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Classically, type 2 diabetes is believed to be a result of insulin resistance and relative

insulin de�ciency. However, evidence has been accumulating against the insulin

resistance models. The absence of lasting hyperglycemia by insulin receptor

knockouts or insulin suppression, evidence for hyperinsulinemia preceding insulin

resistance, the perplexing hyperinsulinemic normoglycemic state, reduced glucose

transport to the brain preceding hyperglycemia, signs of vasculopathy preceding

hyperglycemia, absent or poor correlation between fasting glucose and insulin, and a

very strong positive correlation between indices of insulin resistance and β cell

function in population data are some of the anomalous �ndings that classical glucose

homeostasis models have not addressed so far. With increasing evidence for neuronal

involvement in glucose regulation, we propose a re�ned model of glucose regulation

that considers brain glucose and insulin levels as the ultimate target of homeostasis

and combines central and peripheral mechanisms of regulation. A model considering

a reduced rate of blood-to-brain transportation of glucose and insulin as the primary

pathology explains most of the patterns, with or without insulin resistance or any

other defect in glucose regulation mechanisms. Apart from resolving multiple

anomalies, the model also accounts for the failure of glucose normalization in

effectively reducing diabetic complications and mortality.
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1. Introduction

1.1. Flow and organization of the article

The hypotheses being considered and the outcome of the
article deviate substantially from the prevalent mainstream
beliefs in the �eld of type 2 diabetes mellitus (T2DM). Since
the disruptive inference needs to be viewed in a broader
perspective, we explain the �ow of the article right at the
beginning so that the reader does not lose focus amid the
diversity of details considered. We �rst point out that the
classical theory of T2DM, based on insulin resistance and
inadequate compensation, has accumulated too many
anomalies over the last few decades and therefore is under

serious question. We need a new way of thinking and a
speci�c model that can address all or most of the
anomalies. After a brief historical account (section 1.2), we
�rst list (section 1.3) the observed features in glucose
homeostasis and T2DM that a model needs to explain and
point out that the prevalent theory and models address only
a minority of them. Then we summarize the predominant
thinking based on peripheral mechanisms of glucose
regulation (section 1.4), followed by the attempts so far to
accommodate central regulation (section 1.5), along with
the de�ciencies in these ways of thinking. On this
background, the objectives of the model are speci�ed
(section 1.6). Section 2 describes the assumptions (2.1) and
the structure of the model (2.2). Results of the model are
presented in three parts, namely the steady-state solutions,
simulations of glucose dynamics, and the population-level
predictions. The discussion highlights the implications of
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the model for understanding T2DM, why a fundamental
revision of the theory of T2DM is required, and what the
implications are for clinical practice.

1.2. The burden of history

Presently, any metabolic disorder with consistently raised
plasma glucose and insulin resistance, which cannot be
categorized into either type 1 diabetes or gestational
diabetes, is de�ned as type 2 diabetes mellitus (T2DM)
(DeFronzo et al., 2015). It is the most common form of
diabetes, accounting for over 90% of all cases. The
classically perceived cause of hyperglycemia in T2DM is
insulin resistance followed by failure of compensatory
insulin response. Historically, the role of the brain in
glucose homeostasis was revealed by experiments in which
damage to certain parts of the brain was shown to impair
homeostatic control (Bernard, 1859). However, at a later
stage, pancreatic extracts were shown to lower glucose, and
eventually, insulin was identi�ed as the active principle
(Banting et al., 1922). It is necessary to note that the
differentiation between type 1 and type 2 diabetes was not
made at that time. The success of insulin was so spectacular
that all other mechanisms of glucose regulation were
almost forgotten (Lundqvist et al., 2019). The distinction
between type 1 and type 2 diabetes was to become clear half
a century later, and it was realized that unlike in type 1,
insulin de�ciency was not the primary cause of
hyperglycemia in type 2 diabetes. However, by this time,
the thinking in the �eld was so much insulin-centered that
the inability of normal or increased levels of insulin to
regulate plasma glucose was termed insulin resistance,
without carefully evaluating alternative hypotheses
(Diwekar-Joshi & Watve 2020).

The insulin resistance hypothesis is criticized for having a
circular logic that makes it un-falsi�able (Diwekar-Joshi &
Watve, 2020). Insulin resistance is said to be responsible for
the inability of normal or raised levels of insulin to regulate
glucose. However, insulin resistance itself is measured by
the inability of insulin to regulate glucose. At the clinical
level, there is no independent measure of insulin resistance
that can be used to test the causal role of insulin resistance.
Impairment of insulin signaling or fasting insulin levels in
experiments using (i) tissue-speci�c insulin receptor
knockouts (Blüher et al., 2002; Kadowaki, 2000) (ii) insulin-
degrading enzyme knockouts (Costes & Butler, 2014;
Maianti et al., 2014) (iii) pharmaceutical insulin suppression
by diazoxide and octreotide (Giustina et al., 1991; Lamberts
& Ho�and, 2019; Leahy et al., 1994; Matsuda et al., 2002) (iv)
insulin gene suppression by RNAi (Mehran et al., 2012b) (v)
alteration in insulin gene dosage (Templeman et al., 2015)
failed to alter fasting glucose in the expected direction. In
epidemiological data, fasting insulin and fasting glucose are
poorly correlated, while post-meal insulin and glucose are
strongly correlated, unlike what would be expected by any
of the classical models. With converging multiple lines of

evidence, Diwekar-Joshi and Watve (2020) raised doubts on
whether insulin resistance and failure of compensatory
hyperinsulinemia is a necessary and suf�cient explanation
of fasting hyperglycemia.

Many mathematical models have been constructed based
on the assumption of insulin resistance. A common set of
assumptions is shared by most of the models that fasting
glucose is the steady-state achieved by a balance between
glucose uptake by tissues and glucose production by the
liver. One of the foundational assumptions is that both of
the above processes are regulated by insulin signaling in
the steady-state (Matthews et al., 1985). Therefore, insulin
signaling has been central to these models. Since recent
research has exposed the inadequacies of this model
(Diwekar-Joshi & Watve, 2020), there is a need to hunt for
better alternative models.

An alternative to the classical model, which assumes the
brain glucose level as the target of homeostasis, has been
suggested, and mathematical models incorporating this
concept have been constructed (Gaohua & Kimura, 2009;
Watve, 2013). These models have not been explored
suf�ciently towards a comparative evaluation with
peripheral models with respect to their predictions and
their physiological as well as clinical implications. Here, we
re�ne the brain-centered model further by incorporating
recent evidence, evaluate its performance in explaining the
accumulated anomalies, and explore its physiological and
clinical implications.

1.3. What a glucose homeostasis model needs to

explain

Most models of glucose homeostasis have a limited goal of
explaining altered fasting steady-state glucose levels and
the alterations in the glucose curve in the pre-diabetic and
diabetic states. However, now we have a large number of
experimental results that are potentially anomalous. A
model prediction matrix, in which each model is tested for
matching its prediction with multiple known empirical
patterns, is an appropriate and robust approach to compare
alternative models. Such an approach has been used to test
alternative hypotheses in a number of other contexts
(Shinde et al., 2021; Thakar et al., 2003; Vibishan & Watve,
2020; Watve & Diwekar-Joshi, 2016), and it can be the right
approach to test alternative models of glucose homeostasis
in T2DM. A model of choice would be one that can predict
all or most of the known physiological patterns in type 2
diabetes so that no or minimal anomalies are left. We take a
few steps towards a model prediction matrix, although a lot
more exploration of many other models is required before
constructing such a matrix.

The following is a list of known empirical patterns with
which a glucose homeostasis model needs to be consistent.

