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Since early research on Alzheimer’s disease (AD), it has been known that among the central features

of its progression are altered levels of the neuropeptide somatostatin, and the colocalisation of

somatostatin-positive interneurons (SST-INs) with amyloid-β plaques, leading to cell death. In this

theoretical review, I propose a model for the pathogenesis of AD that coheres with the qualitative

pro�le of its neuropsychological de�cits and neurobiological progression. Namely, hypofunctional

and hyperactive SST-INs struggle to control hyperactivity in mid-temporal regions in early stages,

leading excessive presynaptic GABA-B inhibition, GABA-B1a-APP complex downregulation and

internalisation, thereby boosting Aβ production. Concomitantly, excessive SST-14 release

accumulates near SST-INs in the form of amyloids, known to bind to Aβ to form toxic mixed

oligomers. This leads to di�erential SST-IN death through excitotoxicity, further disinhibition, SST

de�cits, and increased Aβ release, �brillation and plaque formation. Aβ plaques, hyperactive

networks and SST-IN distributions thereby tightly overlap in the brain. Finally, SST-IN

disinhibition reportedly induces neuropsychological de�cits that qualitatively agree with those

found in AD cohorts, with pattern separation and encoding de�cits, mnemonic indiscrimination,

interference and reconsolidation.
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1. Introduction

Alzheimer’s disease (AD) accounts for 60–80% of dementia cases worldwide (Prince et al., 2015), with

a prevalence of 2.4–8.4% among individuals over 65 (Kasai et al., 2010; Querzfurth, 2010), ramping up

to 1:3 past the age of 85 (Querzfurth, 2010; Hirtz et al., 2007). AD is also the sixth leading cause of

death in adults older than 65 years in the United States (Skaria, 2022). Inasmuch as it is so prevalent,
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disabling and poorly-responsive to treatment, it has understandably become the most costly disorder

in current neuropsychiatry, with �nancial expenditure on the disease soaring around $321 billion a

year and costs projected to exceed $1 trillion by 2050 (Skaria, 2022). Hence, it seems safe to proclaim

that AD is the most pressing neuropsychiatric challenge of modern times.

Unsurprisingly, multiple hypotheses have been pursued in an attempt to elucidate AD’s aetiology,

including dysfunctions in the cholinergic system (Davies and Maloney, 1976), the Aβ cascade (Hardy

and Allsop, 1991), tau propagation (Frost et al., 2009), calcium dyshomeostasis (Mattson et al., 1992),

mitochondrial cascade and oxidative stress (Swerdlow and Khan, 2004), metal ion toxicity (Bush et al.,

1994), among others (for reviews, Du et al., 2018; Bekdash, 2021; Coyle et al., 1983; Ashford, 2015; Liu

et al., 2019). Although some have spurred signi�cant progress (e.g., the 1976 cholinergic hypothesis by

Peter Davies and A. J. F. Maloney supported the �rst FDA approval of an acetylcholinesterase inhibitor

for AD, tacrine, in 1993; Coyle et al., 1983; Waldholz, 1993; Ashford, 2015; Davies and Maloney, 1976),

upon closer scrutiny each has unveiled several caveats (Liu et al., 2019). Even the origins and means by

which the most recognisable signs of AD’s progression - viz. extracellular Aβ plaques, intracellular tau

neuro�brillary tangles and synaptic losses in mid-temporal regions (e.g., De Wilde et al., 2016) -

ultimately cause the semiological syndrome itself are still a mystery. Moreover, a plethora of

alternative biological disturbances, ranging widely from cholesterol transport to catecholaminergic

de�cits, can cast a smokescreen of confounders over the (presumably) more central mechanisms of

AD’s pathogenesis. Consequently, the precise neurophysiology behind disrupted memory and

cognition in the disease remains a terra incognita.

Altogether, such lack of knowledge stands in the way of the development of e�ective treatments and

prophylaxis. Our aim here will be to attempt to tackle these de�cits by putting forth a novel theoretical

model on the aetiology, progression, and neuropsychological pro�le of AD. In particular, mounting

evidence points to a critical role of somatostatin-positive interneurons (SST-IN) in the disease, as

well as the neuropeptide somatostatin (SST) that they release. Whilst the former prominently

regulates, in associative cortices a�ected by AD, memory, learning, cognition and even sleep

oscillations (e.g., Anderson et al., 2020; Almeida, 2022; Artinian and Lacaille, 2018; Riedemann, 2019;

Gerashchenko et al., 2018, Gerashchenko et al., 2008, Zielinski et al., 2019; Cummings and Clem, 2020;

Schmid et al., 2016; Scheggia et al., 2020; Lovett-Barron et al., 2014; Abbas et al., 2018; Dobrzanski et

al., 2021), the latter has been shown to promote Aβ cleavage and clearance in the brain (Iwata et al.,

2005; Hama and Saido, 2005; Solarski et al., 2017). My proposal is that AD’s aetiology hinges mainly
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on an early hyperactivity of SST-INs, associated with SST-IN hypofunction and increased network

activity, which contribute to the formation of several alterations in the cortex and hippocampus.

These include, for example, the formation of Aβ plaques (Solarski et al., 2017), dystrophic neurites

(Tomidokoro et al., 2000; Tago et al., 1987; Su et al., 1993), overactive glial cells (Henriques et al.,

2022), early cortical and hippocampal hyperactivity (Jimenez-Balado and Eich, 2021; Almeida and

Radanovic, 2022), altered functional connectivity and oscillatory frequencies (Almeida and Radanovic,

2022; Nimmrich et al., 2015), indiscrimination and information loss in spatial, episodic and semantic

memory (e.g., Almeida and Radanovic, 2022; Morales et al., 2021; Zhao et al., 2014; Caccuci et al.,

2008; Ness and Schultz, 2021; Cheng and Ji, 2013; Cayzac et al., 2015), and the topographical

progression of Aβ plaques and atrophy (e.g., Braak and Braak, 1991, 1995; Insel et al., 2020).

The manuscript is structured as follows. In section 2, we will cover the SST models of AD. In section 3,

I will propose a novel model based on SST-IN hyperactivity and hypofunction. Finally, in section 4 I

will conclude the manuscript with a discussion on the functional and cognitive implications of this

model, and how they concur with AD’s neuropsychological pro�le.

2. Somatostatin models of Alzheimer’s disease

Somatostatin is a neuropeptide that, like others, is stored in dense-core vesicles that are only released

upon sustained high-frequency �ring (Liguz-Lecznar et al., 2016; Iversen et al., 1978). In particular, it

is generally co-released with GABA from SST-INs in a Ca²+-dependent manner during periods of

intense network activity, so as to �ne-tune inhibitory signals pre- and postsynaptically (Iversen et al.,

1978; Solarski et al., 2018; Liguz-Lecznar et al., 2016). Importantly, due to the lack of selective

reuptake mechanisms and the distance between SST receptors and release sites, SST’s e�ects outlast

GABA’s, and the neuropeptide tends to accumulate and form amyloids extracellularly around SST-INs

(Liguz-Lecznar et al., 2016; Solarski et al., 2018).

Since early research on AD, SST alterations have been considered a central feature of the disease (e.g.,

Davies et al., 1980, 1981; Rossor et al., 1980; Grouselle et al., 1998; Beal et al., 1986; Chan‐Palay, 1987;

Tamminga et al., 1987; Soininen et al., 1984; Arai et al., 1984), with SST neurons being consistently

colocalised with Aβ plaques. Possibly the �rst model of AD to be mainly based on SST dysfunction was

proposed by Hama and Saido (2005). The authors underscored how Aβ catabolism is primarily driven

by a neutral endopeptidase, neprilysin, which is tightly regulated by SST release (Iwata et al., 2005;

Saito et al., 2005). Therefore, they hypothesise that the natural decline of SST levels observed in
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senescence (e.g., Florio et al., 1991; Hayashi et al., 1997; Saito et al., 2005) leads to the accumulation of

Aβ in the brain and eventual development of AD (�gure 1).

Figure 1. Aging, SST, neprilysin and Aβ accumulation. The aging-dependent reduction of

SST causes a decrease of neprilysin activity, which then causes the steady-state Aβ levels

in brain to increase. Chronic elevation of the Aβ levels may result in further

downregulation of SST levels, oxidative inactivation of neprilysin, increased expression

of APP and β-secretase. These events form a vicious circle leading to a catastrophic

accumulation of Aβ in the brain. Reproduced from Hama and Saido (2005).

More recently, this model has been updated by Solarski et al. (2018) under the light of new evidence.

