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1 Abstract

We use supersymmetry to enlarge the dimension of the Hilbert space on which
the unitary evolution of the state of the quantum fields acts. We discuss how
to control the unitary evolution or TPCP maps generated by the quantum
evolution of the fields by controlling the vacuum expectations of other fields in
the theory. This amounts to breaking supersymmetry using controlled vacuum
expectation values of the other fields. The evolution of the wave functional or
TPCP maps obtained by tracing out over other fields is based on the Feynman
path integral formula for the fields. By using the methods of quantum stochastic
filtering, we estimate the evolving state of the fields from non-demolition noise
measurements and then design a family of TPCP maps evolving in time whose
outputs match the estimated evolving state. In this way, we are able to simulate
the evolution of the state of the quantum noisy fields. Direct matching of the
designed TPCP map to output the evolving system state is not possible since
there is no way by which we can determine the exact evolving state; we can
only estimate it using non-demolition measurements. The family of designed
TPCP maps can be based on using a simulated master equation with unknown
parameters incorporated into the Hamiltonian and the other Lindblad operators,
chosen so as to match the state outputted by the quantum filter.

1Harish Parthasarathy is with the ECE division, Netaji Subhas University of Technology
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2 Problem formulation and discussion

By assuming that the laws of nature are inherently supersymmetric in nature,
i.e., invariant under Boson-Fermion exchange, we are able to introduce addi-
tional quantum fields into the action, leading to more degrees of freedom in
the corresponding Hamiltonian, i.e., an enlargement of the dimension of the un-
derlying Hilbert space obtained by truncation of the Boson and Fermion Fock
spaces. This amounts to setting up a supersymmetric action and hence a su-
persymmetric Hamiltonian using Chiral superfields for describing matter and
non-Abelian gauge superfields for describing the particles exchanged in the in-
teraction of the matter superfields. The total Lagrangian density thus has the
form [Φ∗.exp(t.V ).Φ]D +Re[f(Φ)]F +Re[WT

L ϵ.WL]F . Here, Φ is the left Chiral
matter superfield whose components are the scalar field, the left Chiral Dirac
field, and an auxiliary F -field. V is the non-Abelian gauge superfield whose com-
ponents in the Wess-Zumino gauge are the Yang-Mills gauge field, the gaugino
field, and an auxiliary D field. The first term in the above Lagrangian is the
supersymmetric generalization of the standard Lagrangian of the Klein-Gordon
scalar field plus the Lagrangian of the massless Dirac field plus the interaction
between the Dirac field and the non-Abelian Yang-Mills gauge field. The second
term is a superpotential term that, after eliminating the auxiliary F and D fields
using Gaussian path integration, contains a term that corresponds to a mass
term of the Dirac field whose mass depends on the vacuum expectation value of
the scalar field via the superpotential, and the last term is the supersymmetric
generalization of the Lagrangian density of the Yang-Mills non-Abelian gauge
field. Now, the crucial step here is to introduce control parameters β into the
superpotential f(Φ) and hence, eventhough these parameters can be varied, su-
persymmetry of the total Lagrangian will not be broken, and hence the laws
of nature will remain preserved. By varying these parameters, we can there-
fore hope to control the unitary evolution of the wave functional of the fields
ϕ, ψ, V Aµ , λ

A starting from t = −∞ and going uptot = +∞ in the scattering

process. Here, ϕ, ψ, V Aµ , λA are respectively the scalar field, the Dirac field, the
non-Abelian gauge field, and the gaugino field. We call ψ the Higgsino field,
i.e., the Fermionic superpartner of the Bosonic Higgs field ϕ because under an
infinitesimal supersymmetry transformation defined by the Salam-Strathdhee
supervector field

αTL,L = γµθ.∂µ + γ5ϵ.∂θ

Applied to the left chiral superfield Φ, it becomes clear that the variation of ϕ
is proportional to ψ and that the variation of ψ is proportional to ϕ, plus the
auxiliary F field. Likewise, the gaugino field λA is the fermionic superpartner
of the bosonic gauge field V Aµ , since these are exchanged under the action of the
above supervector field. The variation of the parameters of the superpotential
amounts, after eliminating the auxiliary fields, to controlling the mass of the
Dirac field via the scalar field. There are two ways to design the quantum gate:
as either a unitary map or a TPCP map, one based on Feynman’s path integral
method and the other based on Hamiltonian quantum mechanics using creation
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and annihilation operators. Here, we discuss both of these methods.
After eliminating the auxiliary F and D fields, the total Lagrangian density

has the form

L(ϕ, ψ, λ, V ) = (Dµϕ)
∗(Dµϕ)+ψ∗γ0(γµ.(i∂µ+gV

A
µ tA)−G(ϕ))ψ−(1/4)FAµνFAµν

+k(1).λ∗γ0(γµ(i∂µ + gV Aµ ad(tA))λ

+F1(ψ, λ, ϕ) + F2(ϕ)

, where in the second term, G(ϕ), the Dirac mass matrix is proportional to f ′′(ϕ)
and where the second last term F1 is trilinear in (ψ,ψ∗), (λ, λ∗), (ϕ, ϕ∗). The
last term F2 is proportional to |f ′(ϕ)|2. It comes mainly from the observation
that [Φ∗Φ]4 contains a term F ∗F , while Re[f(Φ)]2 contains a term Re(f ′(ϕ)F ),
so by eliminating F , setting the variation of the action w.r.t. it to zero, we get
F = −f ′(ϕ)∗/2 and substituting this back into the same expressions, we get a
contribution

F ∗F +Re(f ′(ϕ)F ) = −|f ′(ϕ)|2/4

It easily follows that the effective potential of the supersymmetric action is
|f ′(ϕ)|2/2 so that for the vacuum to be supersymmetric, we require that f ′(ϕ0) =
0 where ϕ0 is the vacuum expected value of the scalar field. Therefore, if we
do not wish to break supersymmetry but simultaneously require control of the
superpotential via the parameters β, we must then move on the p-dimensional
surface f ′(ϕ0|β1, ..., βp) = 0 in the parameter space. Usually, the superpotential
is gauge invariant, i.e., f ′(ϕ).tAϕ = 0 forall ϕ where tA runs over the gauge group
generators. If d is the dimension of the gauge group, this equation imposes d
constraints on the superpotential. Therefore, the effective number of constraints
in the equation f ′(ϕ0|β) = 0 is n − d where n is the number of ϕ-components.
This means that the allowable dimension of the parameter manifold for varying
β is p− (n− d) for designing the optimally controlled gate.

