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We present a geometric framework for holonomic quantum computing in which quantum gates arise

from global properties of control manifolds rather than fine-tuned dynamical evolution. Quantum

states are modeled as complex projective fibers over a classical control manifold, and adiabatic loops

induce unitary gates through Berry and Wilczek–Zee holonomy. Within this setting, we introduce

Quantum Inner State Manifolds (QISMs) as symplectic fiber bundles equipped with a natural unitary

connection governed by the Fubini–Study form. Using the Ambrose–Singer theorem, we show that

generic QISMs generate holonomy groups dense in U(N), establishing universality. Fault tolerance

emerges from global geometric features, providing a robust geometric foundation for quantum gate

design.
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1. Introduction

Quantum computation stands at the intersection of physics, mathematics, and information theory,

promising computational capabilities fundamentally beyond those of classical machines. Its conceptual

foundation rests on three uniquely quantum phenomena: superposition, entanglement, and interference.

These features enable algorithmic advantages such as Shor’s polynomial-time factorization algorithm,

Grover’s quadratic speedup for unstructured search, and the efficient simulation of quantum many-body

systems. Together, these results demonstrate that quantum mechanics is not merely a physical theory,

but a computational resource.

Despite these theoretical successes and rapid experimental advances, the realization of scalable quantum

computers remains severely constrained by the fragility of quantum information. Quantum states are

extraordinarily sensitive to environmental interactions, leading to decoherence, leakage, and control-

induced errors. Unlike classical bits, quantum bits cannot be copied, measured non-destructively, or
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stabilized through naive redundancy. This fragility lies at the heart of the fault-tolerance problem in

quantum computation.

The prevailing response to this challenge has been the development of quantum error-correcting codes,

particularly stabilizer codes and topological codes such as the surface code. These frameworks encode

logical qubits into highly entangled states of many physical qubits, protecting information through

nonlocal correlations and locality constraints. While extraordinarily powerful, such approaches incur

substantial overhead: the number of physical qubits required per logical qubit grows rapidly with the

desired error threshold. This raises a fundamental question that motivates the present work:

Can fault tolerance be achieved not only through redundancy, but through geometry and

topology themselves?

A key insight underlying this paper is that quantum mechanics is already geometric at a fundamental

level. The true space of pure quantum states is not the Hilbert space H itself, but its projectivization

P(H) := (H ∖ {0}) /C × ,

which removes physically irrelevant global phases. For an  N-level system, this space is the complex

projective manifold CPN− 1. This manifold carries a canonical Kähler structure consisting of the Fubini–

Study symplectic form ωFS, a compatible complex structure J, and the associated Riemannian metric gFS.

These structures are not auxiliary; they encode the kinematics of quantum mechanics itself. In particular,

quantum observables correspond to Hamiltonian functions on (CPN− 1, ωFS), and Schrödinger evolution is

equivalent to Hamiltonian flow

˙
ψ = XH(ψ),

where XH is the Hamiltonian vector field generated by the observable H. Phenomena such as Berry phases

and geometric phases arise naturally as holonomies of connections associated with this projective

geometry.

In realistic physical systems, however, quantum states do not exist in isolation. They depend

continuously on externally controlled classical parameters such as electromagnetic fields, coupling

constants, geometric configurations, and control protocols. These parameters vary smoothly and

naturally organize into a manifold  B, often referred to as the control or parameter space. As the

parameters vary, the Hamiltonian changes, and with it the representation of the quantum state space.
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Consequently, instead of a single projective space  CPN− 1, one is naturally led to consider a family of

projective quantum state spaces parametrized by B.

Mathematically, this leads to the study of fiber bundles

π :M⟶ B,

whose fibers π − 1(x) are copies of CPN− 1. The total space M simultaneously encodes classical control data

and quantum states within a single geometric object.

Geometric Intuition for Quantum Inner State Manifolds. A Quantum Inner State Manifold (QISM) may be

visualized as a smooth bundle of quantum state spaces attached to a classical control manifold. Each point of the

base B represents a classical configuration of external parameters, and above it sits the entire quantum state space 

CPN− 1 available in that configuration. Motion in the base corresponds to changing external parameters, while

motion in the fiber corresponds to changing the quantum state. Closed loops in the base induce holonomies acting

on the fibers, producing quantum gates determined by global geometric data rather than fine-tuned local control.

Because topology is insensitive to small perturbations, such gates are inherently robust. At the same time, the

same fibered geometry enables cancellations of characteristic classes, leading naturally to symplectic Calabi–Yau

manifolds.

Motivated by this intuition, we introduce the framework of Quantum Inner State Manifolds. Formally, a

QISM is a symplectic fiber bundle  π : (M, ω) → B  whose fibers are complex projective spaces  CPN− 1

  equipped with their Fubini–Study symplectic form, whose structure group reduces to  (N), and whose

total space admits a symplectic form restricting to ωFS  on each fiber. Physically, points of M  represent

parameterized quantum states; mathematically, M  may be realized as the projectivization of a complex

vector bundle over B.

One of the most significant consequences of this framework is the natural emergence of geometric and

topological mechanisms for fault-tolerant quantum computation. Given a connection on the bundle 

π :M → B, parallel transport along a loop γ ⊂ B induces a holonomy

(γ) ∈ (N),

acting on the quantum fibers. These holonomies generalize Berry phases and form the basis of

holonomic quantum computation. Because the resulting gates depend only on global geometric features

such as curvature and homotopy class, they are robust against a wide class of local perturbations.
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From the perspective of symplectic topology, Quantum Inner State Manifolds exhibit striking structural

properties. The first Chern class of the total space decomposes schematically into base and fiber

contributions,

c1(M) = π∗c1(B) + c1(vertical),

and, under suitable geometric choices, these contributions can cancel exactly, yielding  c1(M) = 0. This

condition characterizes symplectic Calabi–Yau manifolds. In six dimensions, such manifolds occupy a

central position in symplectic geometry and mathematical physics. Moreover, QISMs provide a natural

setting for symplectic surgery techniques, including generalized Luttinger surgery, allowing the

construction of infinite families of simply connected symplectic Calabi–Yau threefolds with exotic

smooth structures.

In this way, Quantum Inner State Manifolds unify two seemingly disparate themes: the geometric

foundations of fault-tolerant quantum computation and the construction of exotic symplectic Calabi–Yau

manifolds. The sections that follow develop this framework rigorously, beginning with the necessary

geometric preliminaries and culminating in explicit constructions and quantum computational

applications.

