, u is placed on the special read-once tape

of M, and u is polynomially bounded by w.

Proof. The input could be a positive integer K and an undirected graph G with n vertices such that each vertex is

represented by a unique integer between 1 and n. We can create a certificate array A which contains 

(K+1) ⋅ (K+2)
2  edges

that represents a directed and acyclic graph G′ that is a topological sorted representation, every vertex is represented by

an integer between 0 and n + 1 and for any pair of edges (a, b) and (a, c) in G′ such that b < c, (a, b) is listed before (a, c)

 and for any pair of edges (a, b) and (c, d) in G′ such that a < c or a < d, (a, b) is listed before (c, d). We read at once the

edges of the array A and we reject when this is not the described graph G′. Besides, we check that the first vertex

contains K + 1 edges (that vertex is represented by 0 in G′), the second vertex contains K edges (that is the vertex that

represents the minimum integer greater than 0 in G′) and so on until we reach the penultimate vertex (that is the vertex

that represents the maximum integer lesser than n + 1 in G′) that contains 1 edge (that's why the number of edges is 

(K + 1) + K + … + 2 + 1 =

(K+1) ⋅ (K+2)
2  in G′). While we read the edges of the array A using the index i, we check those

constraints in G′ and verify that every edge in G′ is not in G. In this way, we output two vertices and the same certificate

(i.e. the edges of the array A), where the edges in G′ do not exist in the current input G.

We obtain that all:

(K, G) ∈ ISET ⇔ ∃A such that (0, n + 1, A) ∈ SPG

because of when (0, n + 1, A) ∈ SPG, then this would mean that G′ is a complete graph after a conversion of the directed

edges to undirected and we guarantee that those vertices are exactly an independent set of size K in G during the

computation of the logarithmic space verifier M (we exclude the vertices represented by 0 and n + 1 in G′ inside of the

independent set in G). Indeed, we can create this verifier that only uses a logarithmic space in the work tapes such that

the array A is placed on the special read-once tape, because we read at once the edges in the array A. Hence, we only

need to iterate from the cells of the array A to verify whether the array is an appropriated certificate according to the

constraints of G′ and check that every edge in G′ does not exist in G.

This logarithmic space verifier with output will be the Algorithm 1. We introduce some constraints in the Algorithm 1 in

order to guarantee the theoretical procedure. For example, we assume that a value does not exist in the array A into the

cell of a position i when A[i] = null. In addition, we immediately reject when the mentioned comparisons between the

vertices in G′ do not hold at least into one single binary digit. That means the machine enters into the rejecting state when

the certificate is not valid. Note that, the vertex 0 would be the source vertex and n + 1 is the sink vertex in the instance 
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(0, n + 1, A) ∈ SPG. ◻
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Theorem 9. L = NL and NP ⊆ L⟨L⟩.

Proof. This is a directed consequence of Theorems 2, 7 and 8. Certainly, ISET is closed under logarithm space reductions

in NP--complete. Indeed, we can reduced SAT to ISET in logarithmic space and every NP problem could be logarithmic

space reduced to SAT by the Cook's Theorem Algorithm [7]. 
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