In this expression,
Dµϕ = (∂µ − igV Aµ tA)ϕ

Note that ψ transforms according to the vector representation of the gauge
group while λ = λAtA transforms according to the adjoint representation of
the gauge group. Now, from this Lagrangian, we can write down the equations
of motion and obtain the free wave (unperturbed) solution components for the
fields ϕ, ψ, λA, V Aµ in terms of Bosonic and Fermionic creation and annihilation
operators. Specifically, the unperturbed equations are

∂µ∂µϕ = 0, γµ∂µψ = 0, γµ∂µλ
A = 0,

(δµρ∂
ν∂ν − ∂µ∂ρ)V

A
ρ = 0,

The solutions to these equations are plane waves with coefficients being Bosonic
and Fermionic creation and annihilation operators in momentum space. We
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denote these unperturbed solutions by ϕ0, ψ0, λ0A, V A0
µ . These solutions repre-

sent the evolving observables in Dirac’s interaction picture, wherein observables
evolve according to the unperturbed Hamiltonian while states evolve according
to the perturbation in the Hamiltonian, followed by a rotation using the adjoint
representation of the unperturbed Hamiltonian.

3 Unitary gate and TPCP map design based on
the Feynman path integral

We write down the total action functional for the chiral and gauge superfields
interacting with each other as

S[ϕ, ψ, V, λ] = S01(ϕ|β) + S02(ψ) + S03(V ) + S04(λ)

+S11(ϕ, V ) + S12(ψ, V ) + S14(λ, V ) + S15(ψ, ϕ|β) + S16(ϕ, ψ, λ|β)

with obvious meanings for the various terms. The superpotential terms are
present in S01, and also in S15, and S16. These terms arise when we eliminate the
auxiliary F and D by setting the variational derivative of the action w.r.t. these
to zero. This is justified because the auxiliary fields enter into the Lagrangian
linearly and quadratically, so the effective action obtained by path integrating
the exponential of the total action w.r.t. these fields is a Gaussian functional
integral and hence can be evaluated by setting these fields to their values at
which the action is stationary w.r.t them.

Now, suppose that we have detected the superpartners λ and ϕ of the stan-
dard fields Vµ, ψ, namely the superpartners of the fields used in standard quan-
tum electrodynanics. Then, we should, using path integrals, be able to write
down the unitary evolution kernel for the three fields simply by path integrating
exp(iS) over all the fields from time t = −∞ to t = +∞ with specified spatial
values of these fields at times t = −±∞. On the other hand, if, as is the present
case, we have not detected the superpartners λ, ϕ of the standard QED fields
Vµ, ψ, then, by path integrating the evolution kernel in the adjoint domain over
these superpartners, we would get a non-unitary TPCP map that transforms
an initial pure or mixed state of the fields (ψ, V Aµ ) to a mixed state of the same
fields. In both cases, we can control the β parameters to design either a unitary
gate or a TPCP gate that is as close as possible w.r.t. some distance measure
to a given unitary or TPCP gate. Of course, the TPCP gate acts in a lower
dimensional Fock space as compared to the original unitary gate because it is
obtained by path integrating, which amounts to partial tracing over the scalar
and gaugino fields.
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4 Fermionic Filter in the Formalism of John Gough
et al.

Let A(t) be the Bosonic annihilation process and J(t) the Fermionic annihilation
process. Let ΛA(t) be the associated Bosonic counting process and ΛJ(t) the
associated Fermionic counting process. The system Hilbert space ⟨ is assumed
to be Z2 graded:

h = h0 ⊕ h1

Let P0 denote the projection onto ⟨0 and h1 the projection onto h1. It is clear
that for describing unitary evolution, Bosonic noise must be coupled to the
even system operators while Fermionic noise must be coupled to odd system
operators. Note that X is an even system operator iff

X(h0) ⊂ h0, X(h1) ⊂ h1,

and it is an odd system operator iff

X(h0) ⊂ h1, X(h1) ⊂ h0

Also note that P0 + P1 = I and that if X is any system operator, then

X = X0 +X1

where X0 and X1 are respectively even and odd system operators. They are
given by

X0 = P0XP0 + P1XP1, X1 = P0XP1 + P1XP0

Define the linear map τ on the space of system operators by the equation

τ(X) = X0 −X1 = (P0 − P1)X(P0 − P1) = θ.X.θ

where
θ = P0 − P1

5 Z2 graded tensor product between two Z2 graded
Hilbert spaces

In order to describe the Fermionic filter, we must first learn how to add Fermionic
quantum noise to the Hudson-Parthasarathy noisy Schrödinger evolution. To do
so, we must note that the noise terms in the evolution must always be Bosonic
because the unitary evolution operator is overall Bosonic. Thus, we must have
even and odd system operators just as we have even and odd noise operators
in the form of Bosonic and Fermionic noise, respectively. Thus, if we have an
odd system operatorM and Fermionic noise differential dJ(t), then their tensor
productMdJ =M⊗dJ is even and should satisfy the anticommutation relation

M ⊗ dJ = −dJ ⊗M
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In other words, we must use a graded tensor product between the system and
noise Hilbert spaces. To this end, we consider two Z2 graded Hilbert spaces
H1 = H1e ⊕ H1o and H2 = H2e ⊗ H2o. Define θ2 = P2e − P2o and for X1, X2

operators in H1 and H2 respectively, we define their graded tensor product to
be

X1 ⊗g X2 = (X1)e ⊗X2 + (X1)o ⊗ θ2X2

To verify that this is indeed a graded tensor product of operators, we must
verify that if X2, Y1 are operators in H2 and H1 of definite parity, then