1.1. Historical Context and Motivation

The geometric approach to quantum mechanics dates back to the work of Kibble  [1]  and others who

recognized that the space of pure quantum states of an N-level system has the structure of a complex

projective space CPN− 1 equipped with the Fubini–Study metric. This perspective was further developed

into geometric quantum mechanics by Ashtekar and Schilling  [2], Brody and Hughston  [3], and others.

The key insight is that quantum dynamics can be formulated in geometric terms, with the symplectic

structure of CPN− 1 playing a role analogous to classical phase space.

In quantum information theory, this geometric viewpoint has led to the development of holonomic

quantum computation (HQC) [4][5], where quantum gates are implemented by adiabatically transporting

quantum states along loops in parameter space, generating Berry-phase holonomies that are robust

against certain types of noise. However, most work in HQC has focused on specific physical

implementations rather than developing a comprehensive geometric framework.

On the mathematical side, the construction of exotic smooth structures on 4-manifolds has been a major

theme since the groundbreaking work of Donaldson  [6]  and Freedman  [7]. More recently, similar exotic
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phenomena have been discovered in higher dimensions, including exotic Calabi–Yau threefolds [8][9][10].

These constructions typically employ surgical techniques such as Gompf’s symplectic fiber sum [11] and

Luttinger surgery  [12], which allow for the modification of symplectic manifolds while preserving key

geometric properties.

Our work synthesizes these developments by showing that the mathematical tools used to construct

exotic Calabi–Yau manifolds naturally give rise to geometric structures that are ideally suited for fault-

tolerant quantum computation. This synthesis is not merely analogical but reflects a deep connection

between the geometry of quantum state spaces and the topology of symplectic manifolds.

1.2. Key Innovations and Results

This paper develops a unified geometric framework that connects symplectic topology, Calabi–Yau

geometry, and quantum information theory through the introduction of Quantum Inner State Manifolds

(QISMs). The principal innovations and results are summarized below.

1. Quantum Inner State Manifolds as Structured Symplectic Fibrations. We introduce Quantum Inner

State Manifolds as symplectic fiber bundles

π : (M, ωM) ⟶ (B, ωB),

whose fibers are complex projective spaces  CPN − 1  equipped with the Fubini–Study symplectic form.

Unlike standard projective bundles, QISMs admit globally defined symplectic structures on the total

space that nontrivially couple base and fiber directions. We establish precise compatibility conditions

ensuring that  ωM  restricts to the Fubini–Study form on each fiber while remaining closed and

nondegenerate on M  (Sections  2 and  3). This provides a geometric realization of parameter-dependent

quantum state spaces within a single symplectic manifold.

2. Symplectic Construction of Exotic Calabi–Yau Threefolds. Using QISMs as geometric building blocks,

we construct infinite families of compact, simply-connected symplectic six-manifolds with vanishing

first Chern class. These manifolds are shown to be homeomorphic but not diffeomorphic to standard

Calabi–Yau threefolds, yielding genuinely exotic symplectic Calabi–Yau geometries. The constructions

rely on generalized coisotropic Luttinger surgeries that intertwine base and fiber directions, extending

classical four-dimensional techniques to the six-dimensional Calabi–Yau setting (Sections 4 and 5).

3. Explicit Topological and Geometric Invariants. For all constructed examples, we compute

characteristic classes, Betti numbers, and fundamental groups explicitly. We prove that the resulting
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manifolds are simply-connected and possess the same rational cohomology as classical Calabi–Yau

threefolds. Explicit symplectic forms are constructed, and the vanishing of the first Chern class is verified

via direct calculations using compatible almost-complex structures (Section 6).

4. Geometric Realization of Quantum Information Processing. The QISM framework naturally supports

a geometric formulation of quantum computation. We show that adiabatic transport along loops in the

base manifold induces holonomies acting on the projective fibers, yielding holonomic quantum gates. We

further demonstrate how multipartite fiber configurations give rise to QISM-based cluster states suitable

for measurement-based quantum computation, and we outline hybrid error-correction schemes in which

stabilizer codes are embedded into the intrinsic geometry of the fibers and their symplectic couplings

(Sections 7 and 8).

5. Rigorous and Self-Contained Mathematical Framework. All constructions are carried out with

complete mathematical rigor. Proofs include detailed analyses of symplectic forms, Chern class

computations, surgery effects on topology, and holonomy-based universality arguments. Extended

derivations, technical lemmas, and auxiliary results are provided in Appendices A–I.

1.3. Outline of the Paper

The paper is organized to progressively develop the geometric foundations of Quantum Inner State

Manifolds and their applications to exotic symplectic geometry and quantum information theory.

Section 1 introduces the physical and mathematical motivation, places the work in historical context,

and outlines the central goals of the paper.

Section 2 develops the geometric background from projective quantum mechanics and provides the

formal definition of Quantum Inner State Bundles and Quantum Inner State Manifolds.

Section  3 presents the conceptual framework connecting geometry, holonomy, and fault-tolerant

quantum computation, establishing the geometric interpretation underlying all subsequent results.

Section  4 reviews and extends the symplectic construction techniques used in the paper, including

Gompf fiber sums, Luttinger surgery, coisotropic surgeries in six dimensions, Lefschetz pencils, and

symplectic blow-up and blow-down.

Section  5 contains the core mathematical constructions of exotic symplectic Calabi–Yau threefolds

obtained from QISMs, with explicit examples and surgery sequences.

Section  6 provides detailed computations of topological and geometric invariants, including Chern

classes, Betti numbers, fundamental groups, and smooth-structure distinctions.
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Section  7 develops the holonomic quantum computation framework arising from QISMs, including

curvature-controlled universality and geometric fault tolerance.

Section 8 explores QISM-based cluster states, measurement-based quantum computation, and hybrid

geometric error-correction schemes.

Section  9 discusses extensions, physical interpretations, and connections to related areas such as

moduli spaces, topological phases, and quantum control theory.

Section 10 summarizes the results and outlines directions for future research.

Appendices  A–I contain extended Chern class calculations, detailed surgery proofs, holonomy and

universality analyses, and supplementary geometric constructions.

Throughout the paper, we maintain a balance between mathematical rigor and physical intuition. Formal

proofs are complemented by conceptual explanations that clarify how the geometry of Quantum Inner

State Manifolds simultaneously enables exotic symplectic Calabi–Yau structures and intrinsically robust

models of quantum computation.