�. Steady-state fasting glucose: Fasting glucose is
assumed to be at a steady state with adequate evidence
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(Lerner & Porte, 1972; Matthews et al., 1985; R. C.
Turner et al., 1979). Achieving a steady state is one of
the primary objectives of every homeostasis model.
Many of the key concepts of classical models are also
based on achieving a steady state in the fasting
condition (Matthews et al., 1985; R. C. Turner et al.,
1979).

�. Steady-state fasting insulin: Normally, this is not a
problem for any model; however, many models have a
problem explaining the altered steady-state insulin
level in a prediabetic state, as explained below.

�. Normoglycemia with hyperinsulinemia in a
prediabetic state: A prediabetic state is often
accompanied by a high level of fasting insulin (FI) but
normal fasting glucose (FG) in the plasma. This is not
easy to achieve in a model. The classical qualitative
explanation of this state is that it is a state of insulin
resistance with a compensatory rise in FI such that FG

remains normal. For this to happen, there is a need to
estimate the level of insulin resistance and regulate
insulin secretion accordingly. It is possible to
hypothesize a mechanism of sensing insulin
resistance and conveying this information to the
pancreas. Such a mechanism can be glucose-
dependent or glucose-independent. Currently, no
glucose-independent mechanism of accurately
assessing insulin resistance and conveying it to β cells
is known. A common assumption is that insulin
resistance reduces glucose uptake, thereby increasing
FG. The rise in FG stimulates insulin production, and
the rise in insulin levels normalizes glucose again.
However, this mechanism fails to achieve a steady-
state hyperinsulinemic normoglycemic condition
(Diwekar-Joshi & Watve, 2020). Plasma insulin has a
short half-life, and after glucose levels are normalized,
it is unlikely to stay at a higher level unless there is a
glucose-independent trigger for insulin secretion.
Explaining a hyperinsulinemic normoglycemic steady
state is a tricky challenge that any model needs to
meet.

�. Hyperinsulinemia preceding insulin resistance and
T2DM: Although hyperinsulinemia is believed to be a
compensatory response to insulin resistance, a
number of studies show that hyperinsulinemia
precedes obesity and insulin resistance (Corkey
&Shirihai, 2012; Mehran et al., 2012a; Pories & Dohm,
2020; Shanik et al., 2008; Weyer et al., 2000; Wiebe et
al., 2021). This raises two independent questions. One
is how and why hyperinsulinemia precedes insulin
resistance. The second, more perplexing question is
that if hyperinsulinemia is not a compensatory
response to insulin resistance, the failure of
compensation explanation becomes redundant. This
needs to be replaced by a more coherent explanation of
hyperglycemia.

�. Explanations of features of the impaired glucose
tolerance curve: There are three main features of an
altered glucose tolerance curve that a model should
explain, namely

�. Increased height of peaks
�. Delayed return to normal
�. Increase in the time difference between glucose

and insulin peaks in the diabetic state.
�. Simultaneous presence of normal fasting glucose and

impaired glucose tolerance (NFG-IGT) state: It is
common to �nd that in a prediabetic state, the glucose
tolerance curve is altered with a normal level of fasting
glucose. It is tricky to explain this in a model.

�. Stress hyperglycemia: Why and how stress causes
hyperglycemia only in some individuals (Dungan et
al., 2009) needs to be explained by a model with
realistic and testable assumptions.

�. Hyperglycemia after intensive exercise: If in a fasting
state FG is a resultant of the rate of liver glucose
production and glucose disposal, exercise that
increases glucose disposal should decrease FG.
However, in some studies, plasma glucose remains
unchanged or is increased after exercise (Coggan, 1991;
Marliss & Vranic, 2002). A model needs to predict this
result contextually.

�. Glucose dynamics in insulin receptor knockouts: An
important challenge is to explain why insulin receptor
knockouts speci�c to muscle, fat cells, or liver result in
normal fasting glucose but altered post-glucose load
curves. Similarly, insulin-degrading enzyme
knockouts do not alter FG. Also, insulin suppression by
agents such as octreotide or diazoxide fails to alter FG

(Diwekar-Joshi & Watve, 2020). A model should
explain these observations. Diwekar-Joshi and Watve
(2020) further differentiated between the
consequential steady-state (CSS) and targeted steady-
state (TSS) models and demonstrated that the results
of the insulin receptor knockout and insulin
suppression experiments can be explained by a TSS
but not by a CSS model. In effect, to be able to account
for these results, a model needs to be a TSS model.

��. Reduced glucose transport to the brain in obese or
prediabetic individuals: It has been known for a long
time that in type 2 diabetes, the rate of glucose
transport from blood to brain is slowed down
substantially (Gjedde & Crone, 1981). In rodent models,
the GLUT-1 expression in brain capillaries is shown to
be reduced (Cornford et al., 1995; Matthews et al., 1985;
Pardridge et al., 1990). This has been viewed as a
response to hyperglycemia. However, Hwang et al.
(2017) show that subnormal transport is evident in
obese and presumably prediabetic states, even before
hyperglycemia appears. A model needs to account for
this pattern as a causal or consequential phenomenon.

��. The T2DM-speci�c islet amyloid deposition: Islet
amyloid deposition is frequently associated with type
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2 diabetes but not observed in type 1. The causes of
islet amyloid deposition should be compatible with the
glucose homeostasis model (Höppener et al., 1999;
Porte & Kahn, 1989; Watve et al, 2014).

��. Βeta cell deterioration pattern: The deterioration of β
cells appears to follow a peculiar pattern in T2DM, in
which a substantial proportion of β cells survive
lifelong (Bacha et al., 2013; Butler et al., 2003; Clark et
al., 2001; Porte & Kahn, 2001; Watve, 2014). If
dysfunction and damage to the β cell population are
assumed to be essential prerequisites of
hyperglycemia in a model, the models need to account
for the peculiar population dynamics of β cells.

��. Increased liver glucose production and ketogenesis
with SGLT2 inhibitors: Over the last decade, SGLT2
inhibitors, which allow greater clearance of glucose
through urine, have offered a novel means of
combating hyperglycemia. Lowering of plasma
glucose by SGLT2 inhibitors is accompanied by
increased liver glucose production as well as increased
ketogenesis (Limenta et al., 2019; Mistry & Eschler,
2021; Op den Kamp et al., 2021; Pfützner et al., 2017),
the causes of which should be made clear by the
model.

��. The Somogyi phenomenon: i.e., hyperglycemia
following the infusion of insulin, is seen in at least
some cases of T2DM but not in healthy individuals.
This can happen without being overtly hypoglycemic
(Campbell, 1976; Reyhanoglu & Rehman, 2021).

��. Hyperglycemia in brain injury and bacterial
meningitis: In cases of brain injury, hyperglycemia is
common (Shi et al., 2016). In bacterial meningitis,
hyperglycemia is often observed accompanied by a
low cerebro-spinal �uid (CSF) glucose level (Krishnan
et al., 2016; Schut et al., 2009). A model should be able
to account for the apparent contradiction.

��. Good correlation between post-meal glucose and
insulin but poor correlation between FG and FI

(Diwekar-Joshi & Watve, 2020) in population data.
��. HOMA-β and HOMA-IR correlation in population data:

Although FG and FI are poorly correlated in the
prediabetic state, HOMA-β and HOMA-IR have a strong
positive correlation in population data (Diwekar-Joshi
& Watve, 2020).

��. Failure of glucose normalization to reduce the
frequency of complications and mortality: Unlike
T1DM, in T2DM, tight regulation of plasma glucose
has failed to show a reduction in mortality
consistently across multiple large-scale clinical trials
(Diabetes Prevention Program Research Group, 2015;
Ferrannini & DeFronzo, 2015; King et al., 1999; Klein,
2010; Lee et al., 2021; Schwartz & Meinert, 2004; R.
Turner et al., 1998; The NICE-SUGAR Study
Investigators, 2009, UK Prospective Diabetes Study
(UKPDS) Group, 1998). If hyperglycemia is the primary
pathology of type 2 diabetes, preventing or correcting

it should have reduced the frequency of complications
and mortality considerably.

