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One of the performance measures and responses in manufacturing is the

optimization of the Material Removal Rate (MRR) and Tool Wear Rate (TWR). This

study used the response surface method (RSM) and AI-based models of arti�cial

neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) to

model and optimize the MRR and TWR for milling API 5ST TS-90 alloys. A ZX6350C

milling machine was used to conduct twenty (20) experimental runs using a 10 mm

HSS end-mill cutter. The experiment was designed using Central Composite Design

(CCD) in Design Expert 14 software. RSM, ANN, and ANFIS models were applied in

the predictive modelling of the milling process with a coef�cient of determination

above 0.85. Comparatively, ANFIS and RSM were marginally better than ANN in the

predicted MRR for the milling process. The ANFIS and RSM were slightly better

than ANN in the predicted TWR for the milling operation. Generally, ANFIS showed

a better predictive capability than RSM and ANN for both MRR and TWR. The

optimum process milling parameters for the alloy were a 720-rpm spindle speed, 24

mm/min feed rate and 0.979 mm depth of cut to achieve an optimized predicted

MRR of 1272.163 mm3/min and TWR of 0.781 mm/min. The optimum milling

process was validated at the suggested experimental conditions by carrying out the

milling experiment at those conditions, and the results of 1270.05 mm3/min for

MRR and 0.77 mm/min for TWR showed a close correlation between the predicted

and validated optimum. The optimum milling parameters from this study would

enhance production at reduced tooling costs associated with tool wear.

Corresponding author: Chinedum Mgbemena,
mgbemena.ogonna@fupre.edu.ng

1. Introduction

In recent times, the sole aim of every manufacturing
industry has been to increase productivity most cost-
effectively without impacting product quality, which
inadvertently reduces its acceptability in the market. To
survive the ever-evolving market and stiff competition,
manufacturers rely heavily on productivity and associated
costs. Recent improvements in engineering design have

been a primary driver behind technical advancements in
practically all engineering domains. In the metal-cutting
industry, manufacturers are continuously exploring the
advancement of appropriate machining techniques that
can guarantee highly accurate components while
minimizing costs, thereby accelerating, and automating
various machining operations (Sada & Ikpeseni, 2021). The
API 5ST TS-90 Alloy to be studied in this research work is
a low-carbon alloy steel with an enormous application in
the Oil and Gas sector, especially for the manufacturing of
well intervention equipment used in Matrix Acidization,
Scale Treatment, Tubing Wash, Sand Clean-out, Nitrogen
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Lift, Cementing via coil, Fishing, etc. Material Removal
Rate and Tool Wear Rate are key factors in all machining
operations, and they have signi�cant cost implications in
milling activities (Mgbemena et al., 2016).

Several industrial applications of milling processes show
that the control and optimization of both material removal
and tool wear rates are among the most important
performance measures and responses in manufacturing
(Himanshu et al., 2019). Utilizing machining procedures,
cutting tool life and wear can be increased to lower part
production costs (Mohsen & Mohammed, 2022).
Manufacturing engineering has long struggled with the
age-old challenge of monitoring the machining process.
Users of cutting tools cannot afford to disregard the
ongoing developments and changes in the science of tool
material. To prevent the item being machined from failing
to meet the stipulated tolerance as a result of using the
worn-out tool, the tool should be withdrawn and replaced
well before it wears out completely. This might also lead to
a task with poor surface quality, increasing production
costs overall owing to an increase in rework and scrap (Liu
et al., 2023, Shrikrishna et al., 2018). Therefore, to increase
productivity by reducing tooling and machining costs, the
manufacturing engineer should be able to determine
optimum milling process parameters. The overall control
and optimization of a manufacturing process is the
economic aim alongside the technical requirements
needed (Bouzid et al., 2020). The adoption and use of
statistical methods and arti�cial intelligence (AI)-based
models such as arti�cial neural networks (ANNs) and
other hybrid models such as the adaptive neuro-fuzzy
inference system (ANFIS), which combines ANN and fuzzy
logic, are currently paving the way towards achieving
technical and economic milestones in ef�cient process
predetermination (Banza et al., 2023; Daniel et al., 2023;
Asadi et al., 2019; Singh et al., 2019; Chabbi et al., 2017;
Okwu and Adetunji, 2018).

High productivity, good surface �nish and optimum tool
life are of great relevance in manufacturing. To be
competitive in a fast-paced marketplace, the economy of
machining, not to the detriment of quality, comes into
play. The selection of milling parameters is highly
dependent on the experience of the machinist or perhaps
on machining data obtained from machine tool
handbooks. Machining process parameters obtained from
these sources are most likely conservative and riddled
with several uncertainties and may not yield the desired
quality and output; hence, it is deemed �t to develop a
novel approach in obtaining adjusted process design
parameters from predicted models using arti�cial
intelligence techniques for the investigation and solution
of milling optimization problems. In this work, arti�cial
intelligence tools in the form of an arti�cial neural
network (ANN), adaptive neuro-fuzzy inference system
(ANFIS) and response surface method (RSM), a statistical

model, were implemented in modelling and optimizing
material removal and tool wear rates in milling API 5ST
TS-90 Alloy to reduce the tooling cost and maximize
production. One of the most important and traditional
shaping techniques for the economically viable fabrication
of machine components is material removal. Fast and
accurate machining issues have received much attention
recently in the manufacturing sector due to the
widespread use of engineering materials and alloy steels
with high hardness in industry. Thus, fast-cutting tool
failure causes the integrity of the work piece's surface to
be compromised, geometric tolerances to be lost, and
machining times to increase. The increase in machining
time is caused by downtime as a result of changing and
resetting cutting tools, as well as a loss in tool life, which
eventually results in increases in unit cost (Kundrak et al.,
2018; Coppini & dos Santos, 2015).

A review of the literature on material removal rates (MRRs)
and tool wear rates (TWRs) in milling has been reported
by different researchers by using regression and other
mathematical tools to optimize cutting parameters and a
few applied intelligent models, such as RSM, ANN and
ANFIS, in their work. However, the predictive modelling of
MRR and TWR in milling using combined intelligent
models such as ANFIS, ANN, and RSM has not been
reported. The use of ANFIS in modelling the optimization
of machining parameters in milling processes was
reported by Shukry et al. (2018) and Sandeep et al. (2019)
for MRR, while ANN was reported by Salimiasi and
Özdemir (2016) and Bagga et al. (2021) for TWR, and RSM
was reported by Zhang et al. (2019) for MRR,
Wickramarachchi et al. (2021) for TWR and Hsu & Ngayen
(2017) for MRR. Therefore, this work will provide a detailed
analysis of the use of ANFIS, ANN, and RSM in the
predictive modelling of material removal and tool wear
rates in milling API 5ST TS 90 alloy. Furthermore, a
comparative analysis of the three models, which have not
been reported elsewhere, was investigated, and reported in
this work.