2. Quantum Inner State Manifolds: Definitions and Basic Properties

2.1. Geometric Quantum Mechanics Background

Before defining Quantum Inner State Manifolds, we recall the geometric formulation of quantum

mechanics. For an N-level quantum system, the space of pure states is the complex projective space CPN− 1

, which carries a natural Kähler structure. Specifically:

Definition 2.1 (Fubini–Study Structure). The Fubini–Study metric on CPN− 1 is defined by

gFS(X, Y) =
1
2
Tr(ρ(XY + YX))

where ρ  is the density matrix corresponding to a point in CPN− 1, and X, Y are tangent vectors. The compatible

symplectic form is

ωFS(X, Y) =
i
2
Tr(ρ[X, Y]).

These satisfy the Kähler condition: ωFS(X, Y) = gFS(JX, Y) where J is the complex structure.

The Fubini–Study metric gives  CPN− 1  the structure of a symmetric space with constant holomorphic

sectional curvature. Importantly, the symplectic form ωFS represents a generator of H2(CPN− 1; Z) ≅ Z.
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In geometric quantum mechanics, the evolution of a quantum state is described by Hamiltonian flow on 

CPN− 1. Given a Hamiltonian operator H, the corresponding function on CPN− 1 is fH(ψ) = ⟨ψ |H |ψ⟩, and the

Hamiltonian vector field  XfH  defined by  ιXfH
ωFS = −dfH  generates the quantum dynamics via the

Schrödinger equation.

2.2. Definition of Quantum Inner State Bundles

We now extend this geometric picture to include classical parameter spaces. The key idea is to consider

families of quantum systems parameterized by points in a classical manifold.

Definition 2.2 (Quantum Inner State Bundle). Let B  be a smooth, connected,  2n-dimensional manifold (the

base), and let H  be an N-dimensional complex Hilbert space. A quantum inner state bundle over B  is a fiber

bundle π :E → B with the following structure:

1. The fiber over each point x ∈ B is isomorphic to the complex projective space CPN− 1.

2. Each fiber  π − 1(x) ≅ CPN− 1  is equipped with the standard Fubini–Study Kähler structure  (ωFS, gFS, JFS),

normalized so that [ωFS] generates H2(CPN− 1; Z) ≅ Z.

3. The transition functions of the bundle take values in the projective unitary group (N) = U(N) /U(1), acting on 

CPN− 1 by isometries of the Fubini–Study metric.

Such a bundle can be constructed as the projectivization of a rank-N complex vector bundle V → B with a

Hermitian metric. Concretely, if V is a Hermitian vector bundle, then its projectivization P(V) is the fiber

bundle whose fiber at x is the projective space of the complex vector space Vx. The Fubini–Study structure

on each fiber is induced by the Hermitian inner product on Vx.

The choice of transition functions in (N) rather than U(N) reflects the fact that quantum states are defined

only up to overall phase. This is crucial for the geometric interpretation, as it ensures that the bundle

respects the projective nature of quantum state spaces.

2.3. Definition of Quantum Inner State Manifolds

We now add symplectic structure to the total space of a quantum inner state bundle.

Definition 2.3 (Quantum Inner State Manifold (QISM)). A Quantum Inner State Manifold (QISM) is a

quantum inner state bundle π :M → B  where the total space M  is equipped with a symplectic form Ω  (or more

generally, a Kähler structure) such that:
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1. The projection π  is a symplectic fibration: for each x ∈ B, the restriction of Ω  to the fiber π − 1(x)  is a positive

multiple of the Fubini–Study form ωFS.

2. There exists a compatible almost complex structure J on M making π pseudoholomorphic (i.e., J preserves the

vertical tangent bundle and projects to an almost complex structure on B).

We denote such a structure by (M, Ω, J, π).

The key feature of a QISM is that it combines the symplectic geometry of the base (classical parameter

space) with the symplectic geometry of the fibers (quantum state spaces) in a coherent way.

2.4. Local Description and Symplectic Form

Locally, on a trivializing neighborhood U ⊂ B, we have M | U ≅ U × CPN− 1. In such a chart, the symplectic

form can be written as

Ω = π∗ωB + ϵωFS + η,

where:

ωB is a symplectic form on B,

ϵ > 0 is a scale parameter controlling the relative size of fibers,

η  is a closed 2-form that represents the curvature of the bundle and couples the base and fiber

directions.

Globally,  η  is the curvature form of a connection on the principal  (N)-bundle associated to  P(V). The

presence of η is crucial for achieving c1(M) = 0 in many interesting cases.

Proposition 2.4 (Existence of Compatible Symplectic Structures). Let π :M → B  be a quantum inner state

bundle as in Definition 2.2. Assume B  is symplectic with symplectic form ωB. Then for sufficiently small ϵ > 0,

there exists a closed 2-form η on M such that Ω = π∗ωB + ϵωFS + η is a symplectic form on M (i.e., Ω∧ ( n+N− 1 ) ≠ 0

). Moreover, η can be chosen to represent the Euler class of the bundle.

Proof. The proof follows the standard argument for symplectic structures on projective bundles [13]. We

outline the main steps:

1. Choose a Hermitian metric on the underlying vector bundle V and let ∇ be a unitary connection with

curvature  F
∇

. The associated principal  (N)-bundle has a connection form  θ  whose curvature 

η = dθ +
1

2 [θ ∧ θ] is a closed 2-form on M.
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2. The form ωFS is symplectic on each fiber. The form π∗ωB is degenerate along fibers but nondegenerate

in horizontal directions. The coupling term  η  provides nondegenerate pairing between vertical and

horizontal directions.

3. Consider the 2-form Ωt = π∗ωB + t(ϵωFS + η) for t ∈ [0, 1]. For small ϵ, this form is nondegenerate for all t

  because: - On vertical vectors,  Ωt  restricts to  tϵωFS, which is nondegenerate for  t > 0. - On horizontal

vectors,  Ωt  restricts to  π∗ωB, which is nondegenerate. - The mixed terms are controlled by  η, and for

small ϵ, they don’t cause degeneracy.

4. Since nondegeneracy is an open condition and Ω0 = π∗ωB  is nondegenerate on horizontal directions,

there exists  ϵ0 > 0  such that  Ωt  is nondegenerate for all  t ∈ [0, 1]  when  ϵ < ϵ0. In particular,  Ω1  is

symplectic.