(X1 ⊗g X2)(Y1 ⊗g Y2) = (−1)p(X2)p(Y1)X1Y1 ⊗g X2Y2

Indeed, we have
(X1 ⊗g X2)(Y1 ⊗g Y2)

((X1)e ⊗X2 + (X1)o ⊗ θ2X2).(((Y1)e ⊗ Y2 + (Y1)o ⊗ θ2Y2)

and by expanding this and using

(X1Y1)e = (X1)e(Y1)e + (X1)o(Y1)o,

(X1Y1)o = (X1)e(Y1)o + (X1)o(Y1)e

and the fact that
θ22 = I2, θ2X2θ2 = (−1)p(X2)X2,

X2θ2 = θ22X2θ2 = (−1)p(X2)θ2X2

the required property can be easily verified.

6 Quantum Noise analysis of Schrodinger evo-
lution equation for the supersymmetric fields

A,A∗,ΛA are the Bosonic annihilation, creation, and number processes, J, J∗,ΛJ
are the Fermionic annihilation, creation, and number processes. The HPS equa-
tion is then

dU(t) = (−(iH+P )dt+L1dA+L2dA
∗+S1dΛA+M1dJ+M2dJ

∗+S2dΛJ)U(t)

where L1, L2, S1, S2 are even system operators whileM1,M2 are odd system op-
erators. H is the system Hamiltonian taking into account all the interactions.
Let cV (k), cV (k)

∗ denote the free non-interacting Bosonic annihilation and cre-
ation operators of the gauge field V Aµ defined by the plane wave expansion of

the solution to the linearized Yang- Mills equation for V Aµ . These satisfy the
Bosonic canonical commutation relations. Let cλ(k), cλ(k)

∗ denote the free non-
interacting Fermionic annihilation and creation operators of the gaugino field
λA. These satisfy the canonical anticommutation relations. Let cψ(k), cψ(k)

∗

denote the free non-interacting Fermionic annihilation and creation operators
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of the Fermionic field ψ. They also satisfy the canonical anticommutation rela-
tions. Finally, let cϕ(k), cϕ(k)

∗ denote the annihilation and creation operators
of the Bosonic scalar field ϕ. They also satisfy the canonical commutation rela-
tions. Taking into account interactions, the interaction Hamiltonian can, using
standard plane wave Fourier analysis, be expressed as

H11(ϕ, V ) +H12(ψ, V ) +H14(λ, V ) +H15(ψ, ϕ|β) +H16(ϕ, ψ, λ|β)

= H11(cϕ, c
∗
ϕ, cV , c

∗
V ) +H12(cψ, c

∗
ψ, cV , c

∗
V )

+H14(cλ, c
∗
λ, cV , c

∗
V )+

H15(cψ, c
∗
ψ, cϕ, c

∗
ϕ|β)

+H16(cϕ, c
∗
ϕ, cψ, c

∗
ψ, cλ, c

∗
λ|β)

where bilinearity is understood in H11, H12, H14, H15 and trilinearity in H16.
Note that H15 is quadratic in (ψ, ψ̄) and linear in f ′′(ϕ), i.e., it is trilinear in
(ψ, ψ̄, f ′′(ϕ)). It is precisely this term that gives mass to the Dirac field when the
Higgs field acquires vacuum expectation values. The mass matrix of the Dirac
field is therefore f ′′(ϕ) = f ′′(ϕ|β), and this mass can be controlled by altering
the superpotential parameters β. The H16 term is trilinear in ϕ, ψ, λ. It comes
from the Lagrangian component [Φ∗.exp(t.V )Φ]D, on noting that the [.]3 term
in V is proportional to λ with Φ contributing the [.]0 term, namely ϕ, and Φ∗

contributing the [.]1 term, namely ψ, we get a [.]4 term from the product of these
three terms which is therefore trilinear in ϕ, ψ and λ. Of course, each term can
accordingly be replaced by its conjugate. It should be noted that this trilinear
term cannot be controlled since it does not depend on the superpotential. Its
occurrence in physics is a purely supersymmetric effect which is not present in
conventional quantum field theory, and it is hoped that by designing gates that
take this supersymmetric effect into account, we can detect supersymmetry in
nature and also exploit its presence in technology.

The non-interacting components of the Hamiltonian are derived from the
following components of the action:

S01(ϕ|β) + S02(ψ) + S03(V ) + S04(λ)

In the absence of the superpotential term f(Φ), S01, S02, S04 yield the quadratic
self terms, but S03 yields, apart from quadratic self terms, cubic and fourth
degree self terms because it corresponds to the Yang-Mills gauge field V Aµ . In
the presence of the superpotential, the corresponding Hamiltonians can thus be
expressed as

H01 =
∑
k

ωϕ(k)cϕ(k)
∗cϕ(k) +G01(cϕ, c

∗
ϕ|β)

where G01 is derived from the superpotential term F2 = −|f ′(ϕ)|2, which came
by path integrating w.r.t. the auxiliary F field, resulting in replacing F by f ′(ϕ)
as explained earlier. Likewise,

H02(ψ) =
∑
K

ωψ(k)cψ(k)
∗cψ(k),
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contains no control term,

H03(V ) =
∑
k

ωV (k)cV (k)
∗cV (k) +G03(cV , c

∗
V )

also contains no control term, but G03 contains the cubic and fourth degree
Yang-Mills gauge terms, i.e., cubic and fourth degree in cV , c

∗
V .

H04 =
∑
k

ωλ(k)cλ(k)
∗cλ(k)

also does not contain any control term, and neither does it contain any nonlinear
self interactions.