2. Materials and Methods

The study was conducted using API 5ST TS-90 hollow
cylindrical alloy steel with outer and inner diameters of
38.1 mm and 31.75 mm, respectively, and a 50 mm length
as a specimen. The chemical composition and mechanical
properties of the specimen are shown in Tables 1 and 2.
The cutting tool used for the milling operation is a SWT 10
X 10 four-�ute HSS tool with a hardness of 67 HRB. The
chosen HSS cutter can withstand higher feed rates due to
its high level of hardness. A ZX6350C milling machine
with a variable spindle speed of 1750 rpm and a 1.5 kW
main motor drive was used for the milling operation. The
specimen was cleaned by removing approximately 0.2 mm
of the top surface to eliminate surface defects, and it was

qeios.com doi.org/10.32388/GEGPL7 2

https://www.qeios.com/
https://doi.org/10.32388/GEGPL7


properly mounted on the milling machine by using a rigid
machine vice to avoid wobbling. The detailed
speci�cations of the milling machine are captured in Table

3. The experiment was carried out under dry machining
conditions.
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Content %

C Mn P S Si Cr Mo Ni Cu Nb Ti

0.14 0.76 0.02 0.001 0.33 0.59 0.15 0.14 0.30 0.015 0.02

Table 1. Chemical composition of API 5ST TS-90 alloy
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Mechanical property

Yield strength (N/m2) Tensile strength (N/m2) Elongation (%) Hardness

6.8E8 7.4E8 22.0 97HRB

Table 2. Mechanical properties of API 5ST TS-90 alloy
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Speci�cation ZX6350C

Distance from spindle nose to table 90-400 mm

Maximum vertical milling diameter 25 mm

Maximum end milling width 100 mm

Spindle speed range 1750rpm

Table size 1120 x 280

Table travel 600 mm x 230 mm

Main motor 1.5Kw

Spindle travel 120 mm

Overall dimension 1352 mm x 1285 mm x 2130 mm

Gross weight 1350 kg

Table 3. ZX6350C milling machine speci�cation.

2.1. Research Design

The method adopted in this research work was a mix of
both experimental and software-aided design methods to
model and optimize the MRR and TWR of API 5ST TS-90
alloy steel during an end-milling operation. The factors
and their associated effects studied in this research are the
depth of cut (mm), spindle speed (rpm) and feed rate
(mm/min) on the material removal rate (MRR) and tool
wear rate (TWR) in an end milling operation. Central
composite design (CCD) was used with the aid of Design
Expert Software to develop a three-level experimental
matrix made up of twenty (20) experimental runs based
on input parameters (depth of cut, feed rate and spindle
speed) and their respective ranges. The experiment
focused on MRR and TWR as responses.

The experiment was carried out by rigidly �xing the
workpiece on a vice on the bed of the ZX6350C milling

machine; thereafter, the milling parameters were set, and
the machine was powered on. The temperature of the
workpiece was measured after each machining operation
by using an optical pyrometer as well as the weight of the
workpiece before and after experimentation using a
sensitive weighing scale; cutting tool length was also
measured before and after every cut by using a digital
Vernier calliper, and the machining time was also
captured. The experimentation was carried out under dry
milling conditions. The weight of the sample was
measured before and after each phase of the milling test
operation. Similarly, the running time for the tests was
recorded to compute the material removal rate. The
material removal rate was calculated using measurable
data, such as changes in material weight and machining
time. The tool wear rate was also obtained from
measurable data, that is, changes in the length of the
cutting edge with machining time.
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Figure 1. ZX6350C milling machine and workpiece.

In milling processes, the metal removal rate (MRR) is the
volume or weight of material removed per unit of time in
mm3/min or g/min. Materials are removed from the
workpiece in the form of chips for each revolution of the
mill cutter while the workpiece is fed into it. The MRR is
stated mathematically as (Parthasarathi et al., 2022;
Mgbemena et al., 2016):

The MRR can also be obtained by calculating the weight of
material removed per unit time , as shown in
equation 2 below (Shagwira et al., 2021):

where   is the material removal
rate,    is the initial weight of the work piece before
milling,    is the weight of the workpiece after
milling, and   is the density of the steel alloy. For
the steel alloy used in this study, the density is 

 .

The tool wear rate (TWR) is seen as the amount of volume
loss of cutting tool material on the contact surface caused
by interactions between the cutting tool and work piece. It
is stated mathematically as shown below (Kumar et al.,
2016; Mgbemena et al., 2016):

where    is the tool wear rate,    is
the length of the cutting tool before milling,    is
the length of the cutting tool after milling and    is
the time taken for each experimental run.

Data collection for the milling operation was carried out in
real time during the experiments. Data for the respective
responses were recorded twice, and averages were taken
for better accuracy. A digital pyrometer was used to
measure the workpiece temperature before and after each
experimental run. A sensitive weighing scale was used to
measure the weight of the specimen before and after the
milling operation. The length of the mill cutter was also
recorded before and after every experimental run using a
digital Vernier calliper, while a stopwatch was used to
measure the machining time. Table 4 captures the
responses (MRR and TWR) from the different input
parameters in the milling process.

2.2. Analytical Tool/Method of Data Analysis

In this research, the key analytical tools from statistics
and arti�cial intelligence used in this study are the
response surface method (RSM), analysis of variance
(ANOVA), arti�cial neural network (ANN) and adaptive
neuro-fuzzy inference system (ANFIS).

MRR = ( − )/ρtWi Wf (1)

(g/min)

MRR = ( − )/tWi Wf (2)

MRR( /min or g/min)mm3

(g)Wi

(g)Wf

ρ(g/ )mm3

0.0078(g/ )mm3

TWR = ( − )/tLi Lf (3)

TWR(mm/min) (mm)Li

(mm)Lf

t(min)
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Runs Spindle speed (RPM) Feed rate (mm/min) DOC (mm) MRR (mm3/min) TWR (mm/min)