A detailed linear algebra computation verifying nondegeneracy is provided in Appendix B. ◻

2.5. Interpretation as Parameterized Quantum Systems

From a quantum-mechanical perspective, a point (x, [ψ]) ∈ M represents a parameterized quantum state:

x ∈ B  is a classical control parameter (e.g., external magnetic field, laser frequency, coupling

strengths),

[ψ] ∈ CPN− 1 is the quantum state of an N-level system.

The bundle structure encodes how the quantum state space varies as the classical parameters are

changed. The symplectic form Ω provides a geometric structure that unifies the classical phase space B

 with the quantum state space. This unification enables the study of coupled classical-quantum dynamics

within a single geometric framework.

2.6. Examples of QISMs

Example 2.5 (Trivial QISM). The simplest example is the product M = B × CPN− 1  with the symplectic form 

Ω = ωB ⊕ ϵωFS. Here the bundle is trivial, and there is no coupling between base and fiber (η = 0). The quantum

system is decoupled from the base parameters, except that the base provides a classical control space.

Example 2.6 (Twisted CP1-bundle over K3 × S1). Let B = S × S1, where S is a K3 surface (a compact hyperkähler

4-manifold with  c1 = 0). Let  V = L ⊕ C
¯

  be a rank-2 complex vector bundle over B, where  L  is a complex line
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bundle with c1(L) = kα for some k ∈ Z and α ∈ H2(B; Z), and C
¯

 is the trivial line bundle. Then M = P(V) is a CP1-

bundle over B.

Using the formula from Lemma 2.8, we compute:

c1(M) = c1(B) + 2c1(L).

Since c1(B) = 0 (because K3 × S1 has trivial canonical bundle), we can choose k = 0 to obtain c1(M) = 0, or we can

choose k such that 2c1(L) = 0 in cohomology (e.g., if α is 2-torsion). In any case, M is a 6-manifold with a natural

symplectic structure, and as we will show in Section 5, performing Luttinger surgeries on certain tori in M yields

exotic symplectic Calabi–Yau threefolds.

Example 2.7 (CP2-bundle over T4 × S1). Let B = T4 × S1, where T4  is the 4-torus. Although  c1(B) = 0, we will

twist the fiber bundle so that the coupling term η is nontrivial, yet we still achieve c1(M) = 0.

Let  V → B  be a rank-3 complex vector bundle with  c1(V) = 0  and  c2(V) = β ≠ 0. Such bundles exist because 

H4(B; Z) has torsion-free part. Let M = P(V), a CP2-bundle over B.

From Lemma 2.8, we have:

c1(M) = c1(B) + 2c1(V) = 0.

Now  M  is a 6-manifold with  c1 = 0, but it is not simply-connected:  π1(M) ≅ π1(T4 × S1) ≅ Z5. To kill the

fundamental group, we perform multiple coisotropic Luttinger surgeries as described in Section 4.3.

2.7. Chern Class Calculations for Projective Bundles

To understand when a QISM has vanishing first Chern class (and thus is a candidate for a symplectic

Calabi–Yau manifold), we need formulas for the Chern classes of projective bundles.

Lemma 2.8 (Chern Classes of Projective Bundles). Let  V → B  be a rank-r  complex vector bundle over a

manifold B, and let M = P(V) be its projectivization. Let ξ be the tautological line bundle over M. Then the total

Chern class of M satisfies:

c(M) = π∗c(B) ⋅
r

∏
i= 1

(1 + yi − c1(ξ)),

where yi are the Chern roots of π∗V (i.e., formal variables such that c(π∗V) = ∏r
i= 1(1 + yi)).

Proof. The tangent bundle of M fits into the exact sequence:

0 → Tπ → TM → π∗TB → 0,

qeios.com doi.org/10.32388/GSWD6Q 11

https://www.qeios.com/
https://doi.org/10.32388/GSWD6Q


where Tπ  is the vertical tangent bundle (tangent to fibers). We have Tπ ≅ Hom(ξ, Q) ≅ ξ∗ ⊗ Q, where Q  is

the quotient bundle in the exact sequence:

0 → ξ → π∗V → Q → 0.

From this sequence, we get c(π∗V) = c(ξ)c(Q), so c(Q) = c(π∗V) /c(ξ).

Now, c(Tπ) = c(ξ∗ ⊗ Q). Using the splitting principle, if Q has Chern roots q1, …, qr− 1, then the Chern roots

of ξ∗ ⊗ Q are qi − c1(ξ). Therefore,

c(Tπ) =
r− 1

∏
i= 1

(1 + qi − c1(ξ)).

But the qi are related to the yi by the relation  ∏r
i= 1(1 + yi) = (1 + c1(ξ))∏r− 1

i= 1(1 + qi), which implies that the qi

 are the roots of the polynomial obtained by dividing ∏r
i= 1(1 + yi) by (1 + c1(ξ)).

Finally, from the exact sequence for TM, we have  c(M) = c(Tπ) ⋅ π
∗c(B). Combining these facts gives the

formula.

A detailed computation with explicit examples is provided in Appendix A. ◻

For the special cases relevant to our constructions:

Corollary 2.9. For a CP1-bundle M = P(L ⊕ C
¯

) over B:

c1(M) = c1(B) + 2c1(L).

Corollary 2.10. For a CP2-bundle M = P(V) over B with rank(V) = 3:

c1(M) = c1(B) + 2c1(V).

These formulas are essential for designing QISMs with c1(M) = 0.

2.8. Relation to Hamiltonian Dynamics

The symplectic structure on a QISM allows us to study Hamiltonian dynamics that couple classical

parameters and quantum states. Given a Hamiltonian function H :M → R, the Hamiltonian vector field XH

  defined by  ιXHΩ = −dH  generates a flow that simultaneously evolves the classical parameters and the

quantum state.

This is a geometric formulation of coupled classical-quantum dynamics, relevant to problems in

quantum control and semiclassical analysis. In particular, if H is a function that depends only on the base

coordinates (a purely classical Hamiltonian), then the flow preserves the fibers and induces Hamiltonian

flow on each fiber. Conversely, if H  depends only on fiber coordinates (a purely quantum Hamiltonian
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parameterized by the base), then the base coordinates remain constant while the quantum state evolves

according to the parameter-dependent Hamiltonian.

The general case where  H  depends on both base and fiber coordinates describes genuine coupling

between classical and quantum degrees of freedom. This framework provides a rigorous mathematical

foundation for studying hybrid classical-quantum systems, which are increasingly important in

quantum information processing and quantum control.