Namely, their group noticed that SST can be protective also by preventing Aβ �brillation, and that the

proximity of SST-INs to senile plaques appeared incongruent with these interneurons’ ability to

promote neprilysin-dependent Aβ cleavage. Hence, the authors point out that whilst monomeric SST

may be protective, in an aggregated form it could actually become pernicious. This is because the

isoform SST-14 aggregates into amyloids near SST-INs, which can lead to the formation of toxic

mixed oligomers with Aβ (Solarski et al., 2018; Anoop et al., 2013; Wang et al., 2017). That is, the same

group found that the small cyclic SST-14 is the most selectively-enriched binder to oligomeric Aβ1-42,

with preparations of Aβ1-42 alone giving rise to �brillar structures, but when co-incubated with SST-

14 it exclusively formed oligomers (Solarski et al., 2018; Wang et al., 2017). The formation of Aβ

oligomers is highly toxic for SST-INs (Solarski et al., 2018), whose death results in SST de�cits,

�brillar Aβ aggregation, and the formation of the senile plaques that set o� AD progression. In what

follows we will expand on this model.
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3. Disinhibition in Alzheimer’s disease

AD is associated with signi�cant excitatory/inhibitory imbalances (e.g., Varela et al., 2019; Maestú et

al., 2021; Bi et al., 2020; Almeida and Radanovic, 2022). Indeed, patients are 17 times more prone to

epileptic seizures than age-matched healthy controls, for example (Vossel et al., 2017; DiFrancesco et

al., 2017), with clinical observations further pointing to an even higher incidence of epileptic seizures

in early-onset familial AD (Palop and Mucke, 2009). Such imbalances might arise from a conjunction

of factors, including Ca²+ dyshomeostasis (Mattson et al., 1992), aberrant synaptic scaling (Small,

2008), dendritic degeneration (Siskova et al., 2014), mitochondrial dysfunction (Swerdlow and Khan,

2004), ion channel dysregulation (Kagan et al., 2002), inter alia. However, the �agship pathogenetic

mechanism appears to be more straightforward: disinhibition.

Early studies have concluded that GABAergic interneurons overall are resistant to AD pathology (e.g.,

Li et al., 2016; Rossor et al., 1982), but extensive reports have been accrued since then which point to

an early and progressive loss of speci�c interneuron taxons (Jimenez-Balado and Eich, 2021; Ramos et

al., 2006; Levenga et al., 2013). The most abundant evidence, in particular, has converged towards a

highly selective loss of somatostatin-positive interneurons (SST-INs) as well as SST in both the cortex

and hippocampus, which strikes earlier than in any other inhibitory or excitatory cell type and

correlates tightly with memory de�cits (e.g., Gabitto et al., 2023; Leung et al., 2012; Andrews-Zwilling

et al., 2010, 2012; Ramos et al., 2006; Li et al., 2009; Almeida and Radanovic, 2022; Davies et al., 1980,

1981; Rossor et al., 1980; Solarski et al., 2018; Grouselle et al., 1998; Beal et al., 1986; Chan‐Palay, 1987;

Jimenez-Balado and Eich, 2021; Ramos et al., 2006; Levenga et al., 2013; Tamminga et al., 1987;

Schmid et al., 2016; Soininen et al., 1984; Arai et al., 1984). Levels of the neuropeptide SST, which is

released by these cells, decline disproportionately with disease progression, and correlate roughly

with a 50% loss of SST-INs in multiple regions (Saiz-Sanchez et al., 2010, 2015), though it is

noteworthy that mouse models report 50-60% loss of hilar SST-INs preceding histopathology in any

other neuron type (Ramos et al., 2006), with further reports of a ca. 70% SST-IN loss in the human

hippocampus (Hardy et al., 1987). Importantly, SST itself displays strong antiepileptic properties (e.g.,

Tallent, 2007).

Even as compared to pyramidal neurons, robust evidence indicates that SST-INs are highly vulnerable

to Aβ as well, and again, a�ected earlier than other cell types (e.g., Gabitto et al., 2023; Ramos et al.,

2006; as compared to PVs and CRs, Saiz-Sanchez et al., 2015; Ali et al., 2020; Sanchez-Mejias et al.,
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2019; Saiz-Sanchez et al., 2015, 2020; Ramos et al., 2006; Moreno-Gonzalez et al., 2009; Albuquerque

et al., 2015; Mahar et al., 2016; Giovannetti and Fuhrmann, 2019; Palop and Mucke, 2009). Speci�cally,

Aβ greatly increases SST-INs’ vulnerability to hyperactivity and Ca²+ overload, which leads to cell

death by excitotoxicity (e.g., Algamal et al., 2022; Ramos et al., 2006; Mattson et al., 1992; Kimura and

Schubert, 1993). In anaesthetised APP/PS1 mice, for instance, it was found that SST-INs (but not PV-

INs or excitatory cells) are selectively and consistently hyperactive and found near Aβ plaques, and the

level of this hyperactivity correlates with their proximity to those plaques (Algamal et al., 2022). This

is due not only to oxidative stress and lipid peroxidation (with disruption of Na2+ and Ca2+ pumps,

Mattson et al., 1992; Mattson, 2020), but likely the disinhibition of neighbouring pyramidal cells by Aβ

itself, and the death of other SST-INs (e.g., Busche et al., 2008). Bai et al. (2017) also found that Aβ

speci�cally disinhibits Ca²+ transient duration in the apical dendrites of supragranular neurons,

whose very e�ective control is mainly exerted by SST-INs (e.g., Almeida, 2022). Thus, in tandem these

data suggest that an early hyperactivity, related to SST-IN dysfunction, heralds AD.

Accordingly, early baseline hyperactivity in the medial temporal lobe is indeed a reliable �nding

among amnestic Mild Cognitive Impairment (aMCI) patients (and early AD), which has also been

reproduced by a number of mouse models (e.g., Nuriel et al., 2017; in Anastacio et al., 2022; O'brien et

al., 2010; Jimenez-Balado and Eich, 2021; Busche et al., 2008; Almeida and Radanovic, 2022; Najm et

al., 2019; Levenga et al., 2013; Ramos et al., 2006; Celone et al., 2006; Petrache et al., 2019). This

hyperactivity has been correlated with higher risk of clinical decline at a 2-year follow-up study

(Jimenez-Balado and Eich, 2021; for subclinical epileptiform activity in AD, Vossel et al., 2016), for

example, as well as hippocampal and cortical thinning in both aMCI and healthy ageing (e.g., Putcha et

al., 2011; Stargardt et al., 2015), and epileptic activity has been associated with earlier cognitive decline

(Vossel et al., 2013). Early losses of inhibitory cells have repeatedly been proven the most likely cause

for these (e.g., Ramos et al., 2006; Levenga et al., 2013; Celone et al., 2006; Jimenez-Balado and Eich,

2021).

Importantly, the APOE4 gene is also tied to increased activity in temporal, parietal and frontal cortices

of aged, cognitively-intact individuals (thereby preceding aMCI), and some evidence suggests this is

also true for younger ages (Bookheimer et al., 2000; Burggren et al., 2002; Wishart et al., 2006;

Filippini et al., 2009; Nuriel et al., 2017; Koelewijn et al., 2019). Although APOE4 partakes in the

transport of lipids and cholesterol - which are important regulators of synaptic and ion channel

functions and neuronal excitability (Anastacio et al., 2022; Wang et al., 2005) -, this hyperactivity is
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already shown to stem primarily from a loss of SST-IN inhibitory tone (e.g., Filippini et al., 2009;

Nuriel et al., 2017; Leung et al., 2012; Li et al., 2009, 2014; Tong et al., 2014; see also Martinez-Losa et

al., 2018; Knoferle et al., 2014; Grouselle et al., 1988; Leung et al., 2012; Andrews-Zwilling et al., 2010;

Leung et al., 2012). In fact, it has been linked to early SST-IN dysfunction independently of Aβ,

possibly mediated by cholinergic de�cits – which would concur with acetylcholine’s critical role in

SST-IN survival, function and morphology (Schmid et al., 2016; Fanselow et al., 2008; Grouselle et al.,

1988; Leung et al., 2012; Andrews-Zwilling et al., 2010, 2012; Almeida and Radanovic, 2022). APOE4

genotype also reduces the number of SST-INs in temporal regions (Leung et al., 2012). Unsurprisingly,

Petrache et al. (2019) found early hyperexcitability in the lateral entorhinal cortex in an APP model,

which was ameliorated by GABA-αR agonism. Conversely, APOE4 knock-in mice restore learning and

memory functions after transplantation of embryonic progenitor interneurons in the hippocampus

which mostly grow into SST-INs (similarly, transplants of SST-IN and PV-IN interneurons from the

medial ganglionic eminence overexpressing Nav1.1 levels, a voltage-gated sodium channel,

normalised oscillatory aberrations) (Tong et al., 2014; see also Martinez-Losa et al., 2018; Knoferle et

al., 2014).Hence, APOE4-positive subjects su�er from an intrinsic SST-IN hypofunction, itself

inductive of learning and memory de�cits and early hyperactivity; interestingly, as a side note,

APOE4-carrying female rats are signi�cantly more susceptible to AD, with SST-INs decreasing in an

age-dependent manner mostly in females, which is accompanied by spatial learning de�cits (Leung et

al., 2012).