1 505 44.5 0.75 923.08 0.88

2 720 44.5 0.75 1230.77 1.04

3 505 44.5 0.75 923.08 0.96

4 720 24 0.5 153.85 0.44

5 290 24 1 1128.21 0.72

6 505 44.5 1 1179.49 1.56

7 720 65 1 1589.74 2.08

8 505 44.5 0.5 256.41 0.64

9 720 24 1 1282.05 0.80

10 290 44.5 0.75 1076.92 0.88

11 505 44.5 0.75 923.08 0.96

12 505 44.5 0.75 923.08 1.00

13 720 65 0.5 717.95 0.84

14 290 24 0.5 102.56 0.28

15 505 44.5 0.75 923.08 0.96

16 505 24 0.75 666.67 0.48

17 290 65 1 1230.77 1.84

18 505 65 0.75 1000.00 1.80

19 290 65 0.5 512.82 0.84

20 505 44.5 0.75 923.08 0.92

Table 4. Results of DOE for API 5ST TS-90 alloy end milling operations

2.2.1. Response surface Method (RSM)

Response surface methodology (RSM) modelling of the
material removal rate (MRR) and tool wear rate (TWR) was
investigated using central composite design (CCD). This
was done to determine the best conditions for optimum
milling of API 5ST TS-90 Alloy. Equally, this helps to
examine the interactive effects of the three important
factors or parameters. The factors considered for the
machining operation were spindle speed (rpm), depth of
cut (mm) and feed rate (mm/min). These were the
independent variables, whereas the dependent variables or

responses were the material removal rate (mm3/min) and
the tool wear rate (mm/min). The RSM-CCD method used
feed rate, depth of cut, and spindle speed as independent
factors and material removal rate and tool wear rate as
dependent variables, which are seen as responses. The
CCD is a �ve-level experimental design with two factorial

levels (+1 and -1), two axial levels (+α and -α), and one
centre level (0). However, a face-centered method was
utilized, which resulted in three (3)-level experimental
designs; as a result, the independent variables were varied
at each of the three (3) levels. Equation 4 was used to
calculate the coded values of the process parameters:

where    is the coded value of the    variable,  is the

real value of the   test variable,  is the real value of the 
  test variable at the center point, and    is the step

change of the variable. The three factor levels of the
independent variables in terms of the actual factors are
given in Table 5.

= ( − )/ΔXNi Xi Xo (4)

Ni ith Xi

ith Xo

ith ΔX
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Parameters

Level

Low level (-1) Medium level (0) High level (+1)

Spindle speed (rpm) 290 505 720

Feed rate (mm/min) 24 44.5 65

Depth of cut (mm) 0.5 0.75 1

Table 5. Factor levels of independent variables for API 5ST TS-90 end milling

Equation 5 can be used to calculate the total number of
experimental design runs, according to Abbas (2013) and
Arulkumar et al. (2011):

where    represents the number of experimental design
runs and    is the number of input factors.  ,    and 

  represent the factorial points, axial points, and center
points, respectively. In the design, 8 factorial points, 6
axial points, and 6 center points give a total of twenty (20)
experimental data points. Twenty (20) data sets were used
in the RSM analysis. All trials were carried out in duplicate,
and the averages were calculated. The center points aided
in lowering the experimental error, the axial points
ensured the design of the experiment's rotation ability,
and the factorial points demonstrated equal changes
between low and high values (Sahu et al., 2010). By doing
the experiment at random, systematic error was removed.
The experimental design and RSM-CCD analysis of the
machining process were carried out using Design Expert
(version 13) software.

The relationship between the estimated response (Y) and
the independent variables is expressed in equation 6
(Sidda et al., 2011):

where   are the independent variables; Ԑ
is the error term; and k refers to the number of
independent variables.

A pure quadratic model, which is a second-order
polynomial, was used to describe the relationship between
the responses and the independent variables as given in
equation 7.

where Y is the estimated response; βo is the model

constant coef�cient; and βi, βii, and βij represent

coef�cients obtained from the polynomial equation for the
linear, quadratic, and cross products of   ,  and   ,
respectively.

Multivariate regression analysis was performed using the
empirical model in Equation 7 to provide the entire
quadratic model in Equation 8, which was used to model
the MRR and TWR.

N = + 2n +2n nc (5)

N

n 2n 2n

nc

Y = f( , , … … ) + εx1 x2 x3 xk (6)

, , … …x1 x2 x3 xk

Y = + … . . + … … + ⋯β0 ∑
i=1

k

βiXi ∑
i=1

k

βiiX
2
i ∑

i=1

k−1

∑
j=1

k

βijXiXj

(7)

Xi X 2
i XiXj

qeios.com doi.org/10.32388/GEGPL7 9

https://www.qeios.com/
https://doi.org/10.32388/GEGPL7


The coef�cient of determination (R2) and the ANOVA p
value were used to assess the model's acceptability.

2.2.2. Arti�cial Neural Network (ANN)

The arti�cial neural network (ANN) was explored by
modelling and assessing the prediction of MRR and TWR
in the milling process using the Neural Network Toolbox
of MATLAB R2022b (The Mathworks Inc.). The weighted
inputs that come as each neuron are processed via a
nonlinear activation function to create an output signal,
which is inspired by real neurons (Thike et al., 2020). The
model was created using the back-propagation technique,
which is one of the most often used learning algorithms in
ANNs. The ANN modelling made use of the twenty data
sets utilized in the RSM modelling. The ANN design,
according to Nazerian et al. (2018), may be effectively
modelled utilizing RSM-produced experimental data.

The ANN architecture used in this study was 3-h-2, which
translates to three input neurons (representing spindle
speed, feed rate, and depth of cut), an unknown number of
neurons in the hidden layer, and two output neurons
(representing material removal rate and tool wear rate). An
iterative technique was used to determine the optimal
number of neurons in the hidden layer. This was done to
minimize over�tting and a decrease in the convergence
rate caused by a high number of neurons or a small
number of neurons, respectively. The back propagation
model used the Levenberg-Marquadt algorithm; therefore,
the trainlm training function was used, as well as the
method of gradient descent to minimize the network's
sum of square errors (MSE) (Ohale et al., 2017; Mourabet et
al., 2014).

The error back propagation training approach uses weight
updates to reduce the sum of squared errors for the k-
number of output neurons, as seen in equation 9 (Datta et
al., 2010).

where    is the desired output for the Pth pattern. The

weight,  , of the links, as seen in equation 10;

where   is the learning step,  is the learning rate,  is the
momentum constant and    is the error for the
input/output layers.

where   is the number of neurons in the hidden layers. All
links are given modest random weight values to begin the
training process. The input and output patterns are
sequential, with the weights updated each time. Equation
13 is used to determine the mean square error (MSE) at the
conclusion of each epoch attributable to all patterns.

where NP is the number of training patterns. When the
needed MSE or maximum number of epochs is reached,
the training process will be ended.

The metrics for measuring the performance of the
network are the minimum mean square error (MSE) and
correlation coef�cient (R) (Lotfan et al., 2016), as given in
equations 13 and 14.

Y = + + + + 1 + 2 +β0 β1X1 β2X2 β3X3 β1 X 2
1 β2 X 2

2

3 + 2 + 3 + 3 + εβ3 X 2
3 β1 X1X2 β1 X1X2 β2 X2X3

(8)

E = 1/2∑
k=1

K

( − )dkp okp
2 (9)

pdk

w

= + ∩ + αΔwji(n+1) wji(n) δpjopi wji(n) (10)

n ∩ α

jδp

= ( − ) (1 − ) ,  k = 1, 2, …K (11)δpk dkp okp okp

= (1 − )∑ ,  j = 1, 2 …J (12)δpj opj opj δpkwkj

j

MSE =
1

NP
∑
p=1

P

∑
k=1

K

( − )dkp okp
2 (13)
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where    and    represent the predicted and
experimental outputs, respectively, and   is the number of
paired inputs or outputs.