7 Some general remarks on noise analysis and
noise removal from the quantum gates using
the Fermionic quantum filter

We set up the HPS equation for U(t) with the system Hamiltonian being the
sum of all the non-interacting components:

H =
∑
k

ωV (k)cV (k)
∗cV (k) +

∑
k

ωϕ(k)cϕ(k)
∗cϕ(k)

+
∑
k

ωψ(k)cψ(k)
∗cψ(k) +

∑
k

ωλ(k)cλ(k)
∗cλ(k)

The characteristic frequencies of oscillations ωV (k), ωϕ(k), ωψ(k), ωλ(k) of the
Bosonic and Fermionic fields are obtained by solving the free field equations,
namely the D’Alembert wave equations for the Bosonic components and Dirac’s
equation for the Fermionic components, with the appropriate boundary condi-
tions on the fields at the cavity boundary. The Lindblad noise coupling operators
of the cavity fields to the bath noise are obtained by superposing the system
and noise fields, calculating the quadratic form of this superposed field corre-
sponding to the second quantized Hamiltonian, and then extracting the cross
terms from this Hamiltonian between the system and the noise fields. As an
example, let ψ(x) and ψN (x) denote the system and noise wave operator fields
corresponding to the Dirac particles. The energy operator corresponding to the
superposition of these two fields is∫

cavity

(ψ(x) + ψN (x))∗((α,−i∇) + βm)(ψ(x) + ψN (x))d3x

ψ(x) is built out of the operators cψ(k), cψ(k)
∗ linearly, while ψN (x) is built out

of the Fermionic annihilation and creation white noise processes dJψ,N (t)/dt, dJψ,N (t)∗/dt
again linearly. The cross term in the above energy gives the Lindblad term in
the HPS as:

2Re

∫
cavity

ψ(x)∗HDψN (x)d3x−−− (a)
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where
HD = (α,−i∇) + β.m

is the first quantized Dirac Hamiltonian. The noise self term here is∫
ψN (x)∗HDψN (x)d3x−−− (b)

(a) gives rise to the term Lψ1(t)dJ(t) + Lψ2dJ(t)
∗ while (b) gives rise to the

Fermion counting term: Sψ(t)dΛJ(t).

The goal is to design a one-parameter family of TPCPmapsT dt , t ≥ 0 acting
on mixed system states so that the state T dt (ρs(0)) is as close as possible to the
true system state ρs(t) defined by

ρs(t) = Tr2(U(t)(ρs(0)⊗ |ϕ(u) >< ϕ(u)|)U(t)∗)

where U(t) satisfies the QSDE

dU(t) = (−(iH+P )dt+L1dA+L2dA
∗+S1dΛA+M1dJ+M2dJ

∗+S2dΛJ)U(t)

We need to determine the evolution law of ρs(t). To this end, let X = Xe +Xo

be a system operator and define τ(X) = Xe −Xo = θ.X.θ where θ = Pe − Po.
Then define

jt(X) = U(t)∗XU(t)

We get by application of quantum Ito’s formula,

djt(X) = dU(t)∗XU(t) + U(t)∗XdU(t) + dU(t)∗XdU(t)

= jt(θ0(x))dt+ jt(θ1(X))dA(t) + jt(θ2(X))dA(t)∗

+jt(θ3(X))dJ(t) + jt(θ4(X))dJ(t)∗ + jt(θ5(X))dΛA(t)

+jt(θ6(X))dΛJ(t)

It should be noted that θk, k = 0, 1, 2, 5, 6 are even maps on the space of system
operators while θk, k = 3, 4 are odd maps on the same space. Thus,

τ(θk(X)) = θk(τ(X)), k = 0, 1, 2, 5, 6,

τ(θk(X)) = −θk(τ(X)), k = 3, 4

We therefore obviously have from properties of the Z2 graded tensor product,

jt(θ1(X))dA(t) = dA(t)jt(θ1(X)),

jt(θ2(X))dA(t)∗ = dA(t)∗jt(θ2(X)),

jt(θ3(X))dJ(t) = −dJ(t)jt(θ3(τ(X))),

jt(θ4(X))dJ(t)∗ = −dJ(t)∗jt(θ4(τ(X))),
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jt(θ5(X))dΛA(t) = dΛA(t)jt(θ5(X)),

jt(θ6(X))dΛJ(t) = dΛJ(t)jt(θ6(X)),

Note that if X is a system observable, then the parity of jt(X) is the same as
that of X and that if W is a noise operator, then

XW = (Xe +Xo)(We +Wo) =WeXe +WoXe +WeXo −WoXo

=WeX +Woτ(X) = τ(W )Xo +WXe

where by product, we mean graded tensor product on both the sides. Using
these formulas, we can compute

dTr(jt(X)(ρs(0)⊗ |ϕ(u) >< ϕ(u)|))

where |ϕ(u) > is the tensor product of a Bosonic coherent state and a Fermionic
coherent state, i.e.,

|ϕ(u) >= |ϕ(uB) > ⊗|ϕ(uF ) >

This computation makes use of the formulas

dA(t)|ϕ(u) >= uB(t)dt|ϕ(u) >,

dJ(t)|ϕ(u) >= uF (t)dt|ϕ(u) >

and
Tr(dA(t)∗|ϕ(u) >< ϕ(u)|) < ϕ(u)|dA(t)∗|ϕ(u) >= ūB(t)dt,

T r(dJ(t)∗|ϕ(u) >< ϕ(u)|) < ϕ(u)|dJ(t)∗|ϕ(u) >= ūJ(t)dt,

By equating the above to
dTr(ρs(t)X)

where
ρs(t) = Tr2(U(t)(ρs(0)⊗ |ϕ(u) >< ϕ(u)|)U(t)∗)

we can derive the master equation for the system state ρs(t) in the form

dρs(t)/dt = χ(ρs(t), uB(t), uF (t)dt

where χ is a linear map on the space of operators in the system Hilbert space
depending upon the Boson and Fermion sub-parameters uB(t), uF (t) of the
coherent parameter u(t). Now we are in a position to formulate the quantum
filter equations. We start with non-demolition noise