��. Reversal of hyperglycemia by FGF 21 in all models of
rodent diabetes: Independent of the cause of
hyperglycemia, a single injection of FGF 21 was able to
achieve long-term normalization of plasma glucose
(Laeger et al., 2017).

While most models intend to explain 1, 2, and 5 of the
above, they either fail to explain or do not address the
others. A satisfactory model should predict all the
phenomena noted above. If an additional explanation that
does not contradict the model accounts for the
phenomenon, the model can be said to be compatible.
Compatibility with empirical �ndings cannot be taken as
proof or validation of the model, but if a model directly
contradicts one or more of the empirical �ndings, it
becomes serious grounds for rejecting the model. Later,
when we describe model results, we will use the numbers in
the above list in square brackets to indicate that the model
accounted for this pattern.

1.4. Peripheral models of glucose homoeostasis

There is a long history of development of mathematical
models of glucose homeostasis and the origin and
progression of type 1 and type 2 diabetes (reviewed by
Ajmera et al., 2013; Mari et al., 2020). The focus of the �eld is
so much on peripheral mechanisms that the review by Mari
et al. (2020) does not even cite the models incorporating the
role of the brain. Ajmera et al. (2013) brie�y mention the
Gouhua et al. (2009) model but do not elaborate on its
potential implications. A class of models attempts to
capture glucose homeostasis at the systems level, whereas
other models look at individual components such as
insulin-dependent glucose uptake, liver glucose production,
β cell dysfunction, glucose-stimulated insulin secretion,
and incretin effects in greater detail. Nevertheless, these
models together have not accounted for the majority of the
patterns listed above. The central assumption of these
models is more or less invariant and revolves around
insulin resistance and the failure of the insulin response to
adequately compensate for it (Mari et al., 2020). Diwekar-
Joshi and Watve (2020) claimed that any model with this set
of assumptions is not compatible with empirical patterns 3,
4, 6, 9, 16, and 17 of the above. Whether any variation of
these models can do so has not been adequately explored.
Furthermore, all the peripheral regulation models are CSS
models in that the fasting steady-state is a consequence of
the rate of liver glucose production and a concentration-
dependent rate of glucose uptake. In these models, a change
in either or both of the rates inevitably alters the steady-
state. This contrasts with the TSS models, in which
alteration in these rates alters the time required to reach a
steady-state but does not alter the steady-state glucose level
(Diwekar-Joshi & Watve, 2020). An attempt to develop a TSS
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model with only peripheral mechanisms has not been
made to the best of our knowledge.

We do not intend to review glucose homeostasis models
here. However, we observe from published reviews of
glucose homeostasis models (Ajmera et al., 2013; Mari et al.,
2020) that most models do not address the apparently
anomalous empirical �ndings, particularly 3, 4, 6, 9, 10-13,
and 15-18 among the ones listed above. A detailed
exploration into whether some variations of these models
can address the apparently anomalous patterns is beyond
the scope of this paper, but we remain open to this
possibility.

1.5. Brain-centered models of glucose homeostasis

It is quite well known that a number of neuronal
mechanisms in the brain are involved in energy
homeostasis. Nevertheless, for some reason, they did not
occupy a central stage in the mainstream thinking about
T2DM and glucose regulation models until recently. A
number of recent publications highlight the role of the
brain in different ways (Lam, 2005; Osundiji et al., 2012;
Perrin et al., 2004; Watve, 2013, Deem et al 2017, Guemes and
Georgiou 2018, Lundqvist et al 2019, Brown et al 2019,
Alonge et al 2021, MacDonald et al 2021, Choi and Kim
2022). Although there is substantial evidence for the role of
the central nervous system in glucose regulation, a sound
theory addressing the question of why a dual control
system evolved, how the two components interact, what
goes wrong during T2DM, and why is yet to develop. The
prevalent thinking about the role of the brain in glucose
regulation has not deviated from the baseline assumptions
that peripheral glucose is the target of homeostasis, insulin
resistance is the primary pathology, and some defect in the
central and/or peripheral regulation system is required for
glucose dysregulation. If the peripheral glucose level is the
target of homeostasis, then a central regulation system is
bound to be highly inef�cient because of the inevitable
delay in crossing the blood-brain barrier (Bentsen et al
2019). But central mechanisms still exist. Therefore, it is
necessary and possible to rethink these assumptions to see
whether that helps resolve the mounting anomalies in the
�eld.

Peters (2004), Gaohua and Kimura (2009), and Watve (2013)
proposed that the primary target of glucose homeostasis is
to regulate glucose levels in the brain. Plasma glucose levels
are only a means to achieve the required supply of glucose
to the brain. Since the transport of glucose to the brain is
more restricted, when an adequate supply of glucose to the
brain is ensured, it is likely that the supply to other organs
is already ensured. This is a fundamental deviation from
the assumption that plasma glucose levels are under
homeostatic control.

In the Gaohua and Kimura (2009) as well as in the Watve
(2013) model, the rate of glucose transport across the blood-
brain barrier (BBB) is assumed to be an adaptation to

hyperglycemia. The �nding that glucose transport is
reduced to an intermediate level in obese and prediabetic
individuals (Büsing et al., 2013; Hwang et al., 2017) suggests
that the de�ciency in transport precedes hyperglycemia
rather than following it. Therefore, it is more likely to be
causal than consequential. Glucose de�ciency in the brain is
known to induce liver glucose production and suppress
insulin release through autonomic control (Boland et al.,
2017). The sympathetic tone has also been shown to be
higher in T2DM (Thackeray et al., 2012). Therefore, glucose
de�ciency in the brain owing to altered vascular function is
likely to be primary, which results in altered plasma glucose
dynamics mediated by autonomic inputs. It is possible that
there is no defect in the glucose sensing and regulation
mechanisms in T2DM. Only defective glucose
transportation may be responsible for the glucose
dysregulation. Our model incorporates and examines this
possibility to address the question of whether it helps
resolve the anomalies.

Impaired vascular function is known to be central to
diabetic complications. The classical thinking has been that
hyperglycemia causes the types of vasculopathies typical of
T2DM. However, it has not been ruled out that
vasculopathies are not primary. There is considerable
evidence that microvascular alterations precede T2DM and
are good predictors of it (Muris et al., 2012; Nguyen et al.,
2007; Stehouwer, 2018; Zaleska-Żmijewska et al., 2017). A
sedentary lifestyle and de�ciency of many speci�c types of
physical activities and behaviors alter the expression of
growth factors and endocrine mechanisms involved in
angiogenesis (Watve 2013). It has been demonstrated
repeatedly that many growth factors and angiogenic factors
are responsive to behaviors, physical activity, and exercise
(Aloe et al., 1994; Cao et al., 2010; Chodari et al., 2016;
Lakshmanan, 1986; Nexø et al., 1984; NEXØ et al., 1981;
Tirassa et al., 2003). De�ciency of these behaviors is likely
to lead to a primary de�ciency of angiogenic mechanisms
(Watve, 2013). The possibility that altered vascular function
in the brain is the primary reason why glucose transport
from blood to brain is reduced needs to be considered. This
creates chronic glucose de�ciency in the brain, to which the
brain reacts by in�uencing multiple mechanisms of glucose
regulation. The predominant mechanism is autonomic
signaling. It is well known that sympathetic and
parasympathetic tones are altered in T2DM (Thackeray et
al., 2012). The possibility that altered autonomic signaling is
causal rather than consequential to diabetes looks
promising, based on studies showing that changes in
autonomic function precede T2DM (Carnethon et al., 2003).