The predictive ability of an ANN is carried out by altering
the weights and biases (learning) in a network to capture
the linear and nonlinear structure of the input while
keeping an acceptable error limit. The weights are
iteratively modi�ed until the network produces the
smallest error for each input and output data set. This is
made achievable by using the right network architecture,
training methods, and hyperparameters (Long et al.,
2020).

Approximately 70% of the data sets were utilized for
training, 15% for validation, and the remaining 15% for
testing. The training data set was used to investigate the
link between the network's input and output parameters.
The validation data set facilitated network generalization,
but the testing data set improved network predictability.
More data sets assigned to training generally decrease the
processing time while strengthening the model (Onu et al.,
2020). Three alternative training methods, activation
functions, and a number of neurons ranging from 2 to 25
were chosen for executing the network's training,
validation, and testing to discover the best suitable for the
machining process (Sada, 2021). The network error was
examined for validation on a regular basis while the
training process proceeded to initiate an early stopping
strategy (Haykin, 2008).

2.2.3. Adaptive Neuro-Fuzzy Inference System

(ANFIS)

The adaptive neuro-fuzzy inference system (ANFIS) is a
sophisticated arti�cial intelligence (AI) technique that
consists mostly of arti�cial neural networks (ANNs)
supported by fuzzy logic (FL) and is utilized in the
modelling of complex and/or complicated nonlinear
systems (Gonzalez et al., 2020). The ANFIS model of the
milling procedure was analysed using MATLAB 2022b
(Fuzzy Logic ANFIS Toolbox). ANFIS is an arti�cial
intelligence (AI) approach that combines adaptive neural
network (ANN) rules and fuzzy logic (FL) theories within
an adaptive network architecture to build a logical link
between inputs and outputs (Sada and Ikpeseni, 2021). The
ANFIS toolbox generates a fuzzy inference system (FIS)
whose membership structure or parameters may be
changed using either a back-propagation approach alone
or in conjunction with a least-squares method. The ANN
procedure, on the other hand, builds the ANFIS FIS model,
which is used to learn or train data. To create an inference

system, �ve different layers are used: the fuzzy layer, the
product layer, the normalized layer, the defuzzy layer, and
the total output layer, each of which consists of different
nodes represented by squares and circles that permit
factors to be changed and �xed, respectively. The �rst
layer has numerous membership functions (MFs) that
turn numerical input data into fuzzy inputs. The output of
each node is calculated using equations 15 and 16, with 

  representing the output and    and 
  representing the �rst layer membership functions

(Mathur et al., 2016).

The network’s second layer was based on the Takagi-
Sugeno inference system, which was guided by the IF-
THEN rule, as shown in equations 17 and 18 (Ying and Pan,
2008).

Rule 1: if d is A1, V is B1 and Fr is C1, then

Rule 2: if d is A2, V is B2 and Fr is C2, then

where d, V and Fr are the inputs representing the depth of
cut (mm), spindle speed (rpm) and feed rate (mm/min),
respectively;   is the output function (MRR and TWR); A1,

B1, C1, A2, B2 and C2 are the language indicators; x1, y1, z1,

x2, y2, z2, u1 and u2 are coef�cients of the output

functions; and   and   are �rst-degree polynomials.

Using the fuzzy subset as an algebraic multiplication, the
fuzzy rules are produced by multiplying the �rst layer's
output signals, as represented by Equation 19 (Jang et al.,
1998).

The ef�cacy of the second layer outputs ῶ is determined at
the third layer by normalizing them to produce an
appropriate weight coef�cient provided by Equation 20.

In the 4th layer, after obtaining the weight coef�cients

from the 3rd layer, the in�uence of each component of the
system's output is estimated using fuzzy rules, as shown
in Equation 21.

R =
⎛

⎝
⎜

( − ) ( − )∑
n
i=1 vpre,i vpre vexp ,i vexp 

∑
n
i=1 ( − )Vpre ,i vpre 

2
∑

n
i=1 ( − )Vexp ,i vexp 

2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

⎞

⎠
⎟ (14)

Vprei Vexpi

n

Oij ∪xi

∪yi−2

= , (x), i = 1, 2 (15)O1i Ux

= , (y), i = 3, 4 (16)O1i Ux

= d + V + Fr +f1 x1 y1 z1 u1 (17)

= d + V + Fr +f2 x2 y2 z2 u2 (18)

f

f1 f2

= ∪A(x) ∪ β(x), i = 1, … … , 4, j,k = 1, 2O2i (19)

= = , i = 1, … … … , 4O3i ω~ i
wi

wj∑i

(20)

= = ( x + y + ) , i = 1, … , 4O4
i ω~ ifi ω~ pi qi ri (21)
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The total of the weighted values acquired in the fourth
layer is used by the �fth layer to construct the system
output as a numerical variable equivalent to the nonfuzzy
component in the fuzzy systems, as shown in Equation 22:

The ANFIS model was activated using the fuzzy inference
system approach as a �ve-layered neural network. In a
typical ANFIS structure, the �rst and last layers represent
the input variables (spindle speed, depth of cut, and feed
rate) and the responses or output variables (MRR and
TWR). The model corresponds to �rst-order Sugeno
inference systems, which turn input parameters into
membership values via membership functions (MFs) in
the second layer using a mechanism known as
fuzzi�cation. The model output was then deduced using a
set of logical rules in the third layer. In the fourth layer, the
inference output was defuzzi�ed to real output values
using output membership functions (Zaghloul et al. 2020).
The �fth layer used double nodes to display the total of all
incoming signals as the overall outputs, which are the
material removal and tool wear rates. The ANFIS analysis
used the same data sets as the ANN modelling. The Neuro
Fuzzy design tool of MATLAB Mathwork GUI was utilized
in this study work to develop and evaluate a fuzzy system.
Loading data, construction of the Fuzzy Inference System
(FIS), and training and testing of the FIS were all possible
with the ANFIS editor and the hybrid learning algorithm
used for the analysis. Prior to this, a training data set is
utilized to search for the constant membership function,
and the data set is then error-checked. In general, the
ANFIS's performance is measured by the root mean square
error between the data and the system output (Sada and
Ikpeseni, 2021).

2.3. Statistical Error Indicators Used for Evaluation

of the RSM, ANN and ANFIS Models

Different statistical techniques can be used to validate the
RSM, ANN, and ANFIS models. The mean absolute bias
error (MABE), mean absolute percentage error (MAPE),
root mean square error (RMSE), and coef�cient of

determination (R2) are the most often used statistical
error indicators (Olayode et al., 2023). The average total
amount of all the absolute bias errors discovered when
comparing the actual and predicted values can be referred
to as the mean absolute bias error (MABE). It is
represented mathematically as:

The mean absolute percentage difference (MAPE) between
expected and actual responses can be calculated. The

mathematical formula for this is:

The RMSE is determined by knowing the model's
accuracy, which is established by comparing the projected
and experimental responses, which is necessary to
calculate the RMSE. The value is never negative and is
always positive. It is denoted mathematically as:

The R2, also known as the coef�cient of determination,
signi�es the optimal relationship between both the
predicted and actual responses. This is mathematically
represented as:

where    represents the predicted responses and 
 indicates the actual responses.