Yo(t) = U(t)∗Yi(t)U(t), Yi(t) = c(1)A(t) + c̄(1)A(t)∗ + c(3)ΛA(t) + c(4)ΛJ(t)

It is easy to prove that Yo satisfies the non-demolition property using the fact
that for T ≥ t,

d(U(T )∗Yi(t)U(T )) = 0

because of the unitarity condition on U(T ) and the fact that Yi(t) commutes
with dA(T ), dA(T )∗, dJ(T ), dJ(T )∗, dΛA(T ), dΛJ(T ). Note that this would not
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be the case if we included a J(t) or J(t)∗ term in Yi(t) since dJ(T) anticommutes
with J(t) etc. Then we define the measurement algebra up to time t as

ηo(t) = σ(Yo(s) : s ≤ t)

and construct the conditional expectation of an evolving system observable X:

πt(X) = E(jt(X)|ηo(t))

satisfying the orthogonality principle (in the language of J.Gough et.al, the
reference probability method)

E[(jt(X)− πt(X))C(t)] = 0

where
dC(t) = f(t)C(t)dYo(t), t ≥ 0, C(0) = 1

Applying quantum Ito’s formula to this and using the arbitrariness of the func-
tion f(t) gives us the two equations

E[(djt(X)− dπt(X))|ηo(t)] = 0,

E[(djt(X)− dπt(X))dYo(t)|ηo(t)]

+E[(jt(X)− πt(X))dYo(t)|ηo(t)] = 0

Using quantum Ito’s formula to write

dYo(t) = dYi(t) + dU(t)∗dYi(t)U(t) + U(t)∗dYi(t)dU(t)

= jt(Q0)dt+ jt(Q1)dA(t) + jt(Q2)dA(t)
∗ + jt(Q3)dJ(t) + jt(Q4)dJ(t)

∗

+jt(Q5)dΛA(t) + jt(Q6)dΛJ(t)

where Q0, Q1, Q2, Q5, Q6 are even system operators and Q3, Q4 are odd system
operators, and also expressing the filter differential as

dπt(X) = Ft(X)dt+
∑
k≥1

Gk,t(X)dYo(t)
k

where Ft(X), Gk,t(X) are elements of the Abelian algebra ηo(t), we can apply
the above equations of the orthogonality principle to calculate the filter coeffi-
cients Ft(X), Gk,t(X) and hence derive the Fermionic filter. In the special case
when only the Fermionic counting ΛJ is present in the measurement process or
only Bosonic noise cA + c̄A∗ is present, the relevant filter equations have been
derived by J.Gough et.al.
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8 A brief look at the simplest super-gravity ac-
tion

The simplest super-gravity action contains just two fields: the graviton of spin
two, which is a Boson, and its super-partner, the Gravitino of spin 3/2, which is
a Fermion. Its action has local supersymmetry, apart from being invariant under
local Lorentz transformations and diffeomorphism. To define it, we require first
to cast the Einstein-Hilbert action for the gravitational field in terms of its
curvature but expressed in spinorial language. Specifically, we start with a
tetrad enµ satisfying

ηnme
n
µe
m
ν = gµν

and define the spinor connection ωmnµ so that the covariant derivative of the
tetrad vanishes:

0 = Dνe
n
µ = enµ,ν − Γρµνe

n
ρ

+ωnmν emµ = 0

Solving this equation, we get

ωnmν = −emµ(enµ,ν − Γρµνe
n
ρ )

= −emµenµ:ν −−− (c)

The curvature of the spinor connection is given by

Rmnµν = ωmnν,µ − ωmnµ,ν + [ωµ, ων ]
mn

Here, it should be noted that ωmnµ should be regarded as the element ωmnµ γmn/4
of the Lie algebra of the spinor representation of the Lorentz group where γmn =
[γm, γn]. Note that γmn/4, 0 ≤ m < n ≤ 3 are the standard elements of the
spinor representation of the Lie algebra of the Lorentz group and as such, they
satisfy the Lorentz algebra commutation relations. The covariant derivative of
the Dirac spinor field ψ w.r.t. the spinor connection is defined by

Dµψ = (∂µ + ωmnµ γmn/4)ψ

This covariant derivative satisfies, under the spinor representation of local Lorentz
transformations, the standard transformation properties that the connection
should satisfy under local gauge transformations:

S(g(x))DµS(g(x))
−1 = D′

µ

where
D′
µ = ∂µ + ω

′mn
µ γmn/4

where

ω
′mn
µ (x)γmn/4 = ωmnµ S(g(x))γmnS(g(x))

−1/4 + S(g(x))∂µS(g(x))
−1
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where g(x) is a local Lorentz transformation and S(.) is the spinor represen-
tation of the Lorentz group. It should be noted that by using the standard
anticommutation relations of the Dirac matrices and the fact that the matrices
γmn/4 are generators of the spinor representation S of the Lorentz group, that
for any element g of the Lorentz group,

S(g)γmS(g)
−1 = gnmγm

and therefore,
S(g)γmnS(g)

−1 = gm
′

m gn
′

n γm′n′

Alternately, if
g(x) = 1 + θmn(x)γmn/4

is an infinitesimal local element of the spinor representation of the Lorentz
group, then under this transformation, the spinor connection transforms as

δωmnµ γmn/4 = (ω
′mn
µ − ωmnµ )γmn/4 =

[θabγab/4, ω
mn
µ γmn/4]− ∂µθ

abγab/4

By expressing the commutator [γab/4, γmn/4] once again as a linear combina-
tion of the γ′cds/4 using the standard commutation relations of the Lorentz Lie
algebra, we can eliminate the gamma matrices in the above relation, thereby
reducing it to a direct formula for δωmnµ in terms of ωrsµ and θab and ∂µθ

ab. That
this transformation law of the spinor connection required for the invariance of
the Dirac equation in curved space-time under local Lorentz transformations
can be counterverified by using the formula formula (c) for the connection in
terms of the tetrad by making use of the transformation law of the tetrad under
local Lorentz transformations:

enµ(x) → g(x)nme
m
µ (x)

or equivalently, under infinitesimal local Lorentz transformations defined by

1 + θab(x)ϵab,

δenµ(x) = θab(x)(ϵab)
n
me

m
µ (x)

where
ϵ(ab)nm = δna δηbm − ηamδ

n
b

(Note that ϵ(ab), 0 ≤ a < b ≤ 3 are the standard generators of the Lorentz Lie
algebra). In the simplest super-gravity Lagrangian, we have a graviton with the
Einstein-Hilbert Lagrangian e.Rmnµν e