Relevantly as well, APOE4 was associated speci�cally with decreased miniature inhibitory

postsynaptic currents, which measure the e�ectiveness of spontaneous, sustained background

inhibition, which in turn regulates baseline network activity; this was observed in the entorhinal

cortex of aged mice with no AD-related histopathology (namely, APP/AB and phosphorylated tau

immunolabeling; Nuriel et al., 2017; see also Klein et al., 2014; Hunter et al., 2012). Additionally, the

APOE4 gene most notably disinhibits the entorhinal cortex, the putative origin of AD pathology and a

region that very selectively and densely expresses SST-INs (Nuriel et al., 2017; Filippini et al., 2009;

Hunter et al., 2012; Anderson et al, 2020; Kim et al., 2017). Thus, early rhinal SST-IN hypofunction

should a�ect to control of baseline excitatory activity and activity-dependent AD pathology.. All in all,

both prodromal AD and APOE4 genotype are associated with hyperactivity and disinhibition, before

AD pathology develops, due to SST-IN dysfunction and sparser SST-IN populations (e.g., Koelewijn et

al., 2019; Leung et al., 2012; Li et al., 2009 Grouselle et al., 1988; Andrews-Zwilling et al., 2010, 2012).
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Thus, early hypofunction pre-AD can force existing SST-INs into hyperactivity (as observed in

multiple studies) to compensate for an original and milder disinhibition, giving rise to a pathological

process that rendersthese cells particularly vulnerable to Ca² dyshomeostasis upon eventual contact

with Aβ oligomers(e.g., Algamal et al., 2022; Koelewijn et al., 2019; Ruiter et al., 2020).

Supporting evidence comes alsofrom APP models. For example, an APP and PS1 double transgenic

model of AD (APP23PS45 model) in which hyperactive neurons were found in the vicinity of amyloid

plaques (less than 60 mm from their borders), with GABA-αR agonist diazepam normalising their

activity but antagonist gabazine increasing it less than in other neurons; this scenario is, of course,

indicative of impaired GABα-AR inhibition (Busche et al., 2008). Similarly, Ruiter et al. (2020) report

reduced dendritic inhibition - whose leading source are SST-Ins - with paradoxical increased

excitatory recruitment of interneurons in CA1 due to amyloidosis in an APP-KI model. Moreover,

hyperactivity in APP models precedes the formation of plaques (e.g., Busche and Konnerth, 2015;

Ruiter et al., 2020). For example, two-photon calcium imaging demonstrates that even in young

APP23PS45 mice without plaques, over 25% of CA1 neurons experience sharp increases in activity

levels (Busche et al., 2012), which is only later followed by plaque deposition (similarly, reducing

soluble Aβ concentrations with one oral dose of a gammasecretase inhibitor could already normalise

hyperactivity in APP transgenic mice, Abramowski et al., 2008). This is because even slightly increased

endogenous Aβ already promotes network disinhibition and SST-IN toxicity (e.g., Algmal et al., 2022;

Zott et al., 2019; Ruiter et al., 2020).

Finally, the stereotyped topographical progression of Aβ atrophy and tau deposition in AD and aMCI,

as well as the development of overactive networks, all very crisply overlap with SST-IN distribution

across the brain (Braak and Braak, 1991; Anderson et al., 2020; Kim et al., 2017; Jimenez-Balado and

Eich, 2021; Gail Canter et al., 2019; see �gures 1 and 2; see �gure 2). Thus, AD pathology �rst develops

in regions where SST-INs are densely and selectively expressed, only later encroaching into regions

with sparser SST populations connected with them (see �gure 2 for an idea of SST distribution in the

cortex).
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Figure 2. Anderson et al.‘s (2020)’s data. SSTs are depicted in red, and parvalbumin-positive cells in blue.

(a) Allen Human Brain Atlas (AHBA) tissue samples mapped to the human cortical surface, and (b) an

illustration of primate tissue sample locations. Normalised expression di�erence re�ects the sample-wise

subtraction of z-transformed PV from SST. Reproduced from Anderson et al. (2020).

In conclusion, early hyperactivity caused by disinhibition from a hypofunctioning SST-IN inhibitory

system drives SST-INs into hyperactivtiy in order to maintain homeostasis. This is conducive to the

production of Ab in these interneurons, and their early and preferential degeneration upon contact

with Ab oligomeres.

3.1. Activity-dependent pathology

Another crucial point to understand about the above pattern of disease progression is the following.

Early-a�ected regions, as SST-INs themselves, are well-known for profuse recurrent spontaneous

�ring and long temporal receptive windows, i.e., sustaining activity for long periods of time (as

opposed to sensory cortices, for example; Almeida, 2022). The medial temporal lobe is known to

receive abundant projections from all over the cortex, which enhance recurrent �ring; the DMN is

famous for being consistently active during rest; and the mid-frontal cortices display wide temporal

receptive windows to support working memory (e.g., Hasson et al., 2008; Huntenburg et al., 2018).

Accordingly, SST-INs, which are densely-expressed in these regions, function with a
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neurophysiological pro�le that is ideally-suited to control all this recurrent excitation (Almeida,

2022). Unlike PV-INs (the other major interneuron a�ected in AD), which are better-suited for

controlling brief windows of spiking activity (typical of sensory regions, Almeida, 2022), SST-INs

characteristically sustain recurrent �ring for long periods of time to tonically inhibit spontaneous

background activity (e.g., Jackson et al., 2016; Urban-Ciecko et al., 2015; Cichon et al., 2022; Fanselow

et al., 2008). These cells portray non-depressing �ring patterns and persistently high �ring rates;

further, they respond non-linearly to the accumulation of inputs from most surrounding pyramidal

cells, providing sustained feedback inhibition speci�cally in periods of elevated activity (Almeida,

2022; Fanselow et al., 2008). The short-term facilitatory excitatory synapses onto SST-INs amplify

postsynaptic potentials nonlinearly with temporal summation of inputs, insofar as greatly enhancing

SST-IN recruitment in a cumulative manner (Almeida, 2022).

All of this means that for every small increase in network activity, there is a signi�cantly larger,

compensatory one in sustained SST-IN �ring (which sets the stage for eventual Ca²+ overload). This is

particularly problematic in light of the fact that inhibitory neurons are already associated with marked

metabolic demands, with SST-INs also already functioning at high spontaneous �ring rates and

developing distinctive metabolic vulnerabilities with the ageing process (Ibrahim and Llano, 2019).

Indeed, a well-established fact is that SST-INs are preferentially and extraordinarily vulnerable to

excitotoxic degeneration from epileptic seizures, for instance (Hofmann et al., 2016). Thus, this again

indicates that chronic SST-IN hyperactivity and excitotoxicity are a risk factor for AD. Thus, even

preceding Aβ accumulation and neuroin�ammation, Shi et al. (2020) demonstrated that hippocampal

SST-INs grow aberrantly hyperactive. Several consolidated risk factors for the AD are tied to

hyperactive and/or hypofunctional SST-INs as well, including migraines (Marchionni et al., 2022),

sleep loss (Delorme et al., 2021), chronic and acute alcohol abuse (Dao et al., 2021; Ochi et al., 2022;

Lunden et al., 2019), sensory deprivation and loss (Richter et al., 2022; Herrmann and Butler, 2021;

Ibrahim and Llano, 2019), ageing (Stanley et al., 2012; Brown, 1984; Ibrahim and Llano, 2019), Down

Syndrome (Zorrilla de San Martin et al., 2020; Schulz et al., 2019), stress, depression and anxiety (Fee

et al., 2017; Banasr et al., 2017), autism (Lunden et al., 2019), and others. Similarly, multiple

neurodegenerative diseases that share a genetic basis with AD also su�er from some measure of SST-

IN hyperactivity or dysfunction (Zhang et al., 2016).

Adding to this problem, Aβ/tau pathology are activity-dependent (Jimenez-Balado and Eich, 2021;

Nuriel et al., 2017; Gail Canter et al., 2019; Yuan and Grutzendler, 2016; Cirrito et al., 2005; Yamamoto
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et al., 2015; Pooler et al., 2013; Wu et al., 2016; Zott et al., 2019; Mattson et al., 1990; Bero et al., 2011;

Elliott et al., 1993; Liu et al., 2010; Qing et al., 2008; Sanchez et al., 2012; Mark et al., 2015; De Haan et

al., 2012; Kastanenka et al., 2019). In the TG2576 model, for example, in vivo microdialysis shows how

Aβ concentrations in interstitial �uid covary with activity levels (as per the pharmacological

manipulations, Bero et al., 2011). Overactivation of glutamate receptors drives tangle-like changes in

Tau in cultured hippocampal neurons through a mechanism associated with Ca²+ overload, for

example, as well as synaptic losses, oxidative stress, and Aβ release (Mattson, 1990; Zott et al., 2019).

Seizures can spur Tau pathology in the hippocampus (Elliott et al., 1993), and numerous

anticonvulsants are shown to prevent Aβ-induced Ca²+ dysregulation and tauopathy both in vitro and

in vivo - drugs like levetiracetam, diazoxide and valproic acid can ameliorate as well as delay cognitive

decline in mouse models as well as in humans (Liu et al., 2010; Qing et al., 2008; Sanchez et al., 2012;

Mark et al., 1995). What all of this means is that regions inhabited by SST-INs, i.e. characterised by

long-lasting neural activity (e.g., DMN and various cortical hubs and frontotemporal associative

regions), are prone to develop AD pathology biassed towards SST-IN degeneration (De Haan et al.,

2012; Buckner et al., 2009; Braak and Braak, 1991; Pini et al., 2016). Further, as Aβ (and tau) deposition

begins, SST-IN degeneration and network disinhibition accelerate (e.g., Huang and Mucke, 2012;

Verret et al., 2012). Eventually, this could lead, for example, to failures of DMN deactivation upon tak

engagement as observed in AD patients and asymptomatic subjects with signi�cant amyloid burden

(e.g., Sperling et al., 2009).

