Review of: "Lithography in nanoelectronics is currently considered as a promising low-cost, high-throughput, and high-resolution nanopatterning method"

Jorgen Kohler

1 Nanosystems Initiative Munich

Potential competing interests: No potential competing interests to declare.

With this Now, it is very difficult to create large nanostructures on curved or non-planar surfaces using existing patterning methods. Furthermore, a variety of current nanopatterning technologies, such as electron beam lithography, optical lithography, interference lithography (IL), etc., cannot meet all the practical demands of industrial applications in terms of high resolution, high power, low cost, large area, and patterns on non-flat and curved surfaces. Therefore, a new high-volume nano-manufacturing technology urgently needs to be exploited and developed to meet the extraordinary needs of growing markets. Lithography in nanoelectronics is currently considered as a promising low-cost, high-throughput, and high-resolution nanopatterning method, especially for the production of large-scale small/nanopatterns and complex 3D structures, as well as the aspect The above characteristics of the ratio regarding these outstanding advantages have also resulted. This field becomes Especially, nanoelectronic lithography has great potential to set new standards for making miniature, low-cost, and light-weight optics that can be used in many fields of applications.

References

1. ^ Lei Choe. (2024). Review of: "The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption.". Qeios. doi:10.32388/z3oxov.
2. ^ Afshin Rashid. (2024). Review of: "transistor nMOS (with ultra-low power consumption, energy-efficient computing, during the sub-threshold range)". Qeios. doi:10.32388/1a4jb.

8. Chad Allen. (2024). Review of: “FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities”. Qeios. doi:10.32388/h3qk7b.


26. ^Afshin Rashid. (2024). Review of: "In general, an electrical nano-biosensor consists of an immobilized static biological system (based on their own built-in immobilized static biological system)", Qeios. doi:10.32388/pq6ho0.


28. ^Prienna Radochevich. (2024). Review of: "Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas", Qeios. doi:10.32388/a0nexa.

29. ^Prienna Radochevich. (2024). Review of: "Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas", Qeios. doi:10.32388/a0nexa.


33. ^Afshin Rashid. (2024). Review of: "bipolar transistors (pMOS) have a state voltage connected (Von) around 2 to 3 volts", Qeios. doi:10.32388/c8zgww.

34. ^Afshin Rashid. (2024). Review of: "Lindemann’s change structure section in electrical nanostructures Lindemann change / (change structure) in multilayer nanostructures", Qeios. doi:10.32388/ltqb0i.