µ
me

ν
n where e = det((enµ)) and a gravitino χ,

which is a Fermion but unlike the Dirac Fermion ψ, it transforms according to
the adjoint representation of the spinor group. Specifically, the Lagrangian of
the gravitino is

eχ̄ρ.γ
ρµνad(Dµ)χν

13



where
χ̄µ = χµ∗γ0, γν(x) = γneνn(x)

and γρµν is obtained by complete antisymmetrization of γργµγν .
It can be shown that the total supergravity Lagrangian, namely the sum

of the Einstein-Hilbert action and that of the gravitino, is invariant under an
appropriate local supersymmetry transformation of the graviton field enµ and
the gravitino field χµ provided that the spinor connection ωmnµ that appears in
the covariant derivative Dν) = (∂ν + ωmnν γmn/4) is defined by its equation of
motion, i.e., that obtained by setting the variational derivative w.r.t. it of the
supergravity action to zero. (It should be noted that the gravitino is a spin 3/2
particle which can be realized as the tensor product of a spin-one vector and
a spin 1/2 spinor. Thus the gravitino has a vector index µ and a spinor index
a. Note that unlike the Fermion in super-Yang-Mills theory, which transforms
according to the adjoint representation of the spin group, the gravitino will
transform according to the tensor product of the vector representation of the
Lorentz group with the spinor representation of the Lorentz group). It is easily
seen then that the resulting spinor connection will be a modification of the earlier
purely Bosonic case, i.e., it will also contain a gravitino bilinear component apart
from the graviton bilinear component defined in (c). In other words, the spinor
connection in this simplest model of supergravity described by the Lagrangian
density

L = e.Rmnµν e
µ
me

ν
n +K.e.χ̄µγ

µρν(∂ρχµ + ωmnρ (γmn/4)χν)−−− (d)

will be given by setting its variational derivative w.r.t ωmnµ to zero, recalling
that

Rmnµν = ωmnν,µ − ωmnµ,ν + [ωµ, ων ]
mn

It is clear from the fact that if the gravitino term were absent, then the field
equations would give the original answer, and hence, when the gravitino term is
present so that the total Lagrangian becomes locally supersymmetric, then the
spinor connection will have the form

ωmnµ = −emνenν:µ +K0.χ̄νγ
νρ
µ (γmn/4)χρ

= −emνenν:µ +K0χ
pq∗
ν γ0(γpq/4)γ

νρ
µ (γmn/4)χρ −−− (e)

Note that we can represent the gravitino, which belongs and transforms accord-
ing to the tensor product of the vector representation of the Lorentz group with
the diffeomorphism group of space-time, as

χµ = χaµγa

Using the identity
S(g)γaS(g)

−1 = gbaγb

where g is a Lorentz transformation of space-time and S(.) is the spinor repre-
sentation of the Lorentz group, it follows that

S(g)χµS(g)
−1 = χaµ.gγag

−1
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= χaµg
b
aγb

It follows that the spinor index a in the graviton components χaµ transforms
according to the vector representation of the Lorentz group under the adjoint
action, ie,

χaµ → gbaχ
µ
b

and under space-time diffeomorphisms,

χaµ(x) → χaν(x)
∂xν

∂x̄µ

In the above expression, γνρµ is obtained by complete antisymmetrization of
γνγµγρ followed by lowering the space-time index µ using the metric gµν =
ηmne

m
µ e

n
ν . Apparently, in this locally supersymmetric theory, there is no scope

for adding any control parameters, but if supergravity is correct, then we would
observe both gravitons and gravitinos, and by controlling the gravitino vacuum
expectations so that it has a non-zero value, we would be able to change the
dynamics of the gravitons. In this case, supersymmetry is broken because super-
symmetry is broken whenever Fermions acquire non-zero vacuum expectation
values. Let < χµ > denote the vacuum expectation value of the gravitino. Then,
the effective Lagrangian of the graviton is given by (d), where we replace χµ by
its vacuum expected value < χmu(x) > and also ωmnµ (x) by (e), with χµ in that
expression also replaced by < χµ(x) >. The dynamics of the graviton can thus
be controlled by controlling the vacuum expected value of the gravitino. This
is a classical analysis. If we wish to do a purely quantum mechanical analysis,
then we start with the supergravity action S[enµ, χ

a
µ] and apply classical Grav-

itino fields χ0a
µ (x) and calculate the path integral over one-loop diagrams w.r.t.

the quantum fluctuations in the gravitino field. In this way, we would be able
to calculate the scattered state of the gravitons at time t = +∞ starting from
an initial state at t = −infty in the presence of an external c-number gravitino
field. This amounts to replacing χaµ by χ0a

µ (x) + δχaµ(x) in the action and car-
rying out the path integrals w.r.t. enµ and δχaµ. To one-loop order, we retain
terms that are at the most quadratic in the δχaµ in the action and evaluate the
path integral w.r.t it as a Fermionic Gaussian integral. This is analogous to
the one loop calculation of the quantum corrections to the Yang-Mills matter
and gauge field action performed in [Steven Weinberg, The Quantum Theory of
Fields, Vol.II, Cambridge University Press].