Brain glucose uptake is insulin-independent (Gray et al.,
2014; Hasselbalch et al., 1999). Nevertheless, insulin has
many other functions in the brain, and insulin signaling is
known to be important in memory, cognition, decision-
making, behavior, and also in regulating energy reserves
(Kerns 2001, Shemesh et al., 2012; Strachan, 2003). The
brain is rich in insulin receptors, and activation of certain
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cognitive functions in the brain is a likely cause of
increased brain glucose utilization by insulin stimulation
(Bingham et al., 2002; Rebelos et al., 2021). Although there
are indications of insulin synthesis in the brain itself, there
are many uncertainties in its implications (Dakic et al 2023).
Also, there is no human data on brain-derived insulin.
Therefore, it is dif�cult to incorporate this factor in the
model currently. The assumption that the brain has a
fundamental requirement for pancreatic insulin,
independent of glucose metabolism, is fair, and therefore
mechanisms to ensure the required insulin levels in the
brain are as critical as ensuring a minimum brain-glucose
level. This is also ensured by autonomic mechanisms.
Autonomic inputs are known to regulate the β cell
population as well as insulin release from β cells (Thorens,
2015). Therefore, brain control over insulin production
independent of peripheral glucose is also an essential part
of the theory.

Ensuring a minimum supply of glucose as well as insulin to
the brain is crucial during fasting when the plasma levels
are low. The post-meal levels of glucose and insulin in the
plasma are much higher, and at this time, the brain need
not actively regulate the plasma levels of both. This can be
taken care of by peripheral mechanisms.

1.6. Objectives of the model

Our attempt is to construct a model whose predicted
outcomes match with all or most of the observed
phenomena listed in section 1.3, qualitatively. We intend to
construct a model in which different hypotheses for
hyperglycemia can be used to make differential testable
predictions. This approach can allow us to evaluate
comparatively which causal factors, individually or in
combination, can give us the set of predictions that match
with the patterns listed above.

Out of the parameters required for the model, only some
have empirical estimates available (Table 1). In the absence
of realistic estimates for all parameters, we do not intend to
make a model that makes quantitative predictions. When a
suf�ciently large number of parameters can be optimized, it
is not dif�cult to �t the data quantitatively. Therefore, we
prefer qualitative predictions over quantitative ones. We
test whether the model is able to predict the pattern
observed empirically under some set of parameters. The
ability to predict a given pattern is not proof of the validity
of the model, but the inability to predict an observed
phenomenon at any set of parameters within a realistic
range is a strong reason to call the model either inadequate
or wrong. If an additional consideration compatible with
the model is able to explain a pattern not explained by the
main model, the model can be called inadequate but not
falsi�ed. However, if the model outcome directly
contradicts a consistent and reproducible empirical �nding,
it can be considered falsifying evidence. We emphasize the

need to evaluate our model in comparison with classical
models along these lines.

2. Methods

2.1. Assumptions of the model

A unique assumption of our model, based on the analysis by
Diwekar-Joshi and Watve (2020), is that the mechanism of
regulation of glucose and insulin is different in the steady-
state and post-meal state. In the steady-state, the central
mechanisms are more important, whereas in the post-meal
state, mainly the peripheral mechanisms are at work.
Insulin-induced glucose uptake and insulin-dependent
inhibition of liver glucose production happen only above a
threshold glucose and insulin level, respectively. The
presence of such thresholds and their context-dependent
variability has been known for a long time (Chen et al., 1993;
Henquin et al., 2006; Sorensen, 1985). Below the threshold,
other mechanisms regulate the levels (Sorensen, 1985). We
assume in the model that the thresholds are under neuro-
endocrine control and �ne-tuned by the brain. The
thresholds found in isolated cell cultures are slightly lower
than the normal fasting blood sugar, and it is dif�cult to
estimate thresholds in vivo (Chen et al., 1993; Henquin et al.,
2006, 2015). In the presence of autonomic signals, we
assume the thresholds to be above the steady-state target
levels. In conditions under which the fasting levels need to
increase, we assume the thresholds to increase
proportionately. This may happen with peripheral or
central mechanisms. These assumptions about the
threshold make the model a TSS model.

The steady-state glucose is decided by a balance between
the basal level of liver glucose production, which is
regulated by neuronal mechanisms, and insulin-
independent glucose uptake by tissues. The steady-state
insulin level is decided by the basal rate of glucose-
independent insulin production, which is regulated by
neuronal mechanisms against the insulin degradation rate.
Glucose is transported from plasma to brain by facilitated
diffusion proportionate to the capillary surface area in the
brain and GLUT-1 expression. Steady-state brain glucose is
determined by glucose transport to the brain and utilization
by brain tissue. The brain needs to maintain a target level of
glucose, and the brain ensures it by directly regulating liver
glucose production through neuronal mechanisms.

Insulin has cognitive and other functions in the brain (Begg
& Woods, 2013; Kern et al., 2001; Rohner-Jeanrenaud &
Jeanrenaud, 1983; Shemesh et al., 2012; M W J Strachan,
2005), for which the brain requires a target level of insulin,
which it ensures by autonomic regulation of β cell number
and basal insulin secretion independent of peripheral
glucose. To ensure the brain target level for insulin, a
minimum plasma insulin level needs to be maintained.
Maintenance of this level is assumed to be independent of
glucose-stimulated insulin secretion.
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The rate of transport of glucose and insulin from blood to
brain is not constant. Both are affected by capillary density
and blood �ow. But they also depend upon speci�c
transport mechanisms. Glucose is transported across the
blood-brain barrier mainly through the speci�c transporter
GLUT-1. The expression of GLUT-1 in the brain and other
tissues is variable and dependent on multiple dietary,
endocrine, and growth factor-related mechanisms (Boado
et al., 1994; Ge et al., 2011; Liu et al., 2018; Schüler et al., 2018).
Glucose transport from blood to brain is diminished in
obesity and prediabetes (Hwang et al., 2017), resulting in
hypometabolism (Baker et al., 2011). Recent multiple
independent studies reproducibly report glucose level-
dependent hypometabolism in several regions of the brain
in various stages of diabetes, including prediabetes, along
with detectable cognitive decline (Chau et al., 2020;
Sundermann et al., 2021; Kepes et al., 2021; Blázquez et al.,
2022; Park et al., 2023). Insulin transport to the brain is also
reduced in obesity (Begg, 2015). The ratio of CSF to plasma
insulin is inversely proportionate to obesity and insulin

resistance (Gray & Barrett, 2018). Moreover, inducing
endothelial dysfunction and reducing glucose transport
experimentally by endothelial-speci�c deletion of HIF 1-α
resulted in hyperglycemia (Huang et al., 2012).
Antipsychotic drugs are known to impair angiogenesis
(Srivastava et al., 2020; Deng et al., 2022; Kanmodi et al.,
2023) and thereby induce hyperglycemia (Henderson, 2012;
Kato et al., 2015; Chen et al., 2017). These �ndings validate
our assumptions, based on which we incorporate the
possibility of diminished glucose and insulin transport to
the brain being the primary pathology of T2DM, and
hyperglycemia only a consequence.