Hence, with hyperactivity or disinhibition of mid-temporal networks prior to the onset of aMCI, AD

pathology aggravates the heavy burdens laid on remaining SST-INs.. This pattern could be

particularly accentuated in females, since recent �ndings with optogenetics indicate that there are

sex-dependent variations in the distribution of SST-INs’ targets; whilst being more selectively aimed

at pyramidal cells in males, they are more evenly distributed between inhibitory and excitatory

neurons in females, such that higher �ring rates would be needed to control the same level of

excitatory activity (Dao et al., 2020).

3.2. GABA-B receptor overstimulation

Crucially, the prodromal SST-IN hyperactivity itself spurs Aβ production not only from their own

activity but even their presynaptic connections. That is, increased SST-IN spontaneous �ring causes

excessive stimulation of GABA-B1a receptors (e.g., Shen et al., 2022; Kanigowski et al., 2023; Urban-
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Ciecko et al., 2015), with heterodimeric GB1a/2 and GB1b/2 receptors accumulating at excitatory

terminals and in the somatodendritic compartment, respectively. Excessive SST-IN spontaneous

activity targets and thus downregulates presynaptic GABA-B1a receptors, which is indeed observed in

postmortem AD studies and animal models (Martín‐Belmonte et al., 2020a, 2020b; Osse et al., 2023).

On the other hand, APP is known to be transported to axons by GABA-B1a ligands (Rice et al., 2019;

Dinamarca et al., 2019; Bi et al., 2020). GABA-B1a, speci�cally, acts as a receptor for secreted APP (Rice

et al., 2019). Hence, this receptor is known to form GABA-B1a/APP complexes in the axonal surface of

presynaptic SST-IN connections. In non-pathological conditions, these complexes restrict APP

internalisation, and thus prevent BACE1-dependent recycling/endosomal processing to Aβ (which is

mainly released by axons due to greater presence of BACE1, Buggia-Prevot et al., 2013; Dinamarca et

al., 2019). Their downregulation/internalisation, however, translates into increased Aβ production; for

example, mice lacking GABA-B1a consistently exhibit enhanced amyloidogenic processing (see

Dinamarca et al., 2019). Interestingly as well, downregulation of GABA-B1a in AD should impair top-

down spontaneous suppression of UP states and interareal synchronisation of DOWN states, which are

mediated by this subunit (Craig et al., 2013); such disruption of slow-wave activity in NREM states is

known to aggravate amyloidosis and disrupt memory consolidation as well (for a review, Lee et al.,

2020).

Altogether, then, early SST-IN hyperactivity leads to GABA-B1a downregulation and internalisation,

with increased availability of APP for Aβ release around these very same cells by the presynaptic

terminals they inhibit. Given that SST-IN hyperactivity further causes accumulation of SST-14

amyloids nearby when hyperactive (e.g., Wang et al., 2017; Anoop et al., 2013; Solarski et al., 2018), the

increased availability of extracellular Aβ and SST-14 is conducive to the formation of mixed amyloid

oligomers, which �nally result in even further biassed SST-IN death through Ca²+ overload (Solarski

et al., 2017; Hector et al., 2021; Kimura and Schubert, 1993). For each dead SST-IN, there is a

compensatory increase in surrounding SST-IN activity, further GABA-B1a downregulation and

internalisation, and thus further Aβ release around these interneurons. This vicious cycle eventually

leads to AD.

Finally, GABA-B downregulation can also be caused by NMDAR-dependent endocytosis and lysosomal

degradation upon prolonged activation (e.g., Guetg et al., 2010; Terunuma et al., 2010; Maier et al.,

2010). However, the primary pathogenetic mechanism is likely SST-IN hyperactivity due to the

macroscopic overlap between Aβ deposition, SST-IN density and hyperactive networks in both
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patients and animal models (e.g., Jimenez-Balado and Eich, 2021; Gail Canter et al., 2019; Edelman et

al., 2017). Speci�cally, SST-INs exert powerful and highly e�ective inhibition of these receptors, such

that SST-IN dysfunction should promote glutamatergic overstimulation of NMDARs and NMDAR-

dependent GABA-B1a endocytosis and lysosomal degradation (Schulz et al., 2018; Homayoun and

Moghaddam, 2007; Ali et al., 2020; Maier et al., 2010).

Blockade of NMDARs prevents downregulation of GABA-B1aRs (e.g., Maier et al., 2010), which could

partly relate to the e�ectiveness of the NMDAR antagonist memantine in AD. Additionally, signalling

pathways that increase cAMP levels (e.g., β-adrenergic receptors) can upregulate GABA-B expression

as well as promote widespread network silencing, thereby helping prevent Aβ formation (though a

multitude of biological processes are also involved, Lương and Nguyễn, 2013; Devilbiss and

Waterhouse, 2000; Gu, 2002).

3.3. Slow waves and oscillatory slowing

Sleep is a critical factor to account for in the context of Aβ pathology. Slow-wave sleep (SWS) is known

to support a clearance mechanism hinged on a 60% increase of cortical interstitial space during sleep,

through modulation of the paravascular glymphatic system (Ili� et al., 2012; Xie et al., 2013); indeed,

Aβ levels actually drop during sleep and are higher in wakefulness (Kang et al., 2009; Lucey et al., 2017;

Lee et al., 2020). SWS has also proven time and again crucial for the consolidation of declarative

memory, with its disruption causing memory de�cits (Steriade and Timofeev, 2003; Marshall et al.,

2006; Walker, 2009; Lu and Göder, 2012; Lee et al., 2020). Crucially, it is well-established that SST-

INs modulation of GABA-BRs is essential for SWS; particularly, these cells are regulators and

terminators of UP states, and capable of initiating and synchronising/sustaining DOWN states (Funk

et al., 2017; Niethard et al., 2018; Lee et al., 2020; Gerashchenko et al., 2008, 2018; Craig et al., 2013;

citar); conversely, the initiation of UP states relies on astrocytic stimulation of GABA-B receptors

(Poskanzer and Yuste, 2011, 2016; Szabó et al., 2017; Lee et al., 2020).

In light of the model presented so far, it should be unsurprising that Aβ deposition directly correlates

with sleep alterations in preclinical AD patients (Ju et al., 2013; Spira et al., 2013; Lee et al., 2020;

Mander et al., 2015; Winer et al., 2020; Westerberg et al., 2012), which is aggravated by age-dependent

SWS deterioration. For example, Mander et al. (2015) found that reduced SWS among older adults is

associated with increased Aβ accumulation in the mPFC, accompanied by memory de�cits; the

relationship between Aβ load and memory de�cits was mediated by SWS (Mander et al., 2015).
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Conversely, Winer et al. (2020) reported that SWS disruption forecasts Aβ accumulation, AD

development, and speed of disease progression. Another important study found that APP mice develop

disrupted SWS, accompanied precisely by disinhibition and downregulation of GABA-BRs and GABA-

ARs (and lower GABA levels), which accelerates Aβ accumulation and calcium dyshomeostasis;

optogenetically-induced synchronisation of SWS, on the other hand, su�ced to restore calcium

homeostasis and halt Aβ accumulation (Kastanenka et al., 2017). Moreover, it is noteworthy that there

is a surge of orexin in the cortex that accompanies sleep loss, which itself is shown to depolarise SST-

INs through blockade of K+ channels and enhance excess sustained activity both by inhibiting

afterhyperpolarisation and increasing Ca²+ in�ux in conditions of weak depolarisation through low-

voltage activated T-type Ca²+ channels (Luo et al., 2023).

Thus, early SST-IN hyperactivity may very well promote glymphatic dysfunction prior to AD, and

increased amyloidosis as well as accumulation of various other toxins due to slow-wave disruption.

The TDP-43 protein, for example, abounds in postmortem brains of AD subjects and is actually shown

itself to drive even further SST-IN hyperactivity (this was observed in amyotrophic lateral sclerosis

and frontotemporal dementia, Zhang et al., 2016), which caused excitotoxicity of layer V pyramidal

neurons from SST-INs’ over-inhibition of PV-INs (i.e., disinhibition of pyramidal cells’ somatic

compartment).

Finally, SST-INs are known to regulate slow oscillations, especially delta and theta. Both frequency

bands are associated with mnemonic processing under SST-IN mediation (e.g., Almeida and

Radanovic, 2022). For example, altering delta oscillations by knocking out nitric oxide synthase

expression from SST-INs induces recognition memory impairments (Zielinski et al., 2019).

Accordingly, delta oscillatory slowing during sleep is linearly correlated with cognitive impairment

(Rempe et al., 2023), and regional oscillatory slowing reliably predicts Aβ burden in AD cortex

(Wiesman et al., 2022).