This is the simplest model of super-symmetry breaking in supergravity by
allowing the gravitino to acquire vacuum expected values. However, in con-
ventional global supersymmetric theories of matter and gauge fields, not in-
volving gravity, supersymmetry is broken when the f ′(ϕ0) ̸= 0 with ϕ0 being
the vacuum expected value of the scalar field. To connect this idea with the
present theory of supersymmetry breaking when the Fermionic gravitino ac-
quires vacuum expected values, we have to only note that in the former the-
ory, we obtained by path integrating over the auxiliary fields F,D, the value
F = f ′(ϕ), D = Kϕ∗ϕ+ ξ and according to the standard supersymmetry trans-
formations, δψ is proportional to F in the left Chiral multiplet while δλ is
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proportional to D in the gauge superfield V A(x, θ)tA. Thus, vanishing of the
vacuum expectations of the Fermion change δψ is equivalent, after path inte-
grating over the auxiliary field F , to the vanishing of f ′(ϕ0) which is simply
the condition that the vacuum has zero energy and is therefore supersymmet-
ric. Likewise, vanishing of the Fermion change δλ is, equivalent, after path
integrating over the auxiliary field D, to the vanishing of Kϕ∗0ϕ0 + ξ which
amounts to saying that the vacuum expectation of the scalar field is a constant
in space-time. It should be noted that when the vacuum has finite positive
energy, then by applying a supersymmetry transformation to it using one of the
supersymmetry generators Q, we can transform a Bosonic state to a Fermionic
state of the same energy and vice versa. However, the condition for broken
supersymmetry is that the vacuum has nonzero positive energy. Thus, broken
super-symmetry means that the vacuum state has positive energy and hence
that a Bosonic vacuum state can be paired with a Fermionic vacuum state and
vice versa. Therefore, unbroken supersymmetry, which implies that the vacuum
energy is zero, also means that the vacuum cannot be paired with any other
state and is therefore invariant under the supersymmetry generators Q. A nice
discussion of this account of unbroken and broken supersymmetry can be found
in [Steven Weinberg, vol. III, Supersymmetry], where it is also mentioned that
if F is the operator that has eigenvalue zero on a Bosonic state and eigenvalue
one on a Fermionic state, so that (−1)F has eigenvalue 1 on Bosonic states
and eigenvalue −1 on Fermionic states, then, the Witten index Tr((−1)F ) will
get contributions only from zero energy states, because positive energy states
of Bosons and Fermions pair up, leading to an equal number of Bosonic and
Fermionic states at any fixed positive energy. It follows that Tr((−1)F ) is non-
zero and equal to the number of Bosons minus the number of Fermions in the
vacuum. In particular, supersymmetry is unbroken iff the vacuum has zero en-
ergy, iff Bosonic and Fermionic states in the vacuum cannot be perfectly paired.
This amounts to saying that if supersymmetry is unbroken, then we can have
a vacuum state that is either purely Bosonic without any Fermion to pair up
with these Bosons or vice versa.

Now, based on this discussion of super-gravity and general global supersym-
metry breaking, we can formulate a more complex super-gravity theory having,
apart from the gravity and gravitino, matter and gauge superfields in addition,
so that the total Lagrangian of gravity and these fields is the sum of a simple su-
pergravity component discussed above, comprising the graviton enµ, the gravitino

χµ, chiral matter fields ϕ, ψ (i.e., Higgs and Higgsino), and gauge fields V Aµ , λ
A

(gauge and gaugino). This enlarged super-gravity Lagrangian is now invariant
under local supersymmetry transformations, apart from being diffeomorphism
invariant. The space-time derivatives that are used in defining the infinitesimal
supersymmetry transformations are now replaced by covariant derivatives with
the connection being the spinor connection built out of graviton bilinears and
gravitino bilinears, as discussed above. The metric of gravity now naturally
enters into the picture just as it enters into conventional (non-supersymmetric)
theories of gravitation, such as the scalar field and gauge field interacting with
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gravity described by the Lagrangian,

L = c(1).R
√
−g + gµν(x)Dµϕ(x)

∗Dν(ϕ(x))
√

−g(x)

−(1/4)FAµν(x)FAµν(x)
√

−g(x)
where

Dµϕ(x) = (∂µ + ie.V Aµ tA)ϕ(x),

ieFAµν = [Dµ, Dν ]

An even simpler non-supersymmetric situation in which we have just another
field, the scalar field, will be based on the Lagrangian

L = R
√
−g(x) + gµν(x)

√
−g(x)∂µϕ(x)∂νϕ(x)

−V (ϕ)
√
−g

Here, we replace ϕ(x) by ϕ0 + δϕ(x) and evaluate the path integral w.r.t δϕ up
to second order in δϕ (i.e., up to one loop correction terms). Writing

Q(ϕ, χ) =

∫
gµν

√
−g∂µϕ∂νχ.d4x

we get ∫
exp(Q(ϕ0 + δϕ, ϕ0 + δϕ)− V (ϕ0 + δϕ))Dδϕ

= exp(Q(ϕ0, ϕ0)−
∫
V (ϕ0)

√
−g).

∫
exp(2Q(ϕ0, δϕ)+Q(δϕ, δϕ)−

∫
V ′(ϕ0)

√
−gδϕ−(1/2)

∫
V ′′(ϕ0)

√
−g(δϕ)2)Dδϕ

= exp(Q(ϕ0, ϕ0)− V (ϕ0)).