The model

Since we assume that the steady-state and post-meal
mechanisms of glucose regulation are not identical, we
model and analyze the two states in two phases of the
model. The variables and parameters used in the model and
the range of parameters used are in Table 1.
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serial

no

Variables and

parameters
meaning units

Value/range used in

simulations

A. Input parameters

1 K1 Insulin independent glucose uptake maximum mg/dL/min 20-50

2 K1m

Half saturation constant for insulin independent glucose

uptake
mg/dl 50

3 K2

Maximum insulin induced suppression of PG, including

glucose disposal and suppression of L.
per µU/mL 0.001 to 0.05

4 K2m Half saturation constant for insulin induced suppression of PG µU/mL 15

5 K5 Maximum glucose dependent insulin secretion µU/mL/min 2-20

6 K5m Half saturation constant for glucose induced insulin secretion mg/dL 50

7 K8 Maximum rate of glucose transport to brain Mg/dL/min 3 - 8

8 K8m Half saturation constant for glucose transport to brain mg/dL 50-100

9 K9 Maximum rate of Insulin transport to brain µU/mL/min 0.6 - 1

10 K9m Half saturation constant for insulin transport to brain µU/mL 0.3-1

11 K10 Brain glucose utilization rate unitless 0.08 to 0.12

12 d1 Insulin degradation rate unitless 0.1 to 0.2

13 BGt Target BG mg/dL 25

14 BIt Target BI µU/mL 1-5

15 Is Insulin sensitivity as compared to normal which is assumed 1. unitless 0-1

16 Lmax Maximum capacity of liver glucose production Mg/dL/min 30

17 K4max

Maximum capacity of peripheral glucose independent insulin

secretion
µU/mL/min 10

B. Derived variables

18 L Rate of liver glucose production mg/dL/min Eq. 6 or iterative

19 K4 Rate of peripheral glucose independent insulin secretion µU/mL/min Eq 7 and 8 or iterative

C. Outcome variables

20 PG Plasma glucose Mg/dL dynamic

21 PI Plasma insulin µU/mL dynamic

22 PG Steady-state plasma glucose mg/dL Eq. 5

23 PI Steady-state plasma insulin µU/mL Eq. 7

24 BG Brain glucose mg/dL dynamic

25 BI Brain insulin concentration µU/mL dynamic

26 PGT glucose threshold above which GSIS begins mg/dL 5 to 10 mg/dL above PG

27 PIT
Insulin threshold above which insulin induced glucose

disposal begins
µU/mL 2-5 µU/mL above PI

Table 1. all variables and parameters considered in the model.
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2.2. The Model

A. Modeling steady-state glucose

As per the assumption, below a threshold PIT, insulin-
induced glucose uptake and insulin-induced inhibition of

liver glucose production are negligible. Therefore, we write,

1. Plasma Glucose:
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2. Plasma Insulin:

dPG

dt

=
⎧

⎩
⎨
⎪

⎪

L − , +Gt
∗PGK1

+PGK1m

L − + Gt − ( ∗ ) ∗ PG,
∗PGK1

+PGK1m
IS

∗PIK2

+PIK2m

( < PIT )PI– ––

(PI > PIT )

(Eq. 1)

qeios.com doi.org/10.32388/GL52DB.2 10

https://www.qeios.com/
https://doi.org/10.32388/GL52DB.2


3. Brain glucose:

Since the brain forms only about 3 % of total body mass, we
assume the instantaneous plasma glucose diffused to the
brain is a negligible fraction of total plasma glucose.
Therefore, that term is not included in the plasma glucose
dynamics. Similarly, insulin diffusion to the brain is not
represented in the plasma insulin dynamics. Nevertheless,
the rate of plasma to brain diffusion is crucial in
determining the brain glucose and insulin dynamics.

4. Brain insulin:

At steady-state (SS), all differential terms become zero, and
steady-state levels can be calculated using equilibrium
solutions.

As per the assumption of the model, the brain needs a
certain level of glucose, and that is the target of
homeostasis BGt. In order to ensure BGt at given K8, K10, and

K8m, the SS plasma glucose PG needs to be

We assume that the brain ensures this plasma glucose level
by regulating liver glucose production L. To maintain the
desired plasma glucose level at steady-state, the liver
glucose production should be:

The brain can either ensure this by sending a calculated
signal to the liver through the autonomic system.
Alternatively, this can be ensured by the brain by increasing
sympathetic inputs when BG <BGt and parasympathetic
when it is above target (Antuna-Puente et al., 2009;
D’Alessio et al., 2001; Kiba, 2004). The required L can be
achieved iteratively by 

 where Ks is the magnitude

of the iterative step.

Similarly, to ensure required brain insulin levels, plasma
insulin should be

To ensure this much plasma insulin level, K4 should be

Similar to glucose, the brain can ensure the target level of
insulin in the brain by neuronally modulating K4 in a

calculated or iterative manner. Speci�c autonomic inputs
are known to regulate β cell number as well as insulin
release from β cells (Begg& Woods, 2013; Boland et al., 2017;
Kiba, 2004).

We also assume that both L and K4 have a �xed upper limit

as Lmax and K4max when the maximum capacity of the liver

and pancreas is reached. L and K4 cannot exceed this limit

even if neuronal inputs become more intense. This happens
when K8 declines below a threshold such that,

dPI

dt

= {
− (d1 ∗ PI),K4

− d1 ∗ PI + ∗ (PG − PGT1),K4
∗PGK5

+PGK5m

( < PGT )PG
– –––

( > PGT )PG
– –––

(Eq. 2)

= − ∗ BGdBG

dt

∗(PG−BG)K8

+(PG−BG)K8m
K10 (Eq. 3)

= − ∗ BIdBI

dt

∗(PI−BI)K9

+(PI−BI)K9m
d1 (Eq. 4)

= + BGtPG
– –––

B ∗ ∗Gt K10 K8m

− (BGt ∗ )K8 K10

(Eq. 5)

L =
∗K1 PG

– –––
+K1m PG

– –––

(Eq. 6)

= + . (BGt − BG)L(t+1) L(t) Ks

= + BItPI– ––
∗ BIt ∗d1 K9m

− ( ∗ BIt)K9 d1

(Eq. 7)

= ⋅K4 d1 PI– –– (Eq. 8)
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There is a potential con�ict here. Sympathetic tone is
known to increase L (Nelles et al., 1996; Nonogaki, 2000)
whereas parasympathetic signal is required for the
proliferation of β cells. Simultaneously, sympathetic signal
is known to inhibit insulin release from β cells (Gilon &
Henquin, 2001; Miller et al., 1976). If the brain is de�cient in
glucose as well as insulin, both sympathetic and
parasympathetic tones will be simultaneously higher
(Watve et al., 2014). This is incorporated into the model by
updating    iteratively according to both BG and BI levels
simultaneously,

< − (BGt ∗ )K8
− (BGt ∗ )K1 Lmax K10∗K8m

∗ − BGt ( − )Lmax K1m K1 Lmax

K10 (Eq. 9)

K4
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where Kp and Ks are the iteration step lengths.

By this consideration, if sympathetic stimulation of liver
glucose production is adequate to restore the required BG, 

  will tend to zero, and there will be no
interference in insulin release by β cells. However, in case
the rise in liver glucose production is inadequate to ensure
the required BG,    will be affected, which will also
in�uence β cell function.

B. Simulating glucose tolerance curve

While for the steady state, equilibrium solutions can be
algebraically derived, the post-glucose load curve and its
properties can only be obtained by simulations. Simulations
were run using the same set of equations and giving a
positive ephemeral Gt to simulate food intake.

In all the simulations used, insulin resistance can be
simulated by altering Is, β cell dysfunction by reducing K4

and/or K5 , and vascular defect slowing down the transport

of glucose and insulin to the brain and other organs by
altering K8, K9, and K1. Mental stress is assumed to increase

K10. By differentially altering these parameters, the model

can separately and collectively examine the effects of
insulin resistance, β cell dysfunction, reduced rates of
diffusion across the BBB, and stress on the glucose
tolerance curve.

T2DM- causal analysis: We ask the question which minimal
set of changes can give rise to a stable increase in fasting
glucose, changes in the glucose tolerance curve
characteristic of type 2 diabetes, along with other patterns
listed above. The putative causal factors are examined
individually and in combination. The factors include insulin
resistance (decreased Is), subnormal β cell response

(reduced K4 and/or K5), reduced insulin-independent

glucose uptake (decrease in K1), reduced blood-to-brain

transmission of glucose (K8) and insulin (K9), and stress-

related increase in brain glucose consumption (K10).