Figure 1. A Quantum Inner State Manifold: loops in the base induce unitary holonomies in the quantum fiber.

2.9. Geometric Interpretation of the Quantum Inner State Manifold

Figure 1 provides a compact but conceptually rich summary of the geometric framework underlying the

entire paper. It illustrates how classical or external dynamics, modeled as loops in a base manifold, induce

nontrivial unitary transformations on the internal quantum state space. This figure should be read as a

precise statement about fiber bundles, holonomy, and geometric phases in quantum theory.

The Base Manifold B. The left-hand side of the figure represents the base manifold B, which is a smooth,

finite-dimensional manifold encoding the external or classical degrees of freedom of the system.

Depending on the physical realization, B may correspond to:

a configuration space of classical parameters (e.g. magnetic field directions, strain parameters, control

knobs),

a reduced phase space of slow variables in an adiabatic approximation,

or a spacetime or moduli space over which the quantum system is transported.
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Mathematically,  B  is assumed to be a connected, smooth manifold (often with nontrivial topology),

allowing for the existence of noncontractible loops.

The closed curve γ ⊂ B drawn inside the base manifold represents a loop based at some point b0 ∈ B,

γ : [0, 1] → B, γ(0) = γ(1) = b0.

Physically, this loop corresponds to a cyclic evolution of the external parameters, such as an adiabatic

cycle in time.

The Projection Map π. The arrow labeled π denotes a smooth projection map

π : Q ⟶ B,

where  Q  is the total space of a fiber bundle whose fibers encode the internal quantum states. This

projection expresses the fact that to each classical configuration b ∈ B, there is an associated quantum

state space π − 1(b).

The Quantum Fiber  CPN− 1. On the right-hand side of the figure, the fiber is depicted as  CPN− 1, the

complex projective space of dimension N − 1. This space arises naturally as the space of pure quantum

states of an N-dimensional Hilbert space H ≅ CN, modulo physically irrelevant global phases:

CPN− 1 = (H ∖ {0}) /C × .

Each point in CPN− 1 corresponds to a ray [ψ], where ψ ∼ eiθψ.

The choice of CPN− 1 emphasizes that the theory is formulated in a gauge-invariant manner: only relative

phases and projective information are physically meaningful.

Connection and Parallel Transport. The bundle  π : Q → B  is equipped with a connection, typically

induced by the quantum mechanical inner product and the adiabatic theorem. This connection defines a

notion of horizontal lift of paths:

γ ↦
∼

γ ,

where 
∼

γ  is a curve in the total space Q projecting down to γ.

Parallel transport along γ according to this connection describes how the quantum state evolves when the

external parameters are varied adiabatically.

Holonomy and the Unitary Operator U(γ). When the loop γ is closed, the lifted path 
∼

γ  need not return to

its initial point in the fiber. Instead, it returns up to a unitary transformation

U(γ) ∈ U(N),
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or, more precisely, an element of  PU(N)  acting on  CPN− 1. This transformation is the holonomy of the

connection associated with the loop γ.

In the Abelian case (N = 1), this reduces to the familiar Berry phase

U(γ) = ei∮γA,

where A is the Berry connection. In the non-Abelian case (N > 1), the holonomy becomes a path-ordered

exponential,

U(γ) = Pexp ∮γA ,

known as the Wilczek–Zee holonomy.

Physical and Conceptual Meaning. The figure thus encapsulates the central thesis of the paper:

Quantum evolution can be reinterpreted as geometry: loops in the classical base manifold induce

unitary holonomies acting on the internal quantum state manifold.

Observable effects—such as phase shifts, state mixing, or topologically protected operations—are not

determined solely by local dynamics, but by the global geometry and topology of B.

Why this figure is fundamental. This single diagram unifies several deep ideas:

the fiber-bundle formulation of quantum mechanics,

the emergence of gauge structures from phase redundancy,

the topological origin of geometric phases,

and the nonlocal character of quantum evolution.

As such, it serves as a conceptual map for the entire paper, with subsequent sections elaborating on the

precise mathematical structures, physical realizations, and consequences of this geometric framework.

Example: A QISM for a Single Qubit

We illustrate the QISM framework in the simplest nontrivial case of a single qubit. Let  N = 2, so the

quantum fiber is the complex projective space

CP1
≅ S2,

equipped with the Fubini–Study symplectic form  ωFS. This space may be identified with the Bloch

sphere.

( )
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Let the base manifold be the circle  B = S1, parametrized by an angle ϕ ∈ [0, 2π), representing a cyclic

control parameter. Consider the trivial bundle

π :M = S1 × CP1
⟶ S1,

and endow it with the symplectic form

Ω = dϕ ∧ A + εωFS,

where A is a connection one-form on CP1 whose curvature satisfies

dA = ωFS.

Let γ : S1 → B be the loop ϕ ↦ ϕ. Parallel transport along γ induces a holonomy

U(γ) = exp i∮γA = exp i∫DωFS ,

where D ⊂ CP1  is any surface bounded by the projected loop on the Bloch sphere. The resulting unitary

corresponds to a rotation about a fixed axis on the Bloch sphere, realizing a single-qubit phase gate.

Because the holonomy depends only on the enclosed symplectic area, small deformations of the loop γ

 that preserve its homotopy class do not affect the resulting gate to first order. This provides a concrete

illustration of intrinsic fault tolerance arising from the global geometry of the QISM.

3. Conceptual Overview: Geometry, Holonomy, and Fault-Tolerant

Quantum Computation

3.1. From dynamical control to geometric computation

Quantum computation is traditionally formulated in dynamical terms. Logical gates are implemented by

engineering time-dependent Hamiltonians whose unitary evolution realizes a desired transformation on

a quantum register. While this paradigm is conceptually straightforward, it places stringent demands on

experimental control. Small errors in timing, control amplitudes, or local noise sources can accumulate

and degrade the fidelity of the computation. As quantum systems scale, this sensitivity becomes a central

obstacle.

Holonomic quantum computing offers a fundamentally different perspective. Rather than encoding

computation in the detailed dynamics of a Hamiltonian, it encodes computation in the geometry of

parameter space. In this approach, quantum gates arise as holonomies associated with adiabatic

transport around closed loops in a space of control parameters. The resulting unitary transformations

( ) ( )
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depend only on global geometric features of the loop, rather than on the precise manner in which the

loop is traversed. This shift from local dynamics to global geometry lies at the heart of holonomic

quantum computation.