3.4. Astrocytes and adenosine

The present model can also accommodate certain changes in astrocytes - namely their overactivity in

AD, especially near Aβ (even if not in the form of plaques, Wisniewski and Wegiel, 1991). Indeed, there

is a close correlation between astrogliosis and Ab/tau pathology (e.g., Coomaraswamy et al., 2010;

Bodea et al., 2016).
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SST-INs are known to recruit astrocytes through both SST release and GABA-B stimulation, with

GABA-B-mediated cytosolic Ca²+ in astrocytes mostly being detected during periods of intense

activity (Henriques et al., 2022; Mariotti et al., 2018). Matos et al. (2018) showed that CA1 hippocampal

astrocytes sense GABA released by moderate SST-IN activity via GAT-3-mediated Ca2+ elevations,

releasing ATP, which is immediately converted into adenosine. Through activation of A1 receptors

(A1Rs; likely postsynaptic), this potentiates SST-IN’s typical GABA-A5R inhibition of bursting

activity. Presynaptic A1Rs inhibit neurotransmitter release through G-protein-coupled inhibition of

voltage-dependent Ca2+ channels, while postsynaptic A1Rs induce neuronal hyperpolarisation

through activation of inwardly rectifying K+ channels, which regulates burst �ring (Matos et al.,

2018). Thus, SST-IN hyperactivity can lead to astrocytic excitotoxicity, overstimulation and

downregulation of A1Rs, and inhibition of neurotransmitter release, along with di�use and long-

lasting disinhibition of pyramidal neurons by SST.

Interestingly, chronic blockade of A1Rs leads to its upregulation and thus possibly enhanced SST-IN

inhibition (Shi et al., 1993), whereas antagonism of A2ARs could help mitigate plaque formation by

attenuating excitatory transmission from presynaptic terminals onto SST-INs and thus preventing

SST-IN hyperactivity. This could help explain the protective e�ects of ca�eine, for example (e.g.,

Arendash and Cao, 2010). Conversely, it has been shown that ca�eine consumption during pregnancy

may be a risk factor for the acceleration of the early stages of AD, which also agrees with �ndings that

early A2A antagonist exposure delays migration of SST-INs, causing cognitive de�cits during

development (Zappettini et al., 2019; Silva et al., 2013).

3.5. Summary of the model (biology)

To recapitulate, the model assumes at least some measure of SST-IN sparsity of hypofunction as an

aetiological feature of AD (though these de�cits themselves can arise for a variety of reasons).

Impaired SST-IN inhibition disinhibits multiple associative networks, leading to increased recurrent

�ring. Such increased excitatory activity in SST-dense associative regions thereby lays a burden on

hypofunctional and sparse SST-INs to increase their �ring rates so as to maintain

excitatory/inhibitory balance. Sustained hyperactivity of SST-INs thus promotes overactivation of

GABA-B1a/APP receptor complexes, leading to their downregulation/internalisation. Hence, increased

intracellular APP availability in presynaptic terminals inhibited by SST-INs induces enhanced

amyloidogenic processing and extracellular Aβ availability. Conversely, SST-INs’ hyperactivity and
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high-�ring rates cause SST-14 aggregation in the surrounding extracellular environment. The upshot

is that SST-14 and Aβ form toxic mixed oligomers, which result in SST-IN death, increased

disinhibition and compensatory increases in �ring rates of surrounding SST-INs. As such, this process

stimulates a vicious cycle of Aβ production, SST de�ciency and SST-IN death, ultimately resulting in

the formation of Aβ plaques that set o� aMCI and AD. Moreover, it should be noted that GABA-B

downregulation enhances amyloidosis and memory dysfunction also through disinhibition - e.g.,

acceleration of cortical neurons’ �ring rates in a mouse model led to Aβ accumulation and dendritic

spine loss speci�cally due to the development of inhibitory hypofunction and associated with

downregulation of GABA-A and GABA-B receptors (Kastanenka et al., 2019). Net disinhibition, at

some point, should also cross some threshold past which, and as with any exponential curve, it

abruptly spikes upwards (which could coincide with the onset of aMCI). In Down Syndrome, this

threshold would be expected to be crossed at a much earlier age, which can be partially explained by

reports of overactive excitatory recruitment of SST-INs in this neurodevelopmental disorder (Zorrilla

de San Martin et al., 2020; Schulz et al., 2019). Finally, women may be more susceptible to AD because

of di�erences in the distribution of inhibition by SST-IN (which is more biassed towards other

interneurons in females than in males) leading to heavier demands on �ring rates to control

excitatory activity, as well as sex-dependent accelerated SST-IN degeneration.

In regards to tauopathy, though it develops downstream of Aβ, it spreads trans-synaptically and

thereby independently of SST-INs (Braak and Tredici, 2019). Accordingly, several studies attest the

preferential colocalisation of SST-INs with Aβ even though the earliest signs of tauopathy showing at

SST-INs two main presynaptic connections (viz., pyramidal neurons in layers III and V), but later

spreading trans-synaptically and irrespective of SST-INs (Braak and Tredici, 2019). Conversely, in

APP23PS45 mice, the �rst plaques emerge in deep layers (Busche et al., 2008) - layer Vb pyramidal

neurons being, accordingly, the chief targets of SST-IN inhibition, and highly prone to a distinctively

sustained, high-frequency burst �ring activity (Almeida, 2022).

In the following sections, we will weave considerations on the neurocognitive pro�le of AD based on

this biological model.
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4. Functional considerations

4.1. Engram destabilisation

Inhibitory engrams are “negative images” of actual memory traces - i.e., inhibitory connections

potentiated along with excitatory ones, creating suppressive representations that safeguard learned

information from reconsolidation, interference, and overexcitation (e.g., Koolschijn et al., 2019;

Barron et al., 2017; Adler et al., 2019; Cichon and Gan, 2015; Chiu et al., 2015; Almeida and Radanovic,

2022; Canto-Bustos et al., 2022; Shrestha et al., 2020). Whenever information needs to be retrieved or

learned, these tonic inhibitory blankets are transiently lifted o�; this means engrams are destabilised,

allowing for access as well as various forms of synaptic plasticity; following the transient instability,

inhibition is reinstated and memories are stabilised once again (e.g., Barron et al., 2017; Letzkus et al.,

2015; Almeida, 2021, 2022; Williams and Holtmaat, 2019; Garrett et al., 2020; Orlova et al., 2019; Ito et

al., 2020; Baratta et al., 2002; Kato et al., 2015; Canto-Bustos et al., 2022). As such, inhibitory engrams

can preserve learned information from being altered or lost through neuroplasticity by subsequent

neural activity or coactivations (e.g., Barron et al., 2017; Adler et al., 2019; Cichon and Gan 2015; Chiu

et al., 2015; Shrestha et al., 2020). For example, in zebra �nches, it has been demonstrated that

inhibition protects new learning from the interference of previously-acquired information by

selectively suppressing the latter (Vallentin et al., 2016).

Evidence favours SST-INs as the protagonists for the implementation of inhibitory engrams. SST-INs

preferentially suppress potentiated memory traces, such as familiar, habituated and other types of

predictable stimuli (whereas PVs tend to show opposite patterns), whilst also distinctively promoting

memory consolidation (Hayden et al., 2021; Silberberg and Markram, 2007; Berger et al., 2010; Natan

et al., 2017a, Natan et al., 2017b; Kato et al., 2015; Garrett et al., 2020; Orlova et al., 2019; Almeida,

2021; Asgarihafshejani et al., 2022; Racine et al., 2021; Vasutta et al., 2015; Honoré and Lacaille, 2022;

Shrestha et al., 2020). Furthermore, this inhibition is transiently silenced by vasoactive intestinal

polypeptide-positive interneurons (VIPs) in conditions requiring memory destabilisation

(disinhibition for access or learning, e.g., Letzkus et al., 2015; Almeida, 2021, 2022; Williams and

Holtmaat, 2019; Garrett et al., 2020; Orlova et al., 2019; Ito et al., 2020; Baratta et al., 2002; Kato et al.,

2015), such as reward and punishment (Szadai et al., 2022; Kim et al., 2016), unpredictability,

mismatch and contextual novelty (Garrett et al., 2020; Orlova et al., 2019; Arriaga et al., 2019; Almeida,

2021), and attentional engagement (Garrett et al., 2020; Kato et al., 2015; Pi et al., 2013; Karnani et al.,
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2016); interestingly as well, VIPs’ responsiveness is reduced by activity-induced lgf1 enhancers, which

are known to increase incoming GABAergic transmission (Roethler et al., 2023) when ensembles are

potentiated - thus unleashing SST-IN �ring with synaptic potentiation.

Indeed, SST-INs undergo a very distinctive synaptic potentiation near the long-term potentiation

(LTP) of excitatory neurons; additionally, an NMDAR-dependent potentiation of excitatory synapses

onto SST-INs accompanies learning, as does a relocation of extrasynaptic GABA-a5Rs to inhibitory

synapses; and the intrinsic excitability of hippocampal SST-INs increases following learning, with

reduced afterhyperpolarisation and increased baseline �ring (e.g., Asgarihafshejani et al., 2022;

Racine et al., 2021; Vasutta et al., 2015; Honoré and Lacaille, 2022; Cummings and Clem, 2020;

Davenport et al., 2021; McKay et al., 2013; Oh et al., 2015). Accordingly, the inactivation of SST-IN

inhibition destabilises dendritic branches coding for previously-acquired information, allowing for

subsequent neural activity (associated with new learning in other tasks) to unduly recruit them; the

indiscriminate activation of dendritic branches results in new learning overwriting old information

through depotentiation of dendritic spines (i.e., interference), and an overall dedi�erentiation of

memory storage (e.g., d’Aquin et al., 2022; Chiu et al., 2015; Cichon and Gan, 2015; Adler et al., 2019;

Schmidt et al., 2016). Indeed, SST-IN inhibition is highly precise even at a subcellular level, regulating

selective activation of particular dendritic spines of individual pyramidal dendrites to promote

functional selectivity (Chiu et al., 2015). Deletion of SST-INs leads to indiscrimination of context,

stimulus-speci�c information and interference of previously-learned information by new learning

speci�cally due to disinhibited, indiscriminate Ca²+ activity in dendritic spines (which promotes the

aforementioned depotentiation, Cichon and Gan, 2015). Furthermore, Adler et al. (2019) demonstrated

that SST-IN inhibition is necessary to prevent novel motor information from altering pre-existing

memories or erasing them. Inhibitory engrams of SST-INs are also associated with pattern separation

(e.g., Nabavi et al., 2014; Morales et al., 2021), whose principal goal is to prevent interference and

indiscrimination between memories. Thus, SST-INs are often not simply modulators but the leading

source of stimulus-speci�city and contextual sensitivity (e.g., see Keller et al., 2020; Adler et al., 2019;

Almeida, 2021; Chiu et al., 2015; Morales et al., 2021; Nabavi et al., 2014; Cummings and Clem, 2020).