3. Results and Discussions

3.1. Response Surface Modelling

3.1.1. Material removal rate (MRR)

Model �ts for the milling process using linear, two (2)
Factor interactions (2FI), quadratic, and cubic models. The

coef�cient of determination (R2) and standard deviation
were the most important metrics for rating the generated

models. Because their R2 values were not close to unity,
the linear and 2FI models were not recommended. The
cubic model was not proposed since the CCD lacked
suf�cient runs to justify it (Oguanobi et al. 2019). The

quadratic model was suggested since its R2 value was
0.9996 and its standard deviation was 11.01. This result
suggested that the quadratic model can explain 99.96% of
the variations in MRR with process variables. The strong

R2 value suggested that the derived models could provide a
persuasively good approximation of the response within
the examined range.

From this study, if the regression coef�cient (R2) of the
modelling process is low, that is, less than 70%, then the
mathematical model is not good (Mazaheri et al., 2017).

The value of adjusted R2 was 0.9992, which indicated a
good degree of correlation between the experimental and

predicted values. The predicted R2 was 0.9951. These
values were within 0.2 of each other, showing that there is
no problem with either the data or the model (Taran and

=O5 ∑
i

ω~fi (22)

MABE = |( − )|
1

N
∑
i=1

N

Vi,p Vi,e (23)

MAPE = ( ) × 100%
1

N
∑
i=1

N ∣

∣
∣

−Vi,p Vi,e

Vi,e

∣

∣
∣ (24)

RMSE =
1

N
∑
i=1

N

( − )Vi,p Vi,e
2

− −−−−−−−−−−−−−−

⎷


 (25)

= 1 −R2

1
N
∑

N
i=1 ( − )Vi,p Vi,e

2

1
N
∑

x
i=1 ( − )Vi,p Vi,avg

2
(26)

Vi,p
Vi,e
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Aghaie, 2015). Furthermore, the predicted R2 and adjusted

R2 values showed acceptable signi�cance; hence, the
quadratic model suggested was adequate.

ANOVA was utilized to analyse the relevance of the model
and process parameters, as well as to �nd the relevant
factors in a quadratic model. The F test and p value were
used to evaluate the signi�cance of each coef�cient. If the
p value decreases and the absolute F value increases, then
the associated variables become more signi�cant (Amani-
Ghadim et al. 2013). The proposed quadratic model was
signi�cant since its p value was less than 0.0001 and its F
value was 2612.72, indicating appropriate quadratic model
�tting. There is only a 0.01% chance that an F value this
large could occur due to noise. A 95% con�dence interval
was employed, which indicates that "Prob > P" values less
than 0.05 showed that such model terms are signi�cant.
Because the P value was less than 0.05, all the individual
and interactions of the process parameters were
signi�cant in this scenario. Model reduction, according to
Gholamhossein et al. (2016), may enhance the model if
there are numerous insigni�cant model terms.

A standard deviation that is stated as a percentage of the
mean is called the coef�cient of variation (CV). The lower
the CV is, the smaller the residuals are relative to the
expected values (Körbahti and Tanyolaç, 2008); the
experiment performed in this study has a CV value of
1.25%, indicating great dependability and good accuracy
(Gholamhossein et al. 2016). The CV was calculated as the
standard deviation divided by the mean of the output
variable. A model is considered reproducible if the CV is
less than 10%, according to Chen et al. (2011).

The range of predicted values at the design points is
compared to the average prediction error to determine
adequate precision. An adequate precision ratio (APR)
larger than four (4) shows that the model is effective
(Noordin et al. 2004); an APR of 187.65 was obtained, which
was much higher than the necessary minimum, which
suggests good model performance (Okpe et al. 2018;
Oguanobi et al. 2019). This was consistent with the
�ndings of Kiomars et al. (2015). The derived quadratic
model was Equation 27. The equation was used to model
the MRR when milling API 5ST TS-90 alloy using the
depth of cut, spindle speed, and feed rate as process
parameters.
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The model equation could be used to make predictions
about the response (MRR) for given levels of factors. A
positive sign in front of these factors indicates that a rise
in such a factor favors the material removal rate (MRR), so
it is synergistic, while a negative sign re�ects a decrease in
such factors, which shows an antagonistic effect. The
coef�cients associated with a single component A (spindle
speed), B (feed rate), and C (depth of cut) indicate the
in�uence of that factor on MRR. The coef�cients with two
factors (combinations of these elements) and others with
second-order terms demonstrate the interaction between
the two factors and the quadratic impact. All the model
individual and interacting variables were signi�cant in the
ANOVA discussion. As a result, no model reduction is
needed.

RSM Diagnostic plots for MRR

In �gure 2, graphical estimations were employed in
addition to the correlation coef�cients to depict the
features of the residual (the difference between the
experimental and projected values), which is needed for
determining the model’s �tness and acceptability in
modelling the process. Figure 2 depicts the normal
probability plot. It was utilized to identify meaningful

deviations from normalcy in the model. A normal
probability plot plots the sorted data against the values
selected. A straight line would be formed by the points on
the normal probability plot if the residuals were normal
(Lee and Gilmore, 2005). If the data are roughly normally
distributed, this plot is required to make the �nal image
seem near a straight line. Departures from a straight line
indicate deviations from normalcy (Lee and Gilmore,
2005). The data in the plots were found to be tightly
distributed inside the straight line of the plot. This
revealed that the model could predict the material removal
rate (MRR) within the parameters investigated. The
anticipated plot versus actual experimental MRR in Figure
3 shows the quadratic model's suitability in describing the
milling process (Iheanacho et al., 2019).

In terms of coded terms, the perturbation graph depicts
the departure from the reference point. A deviation's
reference point is the mean. As shown in Figure 4, the
reference point is 900 mm3/min of MRR. The depth of cut
(C) has the greatest deviation, ranging from 200 mm3/min
to 1100 mm3/min MRR, with coded values ranging from -1
to +1. Spindle speed (A) had the least amount of deviation,
ranging from 1080 to 1300 MRR.