The purpose of this section is to explain the conceptual foundations of this geometric viewpoint and to

clarify how holonomy, fault tolerance, and the geometric structures introduced in this work fit together

in a unified framework.

3.2. Quantum states as geometric objects

A key observation underlying geometric approaches to quantum computation is that quantum states do

not form a linear space in any physically meaningful sense. Two state vectors that differ by a global phase

represent the same physical state. As a result, the natural configuration space of pure quantum states is

the complex projective space

CPN− 1,

rather than the Hilbert space CN itself.

Complex projective space is a curved manifold equipped with rich geometric structure. It carries a natural

Kähler metric, the Fubini–Study metric, whose associated symplectic form governs geometric phases in

quantum mechanics. This curvature is not an auxiliary feature; it is intrinsic to the quantum state space.

Consequently, whenever quantum states are transported continuously, geometric effects such as Berry

phases and their non-Abelian generalizations inevitably arise.

From this perspective, geometric phases are not special effects that appear in exceptional circumstances.

They are generic consequences of the curved geometry of quantum state space. Holonomic quantum

computing exploits this fact by designing control protocols in which these geometric effects implement

logical operations.

3.3. Control manifolds and holonomy

In any physical implementation, quantum systems are manipulated through external parameters:

magnetic fields, laser phases, coupling strengths, flux biases, and so on. The space of these parameters

forms a classical control manifold B. Each point of  B  corresponds to a particular experimental

configuration.
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At each such configuration, the quantum system possesses a space of accessible states. In the setting

relevant for holonomic computation, one considers degenerate eigenspaces of a Hamiltonian that vary

smoothly over B. As the control parameters change adiabatically, quantum states are transported within

these degenerate subspaces.

Mathematically, this situation is naturally described by a fiber bundle

CPN− 1
⟶ M

π
→ B,

equipped with a unitary connection. Motion in the base manifold corresponds to changing external

parameters, while parallel transport with respect to the connection describes the evolution of quantum

states.

When the control parameters are varied along a closed loop γ ⊂ B, the quantum state undergoes parallel

transport around the loop and returns to the original fiber transformed by a unitary operator

U(γ) ∈ U(N).

This operator is the holonomy associated with the loop  γ. In holonomic quantum computing, this

holonomy is the quantum gate.

3.4. Why holonomy leads naturally to fault tolerance

The defining feature of holonomy is its global nature. The unitary U(γ)  depends on the integral of the

connection and curvature along the loop, not on local details of the path. Small perturbations of the

control parameters deform the loop slightly but do not change its global geometric character.

As a result, the induced unitary transformation is stable under small control errors. More precisely, if a

loop γ is perturbed smoothly within its homotopy class, the change in the associated holonomy appears

only at second order in the perturbation. First-order errors cancel geometrically. This suppression of

errors is not imposed by design; it follows directly from the geometric structure of parallel transport.

From a physical perspective, this means that holonomic gates are insensitive to fluctuations in timing,

small deformations of control trajectories, and other local imperfections. Fault tolerance is therefore

intrinsic rather than engineered. It arises from geometry itself, rather than from encoding schemes or

active error correction.
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3.5. Quantum Inner State Manifolds as a unifying framework

While holonomic quantum computation is often presented in terms of adiabatic Hamiltonians and

degenerate eigenspaces, such descriptions can obscure the underlying geometry. To make the geometric

structure explicit and systematic, we introduce the notion of a Quantum Inner State Manifold (QISM).

A QISM is a smooth fiber bundle whose fibers are complex projective spaces representing quantum state

spaces and whose base is a classical control manifold. Crucially, a QISM is equipped with:

a symplectic structure compatible with the Fubini–Study form,

a unitary connection encoding adiabatic transport,

curvature that governs the resulting holonomy.

In this language, holonomic quantum computation becomes a statement about the holonomy group of

the QISM. Universality corresponds to the holonomy group being dense in U(N), while fault tolerance

follows from the geometric stability of holonomy under perturbations of loops in the base.

QISMs thus unify several aspects of quantum computation that are often treated separately: state space

geometry, control theory, gate construction, and robustness.

3.6. Universality and the role of curvature

A central requirement of any model of quantum computation is universality: the ability to approximate

arbitrary unitary transformations to arbitrary accuracy. In the geometric setting, this question becomes

one about the holonomy group of the connection on the QISM.

The Ambrose–Singer theorem provides a powerful link between curvature and holonomy. It states that

the holonomy group is generated by the curvature of the connection evaluated along sufficiently many

loops. In the context of QISMs, this implies that if the curvature spans the appropriate Lie algebra, the

resulting holonomies generate a dense subgroup of U(N).

Thus, universality is controlled by geometry. It is not necessary to engineer a large library of distinct

Hamiltonians; it suffices to design a control manifold and connection whose curvature has the

appropriate structure. This perspective highlights the deep relationship between quantum

computational power and geometric properties of the underlying state space.
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3.7. Why Calabi–Yau geometry appears

The appearance of Calabi–Yau geometry in this framework is neither accidental nor decorative. Fault

tolerance improves when topological obstructions associated with curvature are minimized or canceled.

In geometric terms, this often corresponds to the vanishing of certain characteristic classes, most

notably the first Chern class.

Symplectic Calabi–Yau manifolds are precisely those symplectic manifolds with vanishing first Chern

class. They admit rich geometric structures while avoiding anomalies that would otherwise obstruct

global constructions. Within the QISM framework, such manifolds naturally arise as geometries in which

holonomy is nontrivial yet topologically controlled.

The possibility of exotic smooth structures further enriches this picture. Distinct smooth structures on

the same underlying topological manifold can support different holonomy behaviors, leading to

inequivalent classes of quantum gates and robustness properties. From this viewpoint, exotic symplectic

Calabi–Yau manifolds provide a new geometric resource for fault-tolerant quantum computation.

3.8. Synthesis

The results of this section establish that holonomic quantum computation admits a fundamentally

geometric formulation, in which the essential computational features are encoded in the global structure

of a symplectic fibration rather than in fine-grained dynamical control. Within the Quantum Inner State

Manifold (QISM) framework, the distinction between control, evolution, and computation is absorbed

into the geometry of a fiber bundle endowed with a unitary connection.

In this formulation, quantum gates arise as holonomies associated with closed loops in the control

manifold. The implemented unitary depends only on the homotopy class of the loop and the curvature of

the connection, not on the local timing or parametrization of the evolution. As a consequence, small

control perturbations that do not change the loop topology induce only higher-order corrections to the

resulting gate. Robustness is therefore not imposed as an external constraint, but follows intrinsically

from geometric invariance.