SST-INs even increase mnesic computational capacity by providing compartmentalised inhibition

(d’Aquin et al., 2022), and the neuropeptide SST stabilises representations by preventing LTP (whilst

broadly hyperpolarising supragranular neurons, enhancing signal-to-noise ratios, and countering

overexcitation, Tallent, 2007; Brockway et al., 2022).
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All in all, representations in AD may become highly unstable (disinhibited) due to SST-IN

degeneration (as discussed more in the following sections). This can lead to the progressive loss of

information in cortical networks, and indiscriminate activation of memories upon retrieval attempts,

triggering interference and reconsolidation (e.g., Almeida and Radanovic, 2022; Almeida et al., 2023;

Morales et al., 2021; Cichon and Gan, 2015; Adler et al., 2019; Mabavi et al., 2014; Chiu et al., 2015).

Interestingly, cholinergic dysfunction should directly contribute to this indiscrimination, seeing that

SST-INs are strongly modulated by muscarinic as well as nicotinic input (e.g., Fanselow et al., 2008;

Urban-Ciecko et al., 2018; Obermayer et al., 2018; Hilscher et al., 2017; Xiang et al., 1998; Muñoz et al.,

2017; Sugihara et al., 2016; Chen et al., 2015). For instance, SST-IN activity has been proven necessary

for fear-memory acquisition and subsequent retrieval in a mouse model of AD, with these functions

being impaired with development of AD pathology and subsequently rescued by treatment with the

cholinergic agonist Cevimeline - particularly due to amelioration of SST-IN function (Schmid et al.,

2016). Cholinergic input is also demonstrated to improve discrimination performance through SST-IN

modulation, promoting decorrelation and desynchronisation of evoked cortical response (Chen et al.,

2015). Accordingly, lesions to the nucleus basalis of Meynert entail a marked and multi-cortical loss of

SST-INs (Zhang et al., 1998), with cholinergic modulation being protective and essential for healthy

SST-IN function (e.g., Fanselow et al., 2008) and supporting its discriminatory functions in the cortex

(e.g., Chen et al., 2015; Almeida, 2021). In the same vein, the antimuscarinic drug scopolamine

increases interference between overlapping word lists, and word intrusions have been tied to reduced

ChAT levels and increased Aβ plaques as well as scopolamine administration (e.g., Almeida and

Radanovic, 2022, 2023; Fuld et al., 1982; Drachman and Leavitt, 1974; Caine et al., 1981). Both

proactive and retroactive interference are marked features of aMCI and AD, and correlate with amyloid

burden, itself associated with disinhibition of SST-INs (e.g., Almeida and Radanovic, 2022, 2023;

Abula�a et al., 2019). Choline-de�cient rats also exhibit high levels of proactive interference similar to

SST-IN impairments and AD, whereas choline supplementation in prenatal development reduces it

(Meck and Williams, 1999); AChEIs could thereby be bene�cial for cognition in AD partly due to some

improvement of SST-IN function.

Finally, SST-IN de�cits should promote a loss of spine density, which seems to be an essential

component of memory de�cits in AD. Namely, Roy et al. (2016) demonstrated that optogenetic

activation perforant path �bres to engrams in the dentate gyrus of AD mice led to an increase in LTP

and dendritic spine density, which correlated with rescuement of long-term memory de�cits. Ablation
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of these engrams (with potentiated spine density) resulted in annulation of those e�ects. Accordingly,

SST-INs are known to protect dendritic spines. For example, application of the neurotoxin MPTP

reduces spine density, induces synaptic loss and increases aberrant dendritic Ca²+ activity by

impairing SST-IN function, all of which are recti�ed by activation of SST-INs (Chen et al., 2019); thus,

SST-IN disinhibition and spine loss are colocalised with Aβ (Bittner et al., 2010, 2012; Algmal et al.,

2022). Moreover, degeneration of SST-INs in AD hippocampus results in progressive synaptic loss, as

well as de�cits in memory and plastic rewiring (Schmid et al., 2016).

4.2. Functional dedi�erentiation

SST-INs’ most prominent function is to mediate interareal information transfer by suppressing the

response of apical dendrites to cortical feedback, e�ectively either halting/gating or enabling top-

down connectivity through synchronisation (e.g., Almeida, 2021, 2022; Delorme et al., 2021; Abbas et

al., 2018; Karmani et al., 2016). Suggestively, stereotypical connectivity changes develop between early

aMCI and late AD: much like early hyperactivity leading to late hypoactivity (e.g., Bass et al., 2015;

Almeida and Radanovic, 2022; Anastacio et al., 2022; Stargardt et al., 2015), hyperconnectivity is

observed in aMCI and early AD but followed by hypoconnectivity in late AD (e.g., Almeida and

Radanovic, 2022; Koelewijn et al., 2019; Schultz et al., 2017). Thus, the present model explains this

pattern with early hyperactivity caused by SST-IN disinhibition, whereas late hypoactivity could

evolve due to tauopathy and disinhibition-related excitotoxicity - which is in accordance with the

early Aβ-dependent acceleration of atrophy in AD, followed by late deceleration and hypoactivity

(Sabuncu et al., 2011).

Indeed, SST-IN hypofunction has been shown to cause hyperconnectivity; that is, ethanol intake has

been shown to ramp up functional connectivity between SST-sparse regions by dampening SST-IN

inhibition (e.g., Ochi et al., 2022). Similarly, SST-IN degeneration in AD may ramp up connectivity

between the a�ected regions (Almeida and Radanovic, 2022). This would agree with the �ndings that

functional connectivity, particularly in the theta band, re�ects hyperactivity in subjective cognitive

impairment and MCI, whereas optogenetic normalisation of SST-IN function also normalises theta

oscillations in AD (PV-INs ameliorating the gamma frequency, citar). Conversely, in another study,

chronically reduced SST-IN inhibition through ablation of 30% of SST-INs in the auditory cortex

ultimately led to a plunge in the levels of corticocortical transmissions - i.e., late hypoconnectivity

(Seybold et al., 2012). Hence, chronic SST-IN hypofunction in aMCI could potentially drive
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hyperconnectivity at �rst, only to eventually contribute to dampening corticocortical transmission in

later AD due excitotoxicity and other complex neural processes (e.g., reshaping of receptive �elds,

Seybold et al., 2012).

Another interesting argument is that potentiated ensembles deprived of their SST-IN inhibitory

engrams may be more susceptible to excitotoxicity due to overexcitation, which can lead to atrophy in

specialised (potentiated) networks preferentially. Thus, a reduction of brain asymmetry is observed in

AD patients, as well as cortical thinning of hyperactive regions (e.g., Putcha et al., 2011; Almeida and

Radanovic, 2022). Hubs also tend to be overactive and exceptionally susceptible to Aβ deposition and

atrophy, which later turns into hypometabolism - whether in AD or healthy ageing (Buckner et al.,

2009; Stam et al., 2009; Lo et al., 2010; de Haan et al., 2012). These data are congruent with SST-IN-

related NMDAR disinhibition and Aβ-driven Ca²+ dyshomeostasis (Mattson et al., 1992; Schulz et al.,

2018).

Destabilisation of potentiated circuitry may thereby promote interference, depotentiation, and loss of

functional selectivity. In terms of functional connectivity, disinhibition should notably promote

functional dedi�erentiation, with disinhibited regions being improperly recruited during task

performance and interfering with specialised processes (e.g., language, face recognition). Thus, for

instance, a loss of functional lateralisation is commonly reported with fMRI for language tasks

(indicating impairments in lexical-semantic memory) (Almeida and Radanovic, 2022). Further,

de�cits in face recognition have been associated with functional dedi�erentiation in AD, with authors

suggesting that unrelated regions interfere with specialised face-processing networks (Kurth et al.,

2015). Similar dedi�erentiations are reported for memory tasks, whereby tau tangles induce

mnemonic discrimination de�cits (Kurth et al., 2015; Maass et al., 2019; Li et al., 2021). Loss of sensory

dominance has also been demonstrated and tied to compromised inhibitory function in aMCI and

older adults (e.g., Murray et al., 2018; Diederich et al., 2008; Laurienti et al., 2006). Shifts in the

topography of certain oscillatory frequency bands as well as evoked-related potentials are observed

among AD patients and seem suggestive of such a disarrangement of functional circuits (e.g.,

Spironelli et al., 2013; Almeida and Radanovic, 2022). Aβ/tau pathology have also been correlated with

a loss of functional segregation between episodic-memory networks - namely, anterior-temporal and

posterior-medial -, which itself correlated with memory decline in older adults (Cassady et al., 2021).

