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The so-called Platonic solids have fascinated mathematicians and artists for

over 2000 years. It is astonishing that there are only �ve cases of regular

polyhedra, that is, of polyhedra in which regular polygons form the same

spatial angles between them at each vertex. In 1619, Kepler added the small and

great stellated dodecahedron to this list, but he allowed intersecting faces.

Poinsot did so too, in 1809, and discovered the great dodecahedron and great

icosahedron. In the 20th century, Coxeter and Petrie added three more regular

polyhedra, using in�nitely repeating elements, based on the truncated

tetrahedron, the cube, and the truncated octahedron.

The principle of intersecting faces, typical for the Kepler-Poinsot solids, can be

combined with the Coxeter-Petrie generalization to the in�nite case. Thus, a

new regular polyhedron was discovered, based on the cubohemioctahedron

but without its square faces. Placed side by side and on top of each other,

identical regular hexagons meet at each vertex, always with the same spatial

angle. There are 8 of them at each vertex, and so it is not a compound of twice

two polyhedra with 4 hexagons at each vertex. The dual of this {6, 8}

polyhedron of in�nite Kepler-Poinsot type is indeed a {8, 6} polyhedron of

in�nite Kepler-Poinsot type, if two overlapping squares are considered as one

8/4 octagonal star.

Kepler-Poinsot solids are dif�cult to interpret, with their intersecting faces,

and this in�nite case is even more dif�cult to grasp. The present paper tries to

solve this using open faces so that one can see through the solids.

Corresponding author: Dirk Huylebrouck, dirk.huylebrouck@kuleuven.be

Introduction

The �ve regular Platonic solids are very well-known: the tetrahedron, the

octahedron, the cube, the icosahedron, and the dodecahedron. These polyhedra

combine regular polygons of the same type (equilateral triangles, squares, or

pentagons), and at each vertex, the spatial angle is identical. The so-called

Schlä�i symbol for the tetrahedron summarizes that equilateral triangles meet,

three at each vertex: {3, 3}. In an octahedron, equilateral triangles are used too,

but now four at each vertex {3, 4}. A cube groups squares, three at a time: {4, 3}.

Similarly, {3, 5} is the Schlä�i symbol for the icosahedron, and {5, 3} for the

dodecahedron (see �gure 1).
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In this paper, polyhedra are represented with ‘open’ faces, which is quite unusual

today. Leonardo da Vinci used this representation for Luca Pacioli’s ‘Divine

Proportione,’ but planar faces are now more common. However, for

understanding Kepler-Poinsot solids, opening the faces will be helpful. Even in

the case of the �ve regular polyhedra, it allows one to better see the duals hidden

inside each polyhedron. These duals are constructed by connecting the centers of

each face. Thus, the tetrahedron is self-dual, the dual of the octahedron is the

cube, and vice versa, and the dual of the icosahedron is the dodecahedron and

reciprocally. They correspond to a switch of the Schlä�i symbols.

Figure 1. The �ve Platonic solids and their duals.

Four more regular solids, the so-called Kepler-Poinsot polyhedra, can be

obtained when star polygons or intersecting polygons are allowed. Two of them,

the small stellated dodecahedron and the great stellated dodecahedron, use

pentagonal stars or pentagrams, represented by the symbol 5/2. The other two,

the great icosahedron and the great dodecahedron, combine triangles and

respectively pentagons around a vertex in the same way as a pentagonal star

rotates around its center, and thus their number is equally symbolized by 5/2 (see

�gure 2 and [1]). As the faces of the Kepler-Poinsot polyhedra come close to the

center of the polyhedron, the duals are harder to see than in the previous cases.

The great stellated dodecahedron and great icosahedron are each other's duals

but become tiny with respect to the original polyhedron when constructed using

the centers of the faces.
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Figure 2. The four Kepler-Poinsot solids and their duals with detailed views below.