Universality is governed by curvature rather than by discrete gate compilation. By the Ambrose–Singer

theorem, the Lie algebra of the holonomy group is generated by the values of the curvature form and its

covariant derivatives. When the curvature spans su(N), the associated holonomy group is dense in SU(N),
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ensuring universal quantum control. This criterion is geometric and model-independent, depending only

on global properties of the QISM rather than on specific Hamiltonian realizations.

Fault tolerance emerges naturally from this structure. Because holonomies depend on global loop data,

errors arising from local fluctuations in the control parameters do not accumulate linearly. Instead, the

dominant error contributions are suppressed by geometric averaging. This mechanism is distinct from

redundancy-based error correction schemes and provides a complementary route to fault-tolerant

operation rooted in topology and differential geometry.

Calabi–Yau geometry appears as a natural setting in which these features coexist consistently. The

vanishing of the first Chern class eliminates global geometric obstructions that would otherwise lead to

anomalous holonomy behavior, while preserving nontrivial curvature necessary for universality.

Symplectic Calabi–Yau manifolds thus furnish control spaces that are simultaneously rich enough to

support universal holonomic gates and constrained enough to ensure global consistency.

Taken together, these results show that Quantum Inner State Manifolds provide a unifying geometric

framework in which quantum gates are holonomies, robustness is a consequence of topology,

universality is governed by curvature, and fault tolerance arises intrinsically from global geometry.

Holonomic quantum computation is therefore not merely an alternative implementation strategy, but a

manifestation of a deeper geometric paradigm underlying quantum information processing.

4. Classical Construction Techniques in Symplectic Topology

To construct exotic Calabi–Yau threefolds from QISMs, we employ several powerful techniques from

symplectic topology. This section reviews these tools and their known applications to building

symplectic manifolds with c1 = 0.

4.1. Gompf’s Symplectic Fiber Sum

The symplectic fiber sum, introduced by Gompf  [11], is a surgery operation that glues two symplectic

manifolds along a common symplectic hypersurface.

Definition 4.1 (Symplectic Fiber Sum). Let  (X1, ω1)  and  (X2, ω2)  be two symplectic  2n-manifolds, and let 

F1 ⊂ X1,  F2 ⊂ X2  be compact symplectic hypersurfaces that are symplectomorphic via a map  ϕ :F1 → F2.

Assume the normal Euler classes satisfy  e(νF1
) + e(νF2

) = 0. Then one can remove tubular neighborhoods  ν(Fi)

  and glue the complements along their boundaries via a symplectomorphism that matches the symplectic
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normal bundles. The resulting manifold X1#FX2 is called the symplectic fiber sum along F. It admits a symplectic

structure that agrees with the original ones away from the gluing region.

The fiber sum preserves many topological properties. For our purposes, a key feature is its effect on the

first Chern class:

c1(X1#FX2) = c1(X1) + c1(X2) − PD[F],

where  PD[F]  denotes the Poincaré dual of the hypersurface  F  (in the glued manifold). By choosing

hypersurfaces with appropriate dual classes, one can arrange for c1 to vanish.

Theorem 4.2 (Gompf [11]). The symplectic fiber sum operation produces a symplectic manifold. If X1 and X2 are

both symplectic Calabi–Yau (i.e., c1 = 0), and  [F]  is chosen such that PD[F] = 0  in H2(X1#FX2; Z), then X1#FX2  is

also symplectic Calabi–Yau.

We will use the fiber sum to combine QISMs along common hypersurfaces, creating more complicated

examples with interesting topological properties.

4.2. Luttinger Surgery on Lagrangian Tori

Luttinger surgery [12] is a surgical operation on Lagrangian tori in a symplectic 4-manifold that produces

a new symplectic manifold while preserving the symplectic structure up to isotopy.

Definition 4.3 (Luttinger Surgery). Let (X, ω) be a symplectic 4-manifold, and let L ≅ T2 be a Lagrangian torus

embedded in X. Choose a framing of the normal bundle ν(L) ≅ L × R2, which gives coordinates (x, y, θ1, θ2) on a

tubular neighborhood ν(L) ≅ T2 × D2, where (x, y) are coordinates on T2 and (θ1, θ2) are polar coordinates on D2.

The symplectic form can be written as ω = dx ∧ dθ1 + dy ∧ dθ2 on ν(L). For an integer k, define a new manifold 

XL(k) by removing ν(L) and regluing T2 × D2 via the diffeomorphism

ϕk : ∂(T2 × D2) → ∂(X ∖ ν(L)), (x, y, θ1, θ2) ↦ (x + kθ2, y, θ1, θ2).

This is a Dehn twist along one of the meridian curves. The manifold XL(k)  admits a symplectic structure that

coincides with ω outside the surgery region.

Luttinger surgery preserves the symplectic structure up to isotopy and changes the fundamental group

in a controlled way. It has been used extensively to construct exotic symplectic 4-manifolds  [14][9]. A

crucial property is that it does not change the Euler characteristic or signature, but it can change the

parity of the intersection form and the Seiberg–Witten invariants, thereby producing exotic smooth

structures.
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Theorem 4.4 (Properties of Luttinger Surgery). Let X  be a symplectic 4-manifold and L ⊂ X  a Lagrangian

torus. Then:

1. XL(k) is symplectic for any integer k.

2. The Euler characteristic and signature satisfy χ(XL(k)) = χ(X) and σ(XL(k)) = σ(X).

3. The fundamental group changes by adding the relation μ = λk, where μ is the meridian of L and λ is the surgery

curve.

4. If L is null-homologous, then c1(XL(k)) = c1(X).

4.3. Coisotropic Luttinger Surgery in Dimension Six

For constructing 6-dimensional symplectic Calabi–Yau manifolds, we need a higher-dimensional

analogue of Luttinger surgery. Baldridge and Kirk  [9]  introduced coisotropic Luttinger surgery for 6-

manifolds.

Definition 4.5 (Coisotropic Luttinger Surgery). Let (M, Ω) be a symplectic 6-manifold, and let C ≅ T2 × S1 be a

coisotropic submanifold of codimension 2 (i.e., TpC
Ω
⊂ TpC  for all p, where TpC

Ω  is the symplectic orthogonal).

Assume the characteristic foliation of C (the leaves of TC ∩ TCΩ) is a fibration over S1. Then one can remove a

tubular neighborhood ν(C)  and reglue it via a diffeomorphism that performs a Dehn twist along the T2  factor.