MRR = 925.88 + 92.31A + 171.79B + 466.67C + 44.87AB 
+

32.05AC − 70.51BC + 223.77 − 96.74 − 212.12A2 B2 C2

(27)
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Figure 2. Normal plot of residuals for MRR
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Figure 3. Predicted vs actual plot of residuals for MRR
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Figure 4. Perturbation plot for MRR

RSM three-dimensional (3D) surface plots and sensitivity

analysis for MRR

The quadratic model's three-dimensional (3-D) surface
plots were used to estimate the material removal rate
(MRR) and depict the link between the interaction of the
experimental variables and the response. The 3-D
response surface plots were graphical representations of
any two variables' interaction effects, shown as a function
of two factors while holding all other factors constant at
their null values. Graphical representations such as three-
dimensional (3-D) and contour surface plots may be used
to explore the interaction impacts of the combination of
input factors such as spindle speed, feed rate and depth of

cut and response (MRR) (Okpe et al., 2018; Iheanacho et al.,
2019).

The elliptical nature of 3-D response surface plots
illustrates the synergistic interaction between the two
independent variables plotted together and indicates a
good interaction of the two variables, whereas the circular
shape of the 3D plots indicates no interaction between the
variables (Onu et al., 2021). As a result, the elliptical form of
the 3D graphs in Figures 5 to 7 re�ected all the variables'
reciprocal connections. Every two variables had a
relatively signi�cant interaction, and the surface restricted
in the smallest ellipse in the contour diagrams represented
the greatest expected yield.
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Figure 5. 3D surface plot of feed rate and spindle speed
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Figure 6. 3D surface plot of the depth of cut and spindle speed

qeios.com doi.org/10.32388/GEGPL7 19

https://www.qeios.com/
https://doi.org/10.32388/GEGPL7


Figure 7. 3D surface plot of the depth of cut and feed rate.

Sensitivity analysis was used to show the in�uence of each
process parameter on the material removal rate in the
milling process, as presented in Figure 8. The sensitivity
analysis indicated that the depth of cut had the highest
in�uence on the material removal rate, while the spindle

speed was the least dominant factor among the factors
considered in the milling process. The order of
signi�cance of the process parameters on the milling
process is as follows: depth of cut > feed rate > spindle
speed.
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Figure 8. In�uence of process parameters in milling API 5ST TS-90 Alloy

3.1.2. Tool Wear Rate (TWR)

Model �ts for the milling process using linear, two (2)
Factor interactions (2FI), quadratic, and cubic models. The

coef�cient of determination (R2) and standard deviation
were the most important metrics for rating the generated

models. Because the R2 values of other models were not
close to unity apart from the 2FI, the two-factor

interaction (2FI) model was recommended since its R2

value was 0.9904 and its standard deviation was 0.0544.
The cubic model was not proposed since the CCD lacked
suf�cient runs to justify it (Oguanobi et al. 2019). This
result suggested that the 2FI model can explain 99.04% of
the variations in TWR with process variables. The strong

R2 value suggested that the derived models could provide a
good approximation of the response within the examined

range. From this study, if the regression coef�cient (R2) of
the modelling process is low, that is, less than 70%, then
the mathematical model is not good (Mazaheri et al.,
2017).

The value of adjusted R2 was 0.9859, which indicated a
good degree of correlation between the experimental and

predicted values. The predicted R2 was 0.9629. These
values were within 0.2 of one another, demonstrating that
neither the data nor the model were �awed (Taran and

Aghaie, 2015). Furthermore, the predicted R2 and adjusted

R2 values showed acceptable signi�cance; hence, the 2FI
model suggested was adequate.

ANOVA was utilized to analyse the relevance of the model
and process parameters, as well as to �nd the relevant
factors in a 2FI model. The F test and p value were used to
evaluate the signi�cance of each coef�cient. If the p value
decreases and the absolute F value increases, then the

associated variables become more signi�cant (Amani-
Ghadim et al. 2013).

The proposed 2FI model was signi�cant since its p value
was less than 0.0001 and its F value was 222.74, indicating
appropriate model �tting. There is only a 0.01% chance
that an F value this large could occur due to noise. A 95%
con�dence interval was employed, which indicates that
"Prob > P" values less than 0.05 showed that such model
terms are signi�cant. Because the P value was less than
0.05, some of the individual and interactions of the process
parameters were signi�cant in this scenario. Model
reduction, according to Gholamhossein et al. (2016), may
enhance the model if there are numerous insigni�cant
model terms.

An APR of 55.84 was obtained, which was much higher
than the necessary minimum, which suggests good model
performance (Okpe et al. 2018; Oguanobi et al. 2019). This
was consistent with the �ndings of Kiomars et al. (2015).
The experiment performed in this study has a CV value of
5.54%, indicating great dependability and good accuracy
(Gholamhossein et al. 2016). Multiple regression analysis
was performed to correlate the response (tool wear rate -
TWR) with the three factors evaluated using a second-
order polynomial equation (depth of cut, spindle speed,
and feed rate). The derived 2FI model is shown in Equation
28. The equation was used to model the TWR when
milling API 5ST TS-90 alloy using the depth of cut, spindle
speed, and feed rate as process parameters.

The coef�cients associated with a single component (A
(spindle speed), B (feed rate), and C (depth of cut) indicate
the in�uence of that factor on TWR. The coef�cients with
two factors (combinations of these elements) represent the

TWR = 0.9810 + 0.05A + 0.452B + 0.396C −
0.0175AB + 0.0025AC + 0.1975BC

(28)
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interaction between the two factors. All the model
individual and interacting variables were signi�cant apart
from AB and AC in the ANOVA discussion. As a result,
model reduction was needed; the insigni�cant terms were

AB and AC since their respective p values were above 0.05.
Therefore, eliminating the insigni�cant terms, the �nal
model equation will be as expressed in Equation 29.
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The model equation 29 could be used to predict the
response for the given level of factors. It was also effective
for determining the relative importance of the factors by
comparing their coef�cients.

RSM Diagnostic plots for TWR

Figure 9 depicts the normal probability plot. The straight
line of the plot revealed that the model could predict the
tool wear rate (TWR) within the parameters investigated.

The plot of anticipated versus actual experimental TWR in
Figure 10 shows the 2FI model's suitability in describing
the milling process (Iheanacho et al., 2019). The
perturbation graph is shown in Figure 11, and the
reference point is 0.98 mm/min of TWR. The feed rate (B)
has the greatest deviation, ranging from 0.5 mm/min to
1.4 mm/min TWR, with coded values ranging from -1 to +1.
Spindle speed (A) had the least amount of deviation,
ranging from 0.93 to 1.03 TWR.

TWR = 0.9810 + 0.05A + 0.452B + 0.396C + 0.1975BC (29)
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Figure 9. Normal plot of residuals
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Figure 10. Predicted versus actual plot of residuals
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Figure 11. Perturbation plot

RSM three-dimensional (3D) surface plots and sensitivity

analysis for TWR

The 3D graphs in Figures 12 to 14 re�ect all the variables'
reciprocal connections. B (feed rate) and C (depth of cut)

are the two variables that had a relatively signi�cant
interaction, and the surface restricted in the smallest
ellipse in the contour diagrams represented the greatest
expected yield.
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Figure 12. 3D surface plot of feed rate and spindle speed
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Figure 13. 3D surface plot of the depth of cut and spindle speed
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Figure 14. 3D surface plot of the depth of cut and feed rate.