Coxeter and Petrie extended the concept of a regular polyhedron to in�nite

polyhedra, where one ‘atom’ is repeated to in�nity, and again regular polygons

meet at each vertex in identical angles. They obtained three regular

con�gurations, two using hexagons, and one using squares (see �gure 3). When

the triangles of a truncated tetrahedron are removed, only 4 hexagons remain,

and arranging them next to each other creates an in�nite polyhedron with

Schlä�i symbol {6, 6}, as six hexagons meet at each vertex. Representing them

with open faces allows one to see that it is a self-dual polyhedron. Removing two

opposite faces of a cube can make an arrangement so that six squares meet at

each vertex. Their centers form a hexagon that will then form open truncated

octahedrons. Thus, the {4, 6} has a {6, 4} arrangement as a dual and vice-versa.
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Figure 3. The three Coxeter-Petrie regular in�nite polyhedra (above) with their

duals (below).

A New Regular Polyhedron, of In�nite Kepler-

Poinsot Type

All previously mentioned polyhedra were regular in the sense that they only used

the same type of regular polygons in the same con�guration, using the same

spatial angles. Combining two of the above principles, the intersecting faces

considered by Kepler and Poinsot and the in�nite constructions invented by

Coxeter and Petrie, the author could �nd yet another regular polyhedron (see [2]).

However, it is rather dif�cult to grasp because of this combination, and so here it

is tried to visualize it better using open faces. Usually, a so-called

cubohemioctahedron, having four hexagons with common centers and six

squares, is represented in such a way that at �rst sight one would think there are

triangles between the squares. In addition, when making paper models of the

cubohemioctahedron, it is easier to use triangles indeed (see �gure 4).
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Figure 4. Representations of the cuboctahedron {4, 3, 4, 3}, the

cubohemioctahedron {4, 6, 4, 6}, and the open cubohemioctahedron.

If we now place an in�nite number of those open cubohemioctahedra next to

each other as in Coxeter’s cases, we get an in�nite polyhedron (see �gure 5). It is

regular and of Kepler-Poinsot type because the faces intersect each other. Eight

hexagons meet at each vertex, and so its symbol is {6, 8}. It is a new regular

polyhedron (see  [3],  [4],  [1],  [5]). Asked for a second opinion on the {6, 8}-

polyhedron, Branko Grünbaum stated that “it appears to satisfy the conditions

imposed explicitly by Coxeter and others” for a shape to be called a polyhedron.

“I must say that I never encountered it in the literature,” Grünbaum added.

Figure 5. A regular in�nite Kepler-Poinsot polyhedron, of which some atoms are

shown (left) or many more (right).

The dual of the {6, 8} should be an {8, 6}, that is, a polyhedron in which 6

octagons meet at each vertex. Knowing the dual of the cubohemioctahedron is

the hexahemioctacron, with vertices at in�nity, one is warned this may be an

even more unusual polyhedron. However, if the hexagons are chosen in such a

way that they form a {6, 4}, the dual can be formed as for the in�nite Coxeter-

Petrie polyhedron made by open truncated octahedrons (�gure 3 last row and to
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the right). Putting the four constructions together, each square must be counted

twice.

Figure 6. Constructing the dual, ‘color by color’.

Now two overlapping squares can be considered as one ‘octagonal star’. Indeed,

the usual octagonal star is represented by 8/3, and often the more unusual star

8/2 is distinguished as well. It consists of two overlapping squares, making an

angle of 45° so that the combination indeed has 8 vertices. However, the two

squares could also overlap entirely, and when the vertices are counted twice, an

‘octagonal star’ is obtained, which can be called an 8/4.

Figure 7. Octagonal stars.

Thus, the dual of the new {6, 8} polyhedron (of in�nite Kepler-Poinsot type) is

indeed the {8, 6} (of in�nite Kepler-Poinsot type).
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Figure 7. Elements of the {6, 8} polyhedron and its dual, the {8, 6}; the shade on

some squares illustrates the overlap.
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