Subnormal or defective vasculature is expected to decrease
K1, K8, and K9 proportionately; however, the decrease in the

three parameters may not be proportionate if the
vasculature in different parts of the body is differentially
affected. Also, glucose transporters and their expressions
can alter in a tissue-speci�c manner. Therefore, we allow
proportionate as well as differential decreases in the three
parameters.

3. Results

A. Steady-state solutions

We observed that the steady-state solutions and the
autonomic iteration simulations match well in the end
result except when the limits of L and K4 are reached.

However, it took a long time to reach the desired level by the
iterative approach, particularly when the desired level was
substantially different from the starting level. In real life,
major changes in vascular function or glucose transporter
levels re�ected in K8, K9, K1 happen gradually. Therefore, the

desired level can be attained by autonomic �ne-tuning over
time. Since in the iterative simulations, a long time was
required to reach SS, we used the steady-state solutions for
quicker results.

It can be seen that the steady-state levels of PG in the model
are a stable steady-state since substituting PG <PG leads to a
positive value and PG >PG leads to a negative value of 

. The same applies to plasma insulin, brain glucose,
and brain insulin. This ensures a stable steady-state of
glucose-insulin in the plasma as well as in the brain during
fasting [1,2]. From equations 5, 6, and 8, we see that FG does
not change by altering Is or FI. This is compatible with the
empirical �ndings that insulin receptor knockouts and
insulin suppression experiments fail to increase fasting
plasma glucose [9]. This result is unique to our model and is
due to segregating fasting and post-meal glucose regulation
mechanisms by using thresholds. This is the only
explanation offered so far for patterns [9], [16], and [17].
Prediction [10] directly follows from reducing K8 and K9.

The steady-state solution of our model shows that FG can
increase as a result of an increase in K10 or a decrease in K8.

That is, if the glucose consumption in the brain increases
and/or the rate of glucose transport from blood to brain
decreases. Both effects are interdependent, and the shape of
the glucose response is decided by the interaction between
K8 and K10. Increased K10 increases FG marginally and

almost linearly when K8 is large. When K8 decreases, even a

marginal rise in K10 can induce a disproportionately greater

rise in FG (�g 1b). This means that stress-induced
hyperglycemia is unlikely to be seen in healthy individuals,
while it is more likely in individuals with reduced vascular
transport [7].

= + (BIt − BI) − (BGt − BG)K4(t+1) K4(t) Kp Ks (Eq. 10)

BGt − BG

K4

dPG/dt
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Figure 1. The same input different output phenomenon

A. A conceptual diagram with arbitrary units: A saturation relationship in glucose and insulin

transport described by a Michaelis Menten type of equation has important consequences that

can account for many phenomena observed in prediabetic and diabetic stages. For example,

here, to achieve an increase in brain glucose by 6 mg/dL with Ymax = 50, plasma glucose needs

to increase only by 6 mg/dL, but at Ymax=35, for the same target increase in brain glucose, 25

mg/dL of increment in plasma glucose is needed. This non-linearity explains many

phenomena, including prediabetic hyperinsulinemia and stress-induced diabetes in our

model of glucose homeostasis.

B. A simulation using the steady-state model: It can be seen that as K8 decreases, for the same

change in brain requirement K10, a non-linear escalated increase in plasma glucose is

required.

C. A simulation result assuming a correlated decrease in K8 and K9. It is possible that while

plasma glucose (solid line) shows a marginal increase, plasma insulin (dotted line) increases

substantially, since the parameters of glucose and insulin transport curves are different. This

is a potential explanation for the hyperinsulinemic normoglycemic state.

The origin of the hyperinsulinemic normoglycemic
condition can be explained by the difference in the
parameters of the saturation curves of transport dynamics
of glucose and insulin. If the insulin diffusion is assumed to
be nearer to saturation and glucose diffusion is suf�ciently
away from saturation, at the same level of vascular function
de�ciency, insulin will increase disproportionately more
than glucose (Figure 1). This is a possible cause of the
hyperinsulinemic normoglycemic state [3], and the reason
why hyperinsulinemia precedes hyperglycemia [4], which
requires neither insulin resistance nor a compensatory
hyperinsulinemic response. When this happens, both
HOMA-IR and HOMA β increase, although there is no
change in true insulin resistance and compensatory insulin
response. This gives a false impression of insulin resistance

as clinically de�ned, although the actual insulin resistance
at the cell level may not have changed.

Further, as the transport saturation constants K8m and K9m

continue to decrease proportionately, FG increases
monotonically, but FI shows a non-monotonic curve in
which FI increases with a moderate decrease in transport
rates but decreases after a threshold decrease in transport
rates. This non-monotonicity is predicted by the iterative
autonomic inputs model. When the required L approaches
or exceeds Lmax, the steady-state BG remains smaller than

BGt. The resultant increase in the sympathetic signal
inhibits insulin release from β cells. This leads to reduced
insulin secretion, and insulin levels drop substantially.
Thus, without bringing in additional factors, the model
explains the early phase rise in fasting insulin as well as the
later phase decline in the course of T2DM [4] (Figure 2).
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Figure 2. Effect of correlated decrease in K8 and K9 on fasting plasma glucose and insulin. Note that

for a small to moderate decrease, FI increases rapidly with marginal change in FG. However, after a

threshold decrease in the transport rates, FI declines sharply whereas FG increases rapidly. This

pattern matches the course of clinical T2DM without involving insulin resistance, compensatory

hyperinsulinemia, and β cell exhaustion. Simulation-speci�c other parameters were K1m =50, K1=30,

K2m=15, K2=0.01, K5m=0.01, K5=0.5, d1=0.15, Is=1, BGt=25, BIt=5, K8m=80, K8=5, K9m=0.3, K9=0.8,

K10=0.1 (Blue line) and 0.12 (Red line).

This decline in the insulin response does not require β cell
dysfunction as a causal mechanism, but there are more
complex possible effects on β cells. Simultaneous activation
of sympathetic and parasympathetic inputs to β cells is
implicated in β cell amyloidogenesis (Watve et al., 2014).
Parasympathetic stimulation is known to increase β cell
number. However, sympathetic signaling suppresses
insulin release, resulting in increased retention time of
insulin along with amylin, which beyond a threshold
retardation may result in spontaneous polymerization of
amyloid protein, leading to poisoning of β cells and
amyloidogenesis (Watve et al., 2014). This is an alternative
causal interpretation of β cell dysfunction and decline in its
population. This mechanism has a built-in negative
feedback loop, giving rise to a steady-state β cell population.
This result is compatible with the �nding in which the β cell
population remains subnormal lifelong [11,12]. This is in
contrast with the dynamics expected by the classical
thinking in which β cells are destroyed by gluco-lipotoxicity
or oxidative stress. This mechanism has a built-in positive
feedback cycle. As a part of the β cell population is

destroyed, the insulin secretion is decreased, which would
increase glucose, further accelerating gluco-lipotoxicity and
oxidative stress, and thereby β cell loss. Such a positive
feedback vicious cycle can only stop with complete
destruction of the β cell population. This prediction of the
classical model does not match the �nding of sustained
presence of a subnormal β cell population in T2DM.

By the classical model, prolonged sustained exercise in the
fasting state should result in lower plasma glucose.
However, experimental increase in glucose uptake resulting
from physical activity during fasting does not necessarily
result in a decrease in FG. This is mainly because as FG

starts decreasing, BG decreases consequently. BG, being
lower than BGt, induces a sympathetic-mediated increase in
L, and the change in FG by physical activity is more or less
compensated. This may happen through the agency of
glucagon as well, since a strong link between autonomic
signals and glucagon secretion is known. Therefore, at
times, plasma glucose may actually increase after intensive
exercise. Further, if exercise involves heightened activation
of cerebellar mechanisms of coordination, K10 may also
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increase, resulting in higher rather than lower FG in
response to exercise [8].