Sensitivity analysis was used to show the in�uence of each
process parameter on the tool wear rate in the milling
process, which is presented in Figure 15. The sensitivity
analysis indicated that feed rate has the highest in�uence
on the tool wear rate, while spindle speed was the least

dominant factor among the factors considered in the
milling process. The order of signi�cance of the process
parameters on the drying process is as follows: feed rate >
depth of cut > spindle speed.
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Figure 15. In�uence of process parameters on TWR in milling API 5ST TS-90 Alloy

3.2. ANN Modelling for MRR and TWR

ANN modelling was conducted using MATLAB 2022b. Data
were divided so that 70% was utilized for training, 15% for
validation, and 15% for testing. This translates to 14
training data sets, 3 validation data sets, and 3 testing data
sets. More data sets assigned to training prevent
overparameterization (Jamil et al. 2018). To �nd the ideal
number of neurons in the hidden layer using the trial-
and-error method, the lowest mean squared error (MSE)

and highest correlation coef�cient were utilized as
performance checks. The hidden layer in this scenario has
eight ideal neurons. The ANN architecture for the milling
process was therefore 3-8-2, which corresponds to 3
neurons in the input layer, 8 neurons in the hidden layer,
and 2 neurons in the output layer. Levenberg‒Marquardt
(LM) back propagation was the algorithm utilized in the
ANN modelling. The regression coef�cient and the mean
square error at the optimum ANN architecture are
tabulated in Table 6, and the properties of the ANN
modelling are given in Table 7.
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Objective Number of samples Mean square error Regression value

Training 14 1.1429e-04 1

Validation 3 1.1000e-03 1

Testing 3 - 0.99867

Table 6. Regression values and the mean square errors for 8 neurons in the hidden layer
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Algorithm

Error function

Input layer neuron

Hidden layer neuron

Output layer neuron

Training

Hidden layer

Data division

Back propagation

Mean square error

3

8

2

Levenberg-Maraquardt

Trainlm

Dividerand

Table 7. Properties of the ANN model

Figure 16 shows the regression graphs for the training,
validation, testing, and entire network process in relation
to the targets. The correlation coef�cients obtained for the
training, validation, testing and overall neural network
processes were 1, 1, 0.99867, and 0.99698, respectively. The
plot of the validation performance is presented in Figure

17. The performance of the network process for validation
was analysed to determine the reliability of the training
process. The training network showed a validation
performance with a mean square error of 1.0667e-03 at
epoch 7.
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Figure 16. Regression plots for training, validation, test, and all (overall) for the ANN model.

Figure 17. ANN validation performance of the milling

process

3.3. ANFIS Modelling for MRR and TWR

The experimental data were entered into a MATLAB m-�le
as a 20x4 matrix, which represented 20 samples of each of

the three input factors (spindle speed, depth of cut, and
feed rate), as well as 20 samples of the single output
variable (material removal rate) and was also replicated for
TWR. The least squares and gradient methods were used
to create the ANFIS model's structural framework. The
Gaussmf membership function was used in the grid
partition check. The hybrid train FIS optimization
approach was used to train the generated data with the
help of the Gaussmf membership function (Shukry et al.,
2018).

Figure 18. High-level fuzzy architecture for the MRR

model
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Figure 19. High-level fuzzy architecture for the TWR

model

Figures 20 and 21 show that the fuzzy inference system
(FIS) output signi�cantly tracked the training data for the
milling process.

Figure 20. ANFIS training data against FIS output data for

MRR

Figure 21. ANFIS training data against FIS output data for

TWR

The ANFIS data were trained at an error tolerance of
0.0001 and 100 epoch iterations. The training produced an
error magnitude of 0.001222, which stabilized at 100
epochs of training for MRR, and an error magnitude of
0.020656, which stabilized at 100 epochs of training for
TWR. The low mean square error value obtained showed
that there was no over�tting in the training process and
that the ANFIS model can satisfactorily predict the MRR
and TWR in milling API 5ST TS-90 alloy.

3.4. Model Prediction and Comparison

The MRR and TWR predictive ef�ciency of the trained
RSM, ANN, and ANFIS models’ predictions were compared.
The comparisons were based on the MRR and TWR
predictions of the models at the experimental conditions
for the twenty data sets. The experimental or observed
values and predicted values together with the calculated
residual values are highlighted in Tables 8 and 9 for the
material removal rate (MRR) and tool wear rate (TWR),
respectively. The residual was calculated as the difference
between each experimental value and its corresponding
predicted value.

Figure 22. ANFIS model structure for MRR and TWR
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S/N Experimental MRR(mm3/min)
RSM ANN ANFIS

Predicted MRR Residual Predicted MRR Residual Predicted MRR Residual

1 923.08 925.88 -2.8 924 -0.92 923 0.08

2 1230.77 1241.96 -11.19 1226 4.77 1230 0.77

3 923.08 925.88 -2.8 924 -0.92 923 0.08

4 153.85 147.21 6.64 154.4 -0.55 153 0.85

5 1128.21 1126.29 1.92 1128 0.21 1128 0.21

6 1179.49 1180.42 -0.93 1233 -53.51 1180 -0.51

7 1589.74 1577.97 11.77 1586 3.74 1590 -0.26

8 256.41 247.09 9.32 253 3.41 256 0.41

9 1282.05 1285.66 -3.61 1256 26.05 1280 2.05

10 1076.92 1057.34 19.58 1228 -151.08 1080 -3.08

11 923.08 925.88 -2.8 924 -0.92 923 0.08

12 923.08 925.88 -2.8 924 -0.92 923 0.08

13 717.95 721.56 -3.61 710 7.95 718 -0.05

14 102.56 116.43 -13.87 145 -42.44 103 -0.44

15 923.08 925.88 -2.8 924 -0.92 923 0.08

16 666.67 657.35 9.32 605.5 61.17 667 -0.33

17 1230.77 1239.51 -8.74 1249 -18.23 1230 0.77

18 1000 1000.93 -0.93 1102 -102 1000 0

19 512.82 511.3 1.52 495.6 17.22 513 -0.18

20 923.08 925.88 -2.8 924 -0.92 923 0.08

Table 8. RSM, ANN, and ANFIS comparative analysis for MRR in milling API 5ST TS-90 alloy:
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S/N Experimental TWR (mm/min)
RSM ANN ANFIS