∫
exp(Q(δϕ, δϕ))

[1− (1/2)

∫
V ′′(ϕ0)

√
−g(δϕ)2 + (1/2)(

∫
V ′(ϕ0)

√
−gδϕ)2

+2(Q(ϕ0, δϕ)
2]Dδϕ

= exp(Q(ϕ0, ϕ0)−
∫
V (ϕ0) + δS(ϕ0, g))

where δS(ϕ0, g) is obtained by evaluating the zeroth and second moments of a
Gaussian density functional. The effective gravitational action, after interacting
with a quantum scalar field controlled by a classical control scalar field ϕ0, is
therefore given by

Seff (g|ϕ0) =∫
R
√
−gd4x+ δS(ϕ0, g) +Q(ϕ0, ϕ0|g)

and, by controlling the classical field ϕ0(x), we can therefore control the metric
and also quantum gates based on the evolution of the wave function of the
metric field. Remark Q(ϕ0, ϕ0|g) is the same as Q(ϕ0, ϕ0) with the dependence
on the metric g being emphasized.
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9 Simulation Results

Super Yang-Mills theory is the simplest supersymmetric field model having just
one gauge boson and one gaugino field, which are super-partners of each other.
This can be derived from the discussion at the beginning of this article by
deleting the scalar Higgs field ϕ and its super-partner, the Dirac Higgsino field
ψ. Thus, there are only two component fields, namely the gauge field V Aµ and

the gaugino field λA. This theory can be derived from the super-symmetric
Lagrangian [WT

A ϵWA]2 where WA is the left chiral spinor superfield defined by

WA = DT
RϵDRexp(−t.V )(DLexp(t.V ))

with
V (x, θ) = V A(x, θ)tA

V A being the gauge superfield. This Lagrangian contains a D2 term which can
be eliminated by setting it, by noting that path integration sets it to zero, its
value at which the Lagrangian is stationary. More generally, we can add to
this Lagrangian a supersymmetric term ξAD

A linear in the D, and then path
integration sets DA to a constant.

Here, we simulate a quantum unitary gate and a TPCP map based on super
Yang-Mills theory. The Lagrangian in this theory is

L = (−1/4)FAµνFAµν + (λA)T γ5ϵγµ[Dµ, λ
A]

where
Dµ = ∂µ + ig.V Aµ tA

[tA, tB ] = −iC(ABC)tC
and

igFAµν = [Dµ, Dν ]
A

or equivalently,
FAµν = V Aν,µ − V Aµ,ν + g.C(ABC)V Bµ V

C
ν

It is easily seen that by adopting the gauge condition V A0 = 0, with the canonical
position fields as QAr V

A
r , r = 1, 2, 3, so that the canonical momentum fields for

the gauge part of the action become

PAr = ∂L/∂V Ar,0 = FA0r

we can express the corresponding Hamiltonian by applying the Legendre trans-
formation in the form (1/2)FA0rF

A
0r+(1/4)FArsF

A
rs, or equivalently in abbreviated

notation as

Hgge = C1(rs)PrPs + C2(rs)QrQs + C3(rsk)QrQsQk + C4(rskm)QrQsQkQm

Here, Qr, Pr are abbreviated notations for the canonical position and momen-
tum variables of the gauge part of the action. The Hamiltonian of the gaug-
ino part of the action, on the other hand, is the sum of a free gaugino part
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i(λA)T γ5ϵγr∂rλ
A and an interaction part with the gauge potential C(ABC)(λA)T γ5ϵγrV Br λ

C .
Denoting by qr, pr the canonical position and momentum variables of this gaug-
ino part of the action, we can express the gaugino Hamiltonian along with its
interaction with the gauge part as

Hgino = D1(rs)prqs +D2(rsk)prqkQs

Note that Q′
rs are built from V Ar , P ′

rs from V Ar,0, qr from λA, and finally, pr
from (λA)∗γ0 = (λA)T γ5ϵ using the fact that the λA are Majorana Fermions.
Now comes the crucial supersymmetry breaking argument: When the gaugino
fields acquire vacuum expectation values, the second term in Hgino gets re-
placed by D2(rsk) < pr >< qk > Qs, which can be expressed as a(s)Qs, where
a(s) = D2(rsk) < pr >< qk > are parameters dependent upon the vacuum
expectations of the gaugino field, and this amounts to the following effective
Hamiltonian for the gauge field:

Hgge,eff (Q,P ) = C1(rs)PrPs+C2(rs)QrQs+C3(rsk)QrQsQk+C4(rskm)QrQsQkQm+a(s)Qs

We shall base our simulation studies on this model.
To simplify matters further, we shall assume that there is just one position

variable for the gauge field, and therefore the controlled Hamiltonian can be
expressed as

H(Q,P |a(t)) = (P 2 +Q2)/2 + c(1)Q3 + c(2)Q4 + b(t)Q

where we have allowed the parameter b = b(t) to depend on time. This looks like
the Hamiltonian of a one-dimensional harmonic oscillator with cubic and fourth-
degree anharmonic terms plus a control electric field interaction term, assuming
that the harmonic oscillator particle carries charge. Thus, the control parameter
b(t) can be interpreted as a time-varying control electric field. Introduce Using
time-independent perturbation theory and the quantum theory of the harmonic
oscillator, we can compute the approximate eigenfunctions |un >,n ≥ 0 and
corresponding energy eigenvalues En, n ≥ 0 of the harmonic oscillator with
anharmonic perturbations described by the Hamiltonian

H0 = (P 2 +Q2)/2 + c(1)Q3 + c(2)Q4

Then, using time-dependent perturbation theory, we can compute the approxi-
mate evolution operator of the perturbed system as

U(T ) ≈ U0(T )− i

∫ T

0

b(t)U0(T − t)QU0(t)dt

where
U0(t) = exp(−itH0) =

∑
n

exp(−itEn)|un >< un|

Truncation to N + 1 dimensions gives the N + 1 ×N + 1 dimensional unitary
gate

UN (T ) = U0N (T )−i
N∑

n,m=0

∫ T

0

b(t)exp(−iEn(T−t)−iEmt) < un|QW |um > |un >< um|
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=

N∑
n,m=0

[δ[n−m]−
∫ T

0

b(t)exp(i(En−Em)t)dt)exp(−iEnT ) < un|Q|um >]|un >< um|

and we can control the function b(t) or, better still, its truncated Fourier trans-

form b̂T (ω) =
∫ T
0
b(t)exp(iωt)dt evaluated at En − Em so that the gate UN (T )

having matrix elements
< un|UN (T )|um >=

δ[n−m]−
∫ T

0

b(t)exp(i(En − Em)t)dt)exp(−iEnT ) < un|Q|um >

(n,m = 0, 1, ..., N) is as close as possible to a desired N + 1 × N + 1 unitary
gate w.r.t. the Frobenius norm.
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