A high dose of exogenous insulin results in increased
plasma glucose after a short time lag, which is known as the
Somogyi phenomenon. The phenomenon is conditional
and not seen in every diabetic. It is said to involve the
counter-regulatory response when facing central
hypoglycorrhachia. However, often this response is seen
without peripheral hypoglycemia. This is best explained by
a reduced K8 that gives rise to a decreased BG/FG ratio. With

a smaller K8, at apparently normal or increased plasma

glucose, brain glucose can still be lower than the target,
which gives a sympathetic signal to increase L. Simulations
using the autonomic iteration model show this
phenomenon quite well at low K8. At the same level of

insulin infusion, at lower K8, there is a more intense

hyperglycemic response (Figure 3) [14]. A model without
accommodating changes in K8 does not predict the

Somogyi phenomenon without an obvious hypoglycemic
state.
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Figure 3. Effect of high-dose insulin on peripheral glucose under two rates of glucose and

insulin transport across the blood-brain barrier (Correlated decrease in K8 and K9). A

paradoxical rise in blood sugar following insulin administration is more prominent when the

transport rate is substantially lower than normal. Other parameters (K1m =50, K1=30, K2m=15,

K2=0.08, K5m=0.01, K5=15, d1=0.15, Is=1, BGt=25, BIt=4.5, K8m=80, K8=5, K9m=0.3, K9=0.8,

K10=0.1)

The response is restricted to a narrow set of conditions. For
an intense hyperglycemic response to insulin
administration, it is necessary that insulin sensitivity is
good, BG is close to BGt before insulin transfusion, and K8 is

subnormal.

Potentially, one can visualize two distinct possible classes of
reasons why blood sugar increases in response to brain
injury. In the �rst, there is some impairment in the glucose
regulation mechanism. In the second, the requirement for
glucose is increased during the wound healing process, and
hyperglycemia is a mechanism of the body to meet the
demand. It is known that infections such as meningitis,
stroke, or hemorrhage lead to transient hyperglycemia.
Such hyperglycemia is often accompanied by lower BG

levels (Schut et al., 2009; van Veen et al., 2016)[15]. In such
cases, hypoglycemic treatments can be counterproductive
and result in a delayed or derailed repair process. This is a
likely reason why, in patients under intensive care, strict
regulation of plasma glucose increased mortality instead of
the expected decrease (The NICE-SUGAR Study
Investigators, 2009).

When hyperglycemia is a process of meeting increased
glucose demand or compensating for subnormal transport,
removal of plasma glucose by any means is expected to
increase L. This is observed to happen when SGLT2
inhibitors decrease the urinary threshold and drive out
plasma glucose. If increasing L is not suf�cient to restore
the required glucose level, there is a shift to ketogenesis
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since the brain can use keto acids as an alternative source of
energy. Therefore, increased L with or without increased
ketogenesis is expected by our model following treatment
with SGLT2 inhibitors [13].

B. Glucose tolerance curve

Unlike the steady-state predictions, the patterns of the
post-meal glucose curve by our model are not qualitatively
different from classical models. The area under the curve,
height of the peak, time required to return to steady-state,
and the time difference between glucose and insulin peaks
are increased by decreased Is, K5, or K8 individually or in

combination. A decrease in Is or K5 does not increase FG but

changes the shape of the glucose tolerance curve. A
decreased K8 may alter both simultaneously. The altered

curve shows the three typical features, namely a taller peak,
delayed return to steady-state, and a longer gap between
the glucose peak and the insulin peak [5]. This result is not
unique to our model, and classical models also show the
three features. The classical model results in simultaneous
and proportionate alterations in both fasting and post-meal
glucose and therefore fails to explain the NFG-IGT state. In
our model, decreasing Is or K1 without a change in K8 results

in an NFG-IGT state [6].

C. Population simulations

For both the steady-state and post-glucose load dynamics,
we give population distributions to K1, K5, K8, K9, IS and also

incorporate normally distributed error in glucose and
insulin measurements in fasting and post-meal sampling.
We also incorporate correlated changes in K1, K8, and K9,

which are expected as a result of hypo-vascularization in
the brain. These simulations are run to observe whether we
get the anomalous correlations in the fasting versus post-

meal state and in the HOMA indices as observed empirically
(Chawla et al., 2018; Diwekar-Joshi & Watve, 2020).

By classical models, the regression correlation parameters
of the glucose-insulin relationship are not different in the
fasting state versus post-glucose load, although the range of
variables is different, as shown previously by Diwekar-Joshi
and Watve (2020). Also, if we assume HOMA-IR to faithfully
re�ect insulin resistance and HOMA β to faithfully represent
β cell response, then there is no reason why the two indices
should be correlated.

The assumption behind our model that there are different
mechanisms at work under fasting versus post-glucose load
conditions is necessary to explain the large difference in the
regression correlation parameters in fasting versus post-
meal levels. If the same set of mechanisms in the fasting
and post-meal conditions are operational, whatever the
model used, it is imperative that fasting correlation
regression parameters are stronger or comparable to post-
meal parameters. Simulations with our model are able to
give a poor FG-FI correlation along with a strong post-meal
glucose-insulin correlation under multiple conditions [16]
(Figure 4). When the variance in K8 and K9 is small but that

in K1, K5, Gt , and Is individually or in combination is large,

the fasting correlations are weak and post-meal
correlations are strong; the post-meal glucose-insulin
regression slope is substantially greater than the FG-FI

slope. Also, whenever the FG-FI correlation is weak, the
indices HOMA-IR and HOMA β are strongly correlated,
similar to the epidemiological data [17]. The difference
between fasting and post-meal regression correlation
patterns is not predicted by the classical models and is
unique to our model, which assumes a different set of
regulatory mechanisms in the fasting and post-meal states.
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Figure 4. Plasma glucose and insulin correlation in population simulation data in the fasting

steady-state (A) and post-meal (B) condition. The empirical �nding that there is a strong positive

correlation in the post-meal data but poor correlation in the fasting steady-state was possible over a

large parameter space in our model. Depicted here are the simulation results (post-meal R2=0.57,

steady-state R2=0.014) in which only K1 was given a wider population distribution. (mean (S.D.)) K1

= 35(7), K5 = 10(0.00001), K8 = 5(0.000005), and K9 = 0.8(0.000008). Other parameters (K1m =50,

K2m=15, K2=0.05, d1=0.15, Is=1, BGt=25, BI=4.5, K8m=80, K10=0.1).

D. Effect of glucose normalization on arresting diabetic
complications and mortality

By classical thinking, chronic hyperglycemia is responsible
for diabetic complications, and preventing hyperglycemia
should arrest complications. In contrast, the thought
behind our model is that vascular problems are primary,
which alter the rate of glucose-insulin transport to the
brain, and hyperglycemia is an offshoot symptom that may

not be causal to diabetic complications. The diabetic
complications can arise directly from the vasculopathy.
Therefore, controlling glucose may not have any effect on
diabetic complications [18]. On the other hand, forcefully
reducing plasma sugar without addressing vascular
problems can create more severe glucose de�ciency in the
brain and other organs, thereby turning counterproductive.
Because of the saturating dynamics of transport, a
curvilinear relationship is expected between plasma
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glucose and brain glucose in such a way that a moderate
reduction in hyperglycemia will change brain glucose
availability marginally, whereas tight glucose regulation
can have a disproportionately larger effect (Figure 5).

Therefore, tight glucose regulation may increase mortality
and other adverse outcomes. This prediction is compatible
with some of the tight versus moderate control clinical
trials, including ACCORD, NICE sugar trial, and UGDP [18].
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Figure 5. Effect of glucose lowering on brain glucose availability. For example, a reduction in FG from 400

mg/dl to 150 mg/dl corresponds to a decrease in BG by 1.68 mg/dl, but a further reduction from 150 to 70

mg/dl reduces BG by 2.41 mg/dl. Therefore, moderate sugar control may not affect brain glucose supply

drastically, but tight sugar control is expected to affect it more seriously.