Finally, a loss of interareal inputs into SST-INs with hypoconnectivity may compromise top-down

control of interference in lower regions (Almeida and Radanovic, 2022). This would agree with the fact
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that de�cits in recovering from proactive semantic interference have been correlated with di�use loss

of frontotemporal/limbic functional connectivity in asymptomatic o�spring of late-onset Alzheimer's

disease (LOAD) patients (Sánchez et al., 2017).

4.3. Spatial memory de�cits

Hippocampal place �elds are neural maps or cognitive representations of places in the real world,

represented by well-de�ned and stable groups of place cells. Sets of such cells engage in high-

frequency bursting whenever mice enter a known place, and remain fully active as place �elds for the

duration.

As a place grows familiar, place cells �re more selectively and speci�cally for that location, and

assemble into increasingly-stable ensembles (Zhao et al., 2014; Caccuci et al., 2008; Ness and Schultz,

2021; Cheng and Ji, 2013; Cayzac et al., 2015; Yassa et al., 2010). The leading role of hilar SST-INs in

spatial memory encoding, retrieval and representation are well-established, and multiple studies

demonstrate how spatial memory de�cits in AD correlate selectively with SST-IN degeneration

(Andrews-Zwilling et al., 2010, 2012; Leung et al., 2012). Accordingly, in AD models place �elds are

represented in a lower-resolution state: familiar spatial representations fail to constrain the

activation into a few well-de�ned set of place cells, displaying instability and conveying less location-

speci�c information which codify distinctive features used to narrow down the identity of a particular

location - and thus arise spatial memory de�cits (which is observed even in tau models with

hypoactivity, Zhao et al., 2014; Caccuci et al., 2008; Ness and Schultz, 2021; Cheng and Ji, 2013; Cayzac

et al., 2015; Yassa et al., 2010); of note, ageing-related alterations also promote excessive hippocampal

�ring, poor encoding, interference and indiscrimination (Wilson et al., 2005, 2006; Busche et al.,

2015).

Destabilisation by SST-IN hypofunction is quite eligible to induce such indiscriminate activation,

interference, impaired encoding and unstable representations in AD. This would also concur with the

fact that APOE4 mice show age- and sex-dependent (female-biassed) spatial learning de�cits, and

those in turn only correlate with APOE4-driven SST-IN loss but not other neurons (e.g., Leung et al.,

2012; Andrews-Zwilling et al., 2010, 2012). Moreover, impaired GABA-B1a subunit function also is

shown to permit unconstrained memory generalisation/indiscrimination (Lynch et al., 2016b).

Accordingly, Cayzac et al. (2015), for example, found neurons with larger place �elds and lower spatial

information in APP/PS1 mice. The authors reported a lower proportion of place cells as compared to

qeios.com doi.org/10.32388/GOY6DK 22

https://www.scienced/
https://www.qeios.com/
https://doi.org/10.32388/GOY6DK


regular mice. Additionally, place �elds did not decrease with learning in AD mice: the proportion of

task-only cells decreased in WT mice, but not APP/PS1. This was, interestingly, accompanied by a

slower theta frequency. The latter congrues with the fact that SST-INs tightly regulate theta

oscillations, as well as reports that restoration of SST-IN function normalises theta oscillations in

networks a�ected by Aβ oligomers (PVs, in turn, promote gamma activity; Chung et al., 2020). In a

similar vein, Cheng and Ji (2013) found that, in a transgenic tau model, CA1 neural maps covered much

wider areas and conveyed less spatial information (see �gure 3). Further, these low-resolution maps

correlated with interference of pre-existent �ring patterns, coding for non-spatial information,

which intruded during exploration of familiar as well as novel environments, and disrupted encoding

of new data. These intrusions were characterised by well-formed sequences of patterned activity

(Gelbard-Sagiv et al., 2008; Pastalkova et al., 2008), in line with the aforementioned SST-INs’ role in

protecting ensembles from proactive as well as retroactive interference. AD patients also display an

inability to form new memories, as well as frequent intrusions of old ones (Cheng and Ji, 2013;

Carlesimo and Oscar-Berman, 1992; Salmon and Bondi, 2009; Butters et al., 1987; De Anna et al.,

2008), with SST-INs being known to support memory encoding and prevent these intrusions

(Murayama et al., 2009; Almeida and Radanovic, 2022; Adler et al., 2019; Cichon and Gan, 2015).

As per the interpretation of Cheng and Ji (2013), “when the transgenic mice are placed in a space,

instead of forming/retrieving the space’s memory code, CA1 neurons are cued to activate those

internally-driven activity patterns irrelevant to the current space”. This implies that, just like

proactive interference, “there exists a direct competition between external and internal inputs”

(Cheng and Ji, 2013). Interestingly, interfering sequences were also evoked along with prominent theta

oscillatory activity, again hinting at a link to SST-IN dysfunction - given SST-INs’ prominent

modulation of theta oscillations (Almeida, 2021; Chung et al., 2020).
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Figure 3. Tau neurons �red with low location-speci�city in a familiar open box. (A) The open box with its

interior colour and cue card (Cue) shown. (B) Color-coded �ring rate maps of three WT and three Tau

neurons, each from a di�erent animal, in the open box. Numbers: peak (red/black) rates in Hertz. Note the

broader �ring areas of Tau neurons than those of WT neurons. (C) Distribution of open SI of WT and Tau

neurons. Plots are histograms normalised by total numbers of samples, each computed for one neuron in

one open box session. Reproduced from Cheng and Ji (2013).

Conversely, Mably et al. (2017) and Booth et al. (2016) failed to �nd increased place �eld size per se in

3xTg mice. Nonetheless, spatial information was still reduced in both studies, such that activation

patterns were unspeci�c and low-resolution. In accordance with disrupted inhibitory engrams, place-

map stability and �ring rates were also impaired in both studies (Mably et al., 2017; Booth et al., 2016).

In addition, theta-fast gamma coupling was impaired in Booth et al. (2016), indicating disrupted

entorhinal-hippocampal communication (including of inhibitory nature, Cheng and Ji, 2013). Finally,

a study with human subjects found that hyperactivity in aMCI is associated with discrimination

(pattern separation) and spatial memory de�cits (Yassa et al., 2010).
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All in all, AD models fairly consensually depict how representations of memories of familiar places fail

to look like so, because networks are unable to shape/re�ne them into speci�c and stable ensembles.

This is fully congruent with the fact that inhibition, rather than excitation, shifts most prominently

according to context, and is chie�y responsible for shaping excitatory activity in a context-dependent

fashion (e.g., Besnard et al., 2019; Kuchibhotla et al., 2017). SST-INs, speci�cally, are known to control

the size and speci�city of memories, being highly sensitive to small contextual changes (e.g.,

Stefanelli et al., 2016; Scheggia et al., 2020; Besnard et al., 2016; Lovett-Barron et al., 2014; Dobrzanski

et al., 2021; Arriaga et al., 2019; Cichon and Gan, 2015; Chiu et al., 2015; Asgarihafshejani et al., 2022;

d’aquino et al., 2022; Adler et al., 2019; Kuchibhotla et al., 2017). Mounting evidence demonstrates

that AD su�ers from early and progressive worsening of pattern separation skills, which are

conjectured to stem from AD pathology and cholinergic de�ciency - both of which directly undermine

SST-IN function; indeed, SST-INs are known to support pattern separation (Jun et al., 2020; Parizkova

et al., 2020; Ally et al., 2013; Sinha et al., 2018; Zhu et al., 2018; Lee et al., 2020; Goetghebeur et al.,

2019; Palmer and Good, 2011). Multiple other discriminatory cortical functions are carried out by SST-

INs (e.g., Lepousez et al., 2010; Scheggia et al., 2020; Abraham et al., 2023; Adler et al., 2019).

Accordingly, low-resolution spatial maps in AD have been proposed to stem from poor spatiotemporal

control of excitatory activity due to disinhibition, speci�cally (Ness and Schultz, 2021).

SST-IN dysfunction and Aβ are proposed here to render spatial maps inaccurate, low-resolution,

unspeci�c and unstable or destabilised. Loss of stimulus-speci�c responses and selectivity, as well as

context-dependent modulation, are observed with Ca²+ disinhibition by Ab of dendritic spines

(Kuchibhotla et al., 2008); these processes even precede neurodegeneration, synaptic and neural

losses (Arbel-Ornath et al., 2017). Thus, in AD, detailed features of the environment are not narrowed-

down into well-de�ned ensembles that can accurately distinguish and identify speci�c contexts due to

poor inhibitory control. For instance, in the aforementioned studies, mice with APP overexpression

and amyloidosis are shown to have an idea of the gist of a spatial map, but cannot home in on the

precise location of a target in water-maze training - i.e., failing to narrow-down information

according to context. Similarly, de�cits in NMDAR-dependent plasticity - on which SST-INs rely

heavily - of mice DG caused notable pattern separation de�cits, and marked indiscrimination between

contexts with overlapping features along with a reduction in context-dependent �ring rate

modulations (McHugh et al., 2007). Finally, spatial remapping, which most likely draws on plasticity

and inhibitory mechanisms, is performed to discriminate between similar ensembles by reducing
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their overlap, and this operation is also impaired in APP knock-in mice (Jun et al., 2020). Spatial

remapping is accomplished by shifting activation and topographical patterns in response to even

modest changes in the environment (e.g., ambience light, spatial size, geometry, and even itinerary

and sequences of directions in a maze, which may result in shifts of �ring rate, place-�eld locations

and sizes, etc), thus making representations more distinctive and discriminable.