Predicted TWR Residual Predicted TWR Residual Predicted TWR Residual

1 0.88 0.981 -0.101 0.9121 -0.0321 0.947 -0.067

2 1.04 1.03 0.01 0.6709 0.3691 1.04 0

3 0.96 0.981 -0.021 0.9121 0.0479 0.947 0.013

4 0.44 0.3955 0.0445 0.4613 -0.0213 0.44 0

5 0.72 0.6575 0.0625 0.7174 0.0026 0.72 0

6 1.56 1.38 0.18 1.55 0.01 1.56 0

7 2.08 2.06 0.02 1.601 0.479 2.08 0

8 0.64 0.585 0.055 0.634 0.006 0.64 0

9 0.8 0.7975 0.0025 0.8172 -0.0172 0.8 0

10 0.88 0.931 -0.051 0.8567 0.0233 0.88 0

11 0.96 0.981 -0.021 0.9121 0.0479 0.947 0.013

12 1 0.981 0.019 0.9121 0.0879 0.947 0.053

13 0.84 0.8695 -0.0295 0.86 -0.02 0.84 0

14 0.28 0.2655 0.0145 0.504 -0.224 0.28 0

15 0.96 0.981 -0.021 0.9121 0.0479 0.947 0.013

16 0.48 0.529 -0.049 0.4756 0.0044 0.48 0

17 1.84 1.99 -0.15 2.053 -0.213 1.84 0

18 1.8 1.43 0.37 1.775 0.025 1.8 0

19 0.84 0.8095 0.0305 0.785 0.055 0.84 0

20 0.92 0.981 -0.061 0.9121 0.0079 0.947 -0.027

Table 9. RSM, ANN, and ANFIS comparative analysis for TWR in milling API 5ST TS-90 alloy

The plots of experimental MRR against predicted MRRs by
the ANN, ANFIS, and RSM models are presented in Figures
23 to 25 for MRR and Figures 26 to 28 for TWR. The high
correlation of the �gures supported the assertion that the
three models have excellent correlation and adequate
predictive ability in predicting MRR and TWR during the
milling process. The coef�cients of determination
obtained were all greater than 0.85, indicating that all

three models were relatively adequate in modelling and
predicting the MRR and TWR. However, for MRR, ANFIS

(R2 = 1) and RSM (R2 = 0.9996) were marginally better

than ANN (R2 = 0.9867) in the predicted material removal

rate for the milling process. For TWR, ANFIS (R2 = 0.998)

and RSM (R2 = 0.9488) were slightly better than ANN (R2 =
0.8929) in the predicted tool wear rate for the milling
operation.
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Figure 23. Experimental against RSM-predicted MRR for milling API 5ST TS-90

alloy
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Figure 24. Experimental against ANN-predicted MRR for milling API 5ST TS-90

alloy
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Figure 25. Experimental against ANFIS-predicted MRR for milling API 5ST TS-

90 alloy
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Figure 26. Experimental against RSM predicted TWR for milling API 5ST TS-90

alloy
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Figure 27. Experimental against ANN predicted TWR for milling API 5ST TS-90

alloy
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Figure 28. Experimental against ANFIS predicted TWR for milling API 5ST TS-90

alloyThe statistical error indicators used for the evaluation of the ANN, RSM and

ANFIS models for MRR and TWR are shown in Table 10.
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Statistical indicators
RSM ANN ANFIS

MRR TWR MRR TWR MRR TWR

MABE 5.9875 0.0657 24.8925 0.0871 0.5195 0.0093

MAPE 1.5147% 6.2383% 4.5113% 10.0586% 0.0967% 0.9956%

RMSE 7.7927 0.1058 46.4004 0.1553 0.9087 0.0207

R2 0.9996 0.9488 0.9867 0.8929 1.000 0.998

Table 10. Statistical indicators for RSM, ANN, and ANFIS for MRR and TWR

Comparatively, ANFIS (R2 = 1, MABE=0.5195,

MAPE=0.0967%, RMSE=0.9087) and RSM (R2 = 0.9996,
MABE=5.9875, MAPE=1.5147%, RMSE=7.7927) were

marginally better than ANN (R2 = 0.9867, MABE=24.8925,
MAPE=4.5113%, RMSE=46.4004) in the predicted material
removal rate for the milling process. For the tool wear rate,

ANFIS (R2 = 0.998, MABE=0.0093, MAPE=0.9956%,

RMSE=0.0207) and RSM (R2 = 0.9488, MABE=0.0657,
MAPE=6.2383%, RMSE=0.1058) were slightly better than

ANN (R2 = 0.8929, MABE=0.0871, MAPE=10.0586%,
RMSE=0.1553) in the predicted tool wear rate for the
milling operation. Generally, ANFIS showed a better
predictive capability than RSM and ANN for both MRR and
TWR.

3.5. Optimization and validation of the milling

process

The optimization of the milling process was performed
with the aid of the numerical optimization tool of CCD-

RSM in Design Expert Software. The MRR was set at a
maximum, and the TWR was set at a minimum to achieve
optimum milling operation. Increased production at a
lower tooling cost was the target of the optimization
procedure. Forty-�ve (45) different solutions of
optimization desirability were proposed by the central
composite design for the milling operation. The
desirability values range from 0 to unity based on how
close the response is to the objective. The closer the
desirability is to one, the better the accuracy. For the
milling process, condition 1 of the optimization condition
suggested by the CCD-RSM was selected with predicted
optimum MRRs of 1272.163 mm3/min and 0.781 mm/min
for TWR. The optimum milling process was validated
under the suggested experimental conditions by carrying
out a milling experiment under those conditions. The test-
retest method was used, and the mean MRR and TWR
were selected. The results tabulated in Table 11 show a
close correlation between the predicted and validated
optimum MRR and TWR.

qeios.com doi.org/10.32388/GEGPL7 43

https://www.qeios.com/
https://doi.org/10.32388/GEGPL7


Responses
Predicted optimum conditions

Predicted optimum Validated optimum
Spindle speed Feed rate Depth of cut

MRR 720.00 24.00 0.979 1272.163 1270.05

TWR 720.00 24.00 0.979 0.781 0.77

Table 11. Optimum MRR, TWR and validation

4. Conclusion

From this study, the RSM, ANN, and ANFIS models were
effectively used in predicting and modelling the milling
process with a coef�cient of determination above 0.85.
Comparatively, the ANFIS model gave marginally better
MRR and TWR predictions than ANN and RSM, while RSM
gave a better prediction than ANN. The optimum process
milling parameters (i.e., feed rate, spindle speed and depth
of cut) for a better material removal rate (MRR) and tool
wear rate (TWR) were obtained as a 720 rpm spindle
speed, 24 mm/min feed rate and 0.979 mm depth of cut to
achieve the best output of 1272.163 mm3/min MRR and
reduced tool wear rate of 0.781 mm/min. The optimum
milling process was validated under the suggested
experimental conditions by carrying out a milling
experiment under those conditions, and the results
showed a close correlation between the predicted and
validated optimum values. The optimum milling
parameters obtained from this study would give
machinists and production engineers the opportunity to
have an improved production process and reduced tooling
cost often associated with tool wear.
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