In a nutshell, our model explains all of the 19 patterns a
model needs to explain. No other model has attempted this
diverse task. And the classical models have clearly failed to
be compatible with many of them.

4. Discussion

The main inference from our model, stated most
conservatively, is that a brain-centered model can
potentially explain most of the anomalies faced by
peripheral models and therefore needs greater attention
(Figure 6). If supported well, by exploring its testable
predictions suggested below and possibly more, it has the
potential to bring in a radical change in the fundamental
view as well as clinical practice of T2DM.

Figure 6. Effect of changes in vasculature in the blood-brain

barrier. The model predicts that glucose and insulin

transportation to the brain has a major role in the development

of diabetic symptoms compared to other peripheral changes.

The blood-brain barrier vasculature hence may hold the key to

understanding the shift from a normal to a diabetic condition.

(created using BioRender)
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Testability of assumptions and additional

predictions:

The assumption that the thresholds PGT and PIT can be
modi�ed by autonomous signaling needs to be tested
empirically. Although currently the thresholds are known to
be �exible, information about the conditions and
mechanisms of change is poorly known. Our assumption
that the parameters of the saturation equation for glucose
and insulin transport to the brain are different and that
under normal conditions insulin transport is closer to
saturation than glucose transport can be tested with
carefully worked-out kinetics of the two transport
mechanisms.

The assumption of our model that reduced transport of
glucose and insulin to the brain is the primary pathology of
T2DM, leading secondarily to hyperglycemia, makes more
predictions that can be tested experimentally or
epidemiologically. Experimentally, speci�cally blocking
GLUT1 receptors in the brain should lead to hyperglycemia.
Conversely, infusion of glucose directly into the brain
should reduce peripheral hyperglycemia in the short run.
This is already suggested by some experiments (Ono et al.,
1983; Osundiji et al., 2012). It is also demonstrated that
inducing primary endothelial dysfunction and reduced
glucose transport to the brain by endothelial deletion of the
hypoxia-inducible factor HIF-1α results in hyperglycemia
(Huang et al., 2012). More careful research in this direction
to reveal the cause-effect relationship between vascular
defects, brain glucose levels, and plasma glucose levels will
be enlightening. Epidemiologically, hypoglycemia is shown
to be associated with dementia and other neuronal
problems (Lipska & Montori, 2013; Meneilly & Tessier, 2016;
Rhee, 2017; Yaffe, 2013), and tight glycemic control led to
higher mortality as compared to moderate control in many
of the clinical trials (Klein, 2010; Schwartz & Meinert, 2004;
The NICE-SUGAR Study Investigators, 2009), which
demands investigations into the causal pathways. The
question of whether tight glycemic control leads to subtle
neuronal changes in the long run, as expected by our
model, needs careful investigation. The difference between
fasting and post-meal regression correlation parameters
between glucose and insulin is an important
epidemiological line of evidence we have used. Chawla et al.
(2017) and Diwekar-Joshi and Watve (2020) showed this
pattern across four different data sets. How generalized the
pattern is needs to be tested in multiple population studies.

On the modeling front, it is necessary to undertake a
comparative evaluation of the different models with respect
to the battery of predictions that we listed here. Perhaps a
few more predictions may be added. However, at present,
many of the models and their possible modi�cations are
not explored suf�ciently to see whether they can explain
the currently unexplained patterns under certain sets of
conditions. A model prediction matrix would be an
appropriate approach for such a comparative evaluation, but

we may have to wait until all alternative models are
explored suf�ciently elaborately on which of the empirical
patterns they predict, which ones they are compatible with,
and which ones they contradict. We have shown here that
the brain-centered model predicts or is compatible with all
the patterns listed in the introduction and does not
contradict any.

Possible causes of T2DM:

The classically believed causal factors, namely insulin
resistance and β cell dysfunction, are not compatible with
many of the empirical �ndings as shown by Diwekar-Joshi
and Watve (2020). In our model, changes in insulin
resistance and β cell dysfunction were neither necessary
nor suf�cient to account for all the patterns. Nevertheless,
they were helpful in accounting for the altered glucose
tolerance curve, although other factors could also account
for it independent of insulin resistance. By incorporating
insulin resistance in our model and assuming it to work
only in the post-feeding state, patterns 1, 2, 5, 6, 9, 16, and 17
could be explained, but not others. In short, our model does
not rule out insulin resistance as a phenomenon, but
implies that it may not be central to T2DM. Primary
vasculature defects reducing glucose and insulin transport
in a mutually correlated or uncorrelated manner could
explain all patterns and therefore make the most
parsimonious causal hypothesis. Particularly, assuming
that altered vascular function affects K1 early, followed by K8

and K9, is suf�cient to explain all the patterns without

alteration in Is or any other factor. The apparent β cell

dysfunction is an inevitable effect of a higher degree of
vascular dysfunction and altered autonomic signals and
therefore may not be needed as an independent causal
factor.

Being open to alternative possibilities is an important
virtue of science, and it is particularly important with the
limited clinical success of prevalent thinking along with
mounting anomalous �ndings. Prevention of T2DM on a
global scale has largely failed, and treatment has had
limited and inconsistent success in arresting mortality and
morbidities associated with T2DM (Brown et al., 2004;
DeFronzo, 2010; Rosengren et al., 2008, Lee et al., 2021).
Therefore, exploring alternative possible interpretations is a
need of the time.

Triggered by multiple anomalies in the theory of glucose
homeostasis and the origins of diabetic hyperglycemia, we
have articulated here an alternative paradigm that
potentially resolves in a logically and mathematically
consistent manner all of the anomalous �ndings. Being
mathematically and logically sound and compatible with
evidence is not suf�cient proof of a theory but certainly
re�ects on its potential to develop into a new alternative
paradigm. For a large �eld such as T2DM, multiple efforts
would be needed to evaluate competing paradigms. We
have suggested a few more testable predictions that can
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help in this task. There can be more possible ways of testing
them, which should come to light and be used to reach
robust conclusions that have the potential to change the
clinical course of prevention as well as treatment of an
important global health problem.

If our proposed causal inference that vascular dysfunction
is primary to T2DM is supported by more careful
investigations, it is necessary and might even be suf�cient
to lead to all the observed symptoms and patterns. It
explains the failure of glucose-normalizing treatment in
arresting diabetic complications. Simultaneously, it
suggests alternative lines of treatment that should focus on
normalizing vascular and neuronal function rather than
focusing on glucose normalization. The de�ciencies of
stimuli normally required for growth factors and other
angiogenic and neuroprotective factors can be forecasted as
the best bet for the new approach. However, rigorous efforts
are needed to strengthen the evidence base for selecting the
right one among the alternative paradigms.

Clinically, the glucose normalization as a treatment, which
has already failed empirically, fails theoretically as well with
the success of our model. Therefore, this target of treatment
needs to be given up completely. No drug has been
developed so far to effectively normalize vasculature. Since
a large number of signals govern the angiogenesis process,
a single molecule approach typical of pharmacology
research is unlikely to work. Exercise and �tness
interventions have been largely successful in arresting
T2DM, its complications, and mortality independent of
weight loss and sugar control (García-Hermoso et al 2018,
Stensvold et al 2020, Patil et al 2021, Momma et al 2022).
This stands in contrast with the failure of glucose
normalization treatment in reducing complications and
mortality (Ojha et al 2023), but more focused work is
needed. We still do not understand the mechanisms by
which the weight- and sugar-independent effects of
exercise work. They are likely to work through growth
factor activation (Aloe et al 1994, Rojas Vega et al 2010, Jiang
et al 2020). There is also inadequate understanding of how
different types of exercise exert differential effects on
physiology (Rashid 2012). Re�ning this line of treatment
appears to have greater promise for the future.
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