4.4. Declarative memory de�cits

In AD, neurons in the temporal lobe may fail to respond selectively and coordinately to speci�c

locations and contextual features which support episodic memory (Moser et al., 2008; O'Keefe and

Dostrovsky, 1971; O'Keefe and Nadel, 1978). Spatial indiscrimination in AD due to SST-IN disinhibition

in fact already implies a disruption of episodic memory, given that place cells code also for episodic

information such as time, context, or autobiographical features (Eichenbaum, 2013). For instance,

hilar SST-INs in the DG were shown to discriminate between similar, partially-overlapping, episodic-

like spatial-contextual memories (Morales et al., 2020). Similarly, studies on source or context

memory, a subpartition of episodic memory involved in the remembrance of speci�c contextual

features (e.g., where, when or how an event has come to pass), commonly show de�cits in AD which

are caused by interference of false memories and impaired retrieval of speci�c features (e.g., Irish et

al., 2011; Pierce et al., 2008; Mammarella et al., 2012). For example, Pierce et al. (2008) found that AD

patients had di�culty remembering which particular room studied items were encoded in.

Mammarella et al. (2012) tested source memory for speci�c features of encoded words in AD, namely:

perceptual, spatial, temporal, semantic, social, and a�ective details. The authors found that AD

patients had di�culty remembering speci�c features, especially semantic and spatial details.

Further instances of interference in episodic memory can be found in the propensity for the formation

of false memories in AD (El Haj, 2015; Budson et al., 2002; Plancher et al., 2009). Some patients are

even known to confabulate over �ctional memories that they claim to have lived. It is believed that

this is driven by an inability to suppress intrusive irrelevant or �ctional information and discriminate

it from target memories (e.g., Plancher et al., 2009). Indeed, confabulations mainly consist of

intruding salient and stable long-term memories, such as habits and personal semantic information

(Burgess and McNeil, 1999; Dalla Barba, 1993, 2000; Dalla Barba et al., 1997, 1999). Multiple authors

thereby conjectured that confabulation stems from an impaired ability to consciously retrieve weak

long-term memories, whilst relatively sparing stronger representations (Dalla Barba et al., 1997,
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1999, 2002; Dalla Barba, 2000). In concurrence, “over-learned information interferes with episodic

recall, i.e., the retrieval of speci�c, unique past episodes” (De Anna et al., 2008), which are weaker

representations.

Illustratively, De Anna et al. (2008) asked mild AD patients to recall di�erent types of short stories:

“one unknown story (similar to the Logical Memory test in the Wechsler Memory Scale-Revised,

Wechsler, 1987), one well-known fairy-tale (Cinderella), and one ‘modi�ed’ well-known fairy-tale

(Little Red Riding Hood is not eaten by the wolf)”. Whereas numbers of intrusions did not di�er

between conditions for healthy controls, patients produced most intrusions in the modi�ed well-

known fairy-tale - i.e., due to interference of overlearned elements of those stories. Hence, the

“overlearned version of the fairy-tale interferes with the recall of the episodic representation of the

elements of the modi�ed version, which di�er from the original version”. Of course, this resonates

well with the notion of disrupted inhibitory engrams of potentiated ensembles. Similarly, a decline in

inhibitory ability in AD has been linked to di�culty telling whether previous actions were enacted or

imagined (El Haj et al., 2012, 2013, 2015d). Finally, in concern to delayed verbal recall (a highly

prevalent de�cit among AD cohorts), it has been proposed to derive from a susceptibility to

interference of distracting elements during the delay period - and minimising such interference does

improve performance (e.g., Cowan et al., 2005). Accordingly, in vivo two-photon imaging of the

hippocampus in a mouse model of AD during contextual fear conditioning demonstrated that

recently-formed memories were not actually lost; namely, neighbouring, partially-overlapping

ensembles near the engram precluded recall and induced forgetting, whereas optogenetic inhibition of

the interfering ensembles produced recall (Poll et al., 2020). Engrams themselves proved intact.

Similarly, Poll (2020) also applied two-photon imaging to APP/PS1 mice in a hippocampal-dependent

memory test and discovered that although engrams were intact, they could not be retrieved due to

superimposing of neighbouring ensembles. Hence, neural indiscrimination may best account for

mnemonic impairments in AD.

Importantly, SST-IN disinhibition in the cortex may very well promote interference and

reconsolidation of conceptual and semantic information in semantic memory as well (e.g., Colgin et

al., 2008; Almeida and Radanovic, 2022). For example, cells in the lateral prefrontal cortex exhibit

di�erent representations for distinct stimuli with highly similar features (Freedman et al., 2001; see

also Colgin et al., 2008; Donoghue et al., 2023). Cortical representations of events in close succession

su�er pattern separation whenever abstract boundaries are detected between them, thereby
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discriminating between di�erent perceived events close in time through semanticisation or

categorisation (Schapiro et al., 2013). Conversely, such de�cits should apply not only to recently-

encoded information like events, but also to long-term memories whose acquisition far precede the

onset of aMCI - e.g., the meanings of words. For instance, semantic �uency in AD is impaired most

notably in regards to cognitive switching between subcategories or clusters of semantically-related

concepts, which has been associated with overwhelming interference and semantic competition as

demonstrated by an fMRI study (Hirshor and Thompson-Schill, 2006;; Almeida and Radanovic, 2022).

Furthermore, AD patients notably lose the ability to discriminate between exemplars or tokens of the

same semantic category (e.g., speci�c animals such as “tiger” and “lion”) due to impaired access to

speci�c and distinctive features - as demonstrated by semantic priming and confrontation naming

tasks -, which has been proposed to stem, among others, form disinhibition and cholinergic de�cits

(for reviews, Almeida and Radanovic, 2022; Almeida et al., 2023). Additionally, AD patients perform

poorly at discriminating between confusable objects in recognition memory and conceptual matching

tasks, which correlated mainly with damage to one of the very most SST-selective regions of the brain

- namely, the perirhinal cortex (Frick et al., 2022). However, again, the fact that recently-encoded

information in spatial and episodic tasks is also subject to the same pattern of indiscrimination

strongly implies that it is not synaptic or neural loss that mainly causes memory de�cits in AD, but

disinhibition and indiscrimination.

Alternative instances of cortical discrimination de�cits in AD patients include visual space (Nguyen et

al., 2003), tone frequency and duration (e.g., Hellström and Almkvist, 1997; Caravaglios et al., 2010),

colours (Salamone et al., 2009), visual objects (Gaynor et al., 2019), facial identity (Roudier et al.,

1998), emotion (Kohler et al., 2005), semantic and contextual adequacy (Almeida and Radanovic,

2022), semantic categories and subordinates (Grossman et al., 2001; Almeida and Radanovic, 2022),

visuo-semantic lures versus target picture memory (Leal et al., 2019), tactile angles (Yang et al., 2010),

auditory-spatial information (Golden et al., 2015), word lists and events (Almeida and Radanovic,

2022), inter alia.

4.5. Summary of the model (cognition)

The fulcrum and main deduction of the model is that, chie�y in reason of hypofunctional SST-IN

inhibition, spatial and declarative memory in AD su�er from harsh discriminatory de�cits. In other

words, it is not neural or synaptic loss per se that is most responsible for the qualitative
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neuropsychological pro�le of AD patients, but widespread interference and indiscriminate neural

activity due to impaired context-dependent inhibitory modulation of cortical and hippocampal

networks. Hence, we discussed how this is re�ected in spatial memory as low-resolution, unspeci�c

and uninformative spatial maps which cannot narrow-down speci�c features of memories, but only

access a low-resolution gist. The same �ngerprint is observed in declarative memory. Semantic

categories lose resolution, such that patients fail to discriminate between individual exemplars by

accessing detail and distinctive features. Conversely, in episodic memory patients fail to home-in on

weak or speci�c contextual features in autobiographical and source memory, exhibiting intrusions of

overlearned information, whereas short-term memory su�ers from the same de�cits as re�ected in

proactive and retroactive interference studies and minimisation of interference during delay periods

of verbal recall. Moreover, it is noteworthy that SWS impairment, GABA-B1a downregulation,

cholinergic de�cits, and amyloidosis: all of these are known to promote progressive memory

generalisation over time, which may explain various discriminatory de�cits in memory (Webb et al.,

2020; Almeida et al., 2023).

Altogether, the present model concludes that memory in AD is not characterised mainly by loss of

engrams, but unconstrained and indiscriminate neural activity that can ultimately lead to their

disarrangement through interference and reconsolidation, in line with studies demonstrating

rescuing of memory de�cits and lost memories in animal models (e.g., Etter et al., 2019; Giovannetti et

al., 2018). This neuropsychological pro�le directly re�ects the biological model that was put forth,

which postulates that SST-IN hypofunction is an ontological feature of AD.
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