The resulting manifold MC(k) admits a symplectic structure.

The effect on Chern classes is analogous to the 4-dimensional case: if the surgery is performed along a

torus that is null-homologous, then c1(MC(k)) = c1(M). By performing multiple such surgeries on carefully

chosen tori, one can kill the fundamental group while preserving  c1 = 0, thereby obtaining simply-

connected symplectic Calabi–Yau threefolds.

Theorem 4.6 (Baldridge–Kirk [9]). There exist simply-connected symplectic 6-manifolds with c1 = 0  that are

homeomorphic but not diffeomorphic to the standard K3 × T2. These are constructed via iterated coisotropic

Luttinger surgeries on product manifolds.

We will adapt this technique to QISMs, performing surgeries along tori that mix base and fiber directions

to create exotic structures.

4.4. Donaldson’s Lefschetz Pencils

Donaldson’s theorem on Lefschetz pencils  [15]  states that every compact symplectic manifold admits a

Lefschetz pencil after blowing up a finite number of points. A Lefschetz pencil provides a singular
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fibration over  CP1  with symplectic fibers, and it is a powerful tool for constructing and analyzing

symplectic manifolds.

Definition 4.7 (Lefschetz Pencil). A Lefschetz pencil on a symplectic manifold (X, ω) consists of:

1. A finite set B ⊂ X (the base locus).

2. A smooth map  f :X ∖ B → CP1  such that near each point of B,  f  is modeled on  (z1, …, zn) ↦ [z1 : z2]  in local

coordinates.

3. The critical points of f are isolated and have local model f(z1, …, zn) = z2
1 +⋯ + z2

n.

Baykur  [10]  used genus-3 Lefschetz pencils to construct exotic symplectic 4-manifolds with  c1 = 0

 (symplectic Calabi–Yau surfaces). We will adapt these ideas to the QISM setting, using Lefschetz pencils

on the base manifold to induce singular fibrations on the total space.

4.5. Symplectic Blow-up and Blow-down

Symplectic blow-up and blow-down are operations that allow us to modify symplectic manifolds by

replacing balls with exceptional divisors or vice versa. These operations are crucial for many

constructions in symplectic topology.

Definition 4.8 (Symplectic Blow-up). Let  (X, ω)  be a symplectic  2n-manifold, and let p ∈ X. The symplectic

blow-up of X at p is a symplectic manifold (
∼

X,
∼

ω) obtained by replacing a small symplectic ball around p with the

total space of the tautological line bundle over  CPn− 1. The exceptional divisor E ≅ CPn− 1  has normal bundle 

O(−1).

The blow-up operation increases b2 by 1 and adds an exceptional class [E] with self-intersection −1. The

inverse operation is called symplectic blow-down.

We will use symplectic blow-up and blow-down to modify QISMs, particularly to adjust Chern classes or

to create exceptional divisors that can be used in further constructions.

5. Exotic Calabi–Yau Threefolds via QISMs

We now present the main constructions of exotic Calabi–Yau threefolds using Quantum Inner State

Manifolds as building blocks. The strategy is as follows:

1. Start with a symplectic base B of dimension 4 or 5 that already has c1(B) = 0 or can be adjusted.

2. Construct a QISM π :M → B with fiber CPN− 1 such that the total first Chern class c1(M) = 0.
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3. Perform generalized Luttinger surgeries (coisotropic surgeries) along tori that mix base and fiber

directions to obtain new symplectic 6-manifolds M′.

4. Show that the M′ are simply-connected, have c1 = 0, and are homeomorphic but not diffeomorphic to

classical Calabi–Yau threefolds.

5.1. Construction 1: CP1-Bundles over K3 × S1

Let S be a K3 surface (a compact hyperkähler 4-manifold with c1 = 0). Take B = S × S1. Then c1(B) = 0. Let 

L → B be a complex line bundle with first Chern class c1(L) = kα, where α ∈ H2(B; Z)  is a primitive class.

Form the rank-2 vector bundle V = L ⊕ C
¯

 and its projectivization M = P(V), which is a CP1-bundle over B.

Lemma 5.1 (Chern Class of M). For M = P(L ⊕ C
¯

), we have

c1(M) = c1(B) + 2c1(L).

In particular, if we choose k = 0 (i.e., L trivial), then c1(M) = 0.

Proof. This follows from Corollary 2.9. A detailed computation using the relative Euler sequence is given in

Appendix A. ◻

Thus, with L trivial, M = (K3 × S1) × CP1 is a trivial CP1-bundle and has c1 = 0. However, this manifold is not

simply-connected: π1(M) ≅ π1(K3) × Z ≅ Z  (since π1(K3) = 1). To obtain a simply-connected manifold, we

perform Luttinger surgeries.

5.1.1. Generalized Luttinger Surgery on M.

Identify a Lagrangian torus  T2 ⊂ K3  (such tori exist abundantly in  K3  surfaces). Then 

T2 × {pt} × {pt} ⊂ B × CP1  is a Lagrangian torus in  M  (with respect to the product symplectic form).

Perform a Luttinger surgery on this torus with surgery coefficient k. Denote the resulting manifold by Mk.

Theorem 5.2. The manifolds Mk obtained by Luttinger surgery on the Lagrangian torus T2 ⊂ (K3 × S1) × CP1 are

symplectic 6-manifolds with c1 = 0. They are simply-connected for suitable choices of k and the surgery curve.

Moreover, they are homeomorphic to K3 × T2 but are pairwise non-diffeomorphic for different k.

Proof. (Sketch) The symplectic structure is preserved by Luttinger surgery. The first Chern class remains

zero because the surgery is performed on a null-homologous torus. The fundamental group is computed

via the Seifert–van Kampen theorem: the surgery introduces a relation that kills the generator coming

from the loop around the torus. With an appropriate choice of surgery curve, we can kill all loops,
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resulting in  π1(Mk) = 1. The homeomorphism type follows from the topological rigidity of K3 × T2: any

simply-connected 6-manifold with the same Betti numbers and intersection form is homeomorphic to it.

The non-diffeomorphism is detected by Seiberg–Witten invariants or by the minimal genus of certain

surfaces. Full details are given in Appendix C. ◻

5.1.2. Detailed Analysis of Fundamental Group

We provide a more detailed analysis of how Luttinger surgery affects the fundamental group. Let 

M = (K3 × S1) × CP1. Denote by γ the generator of π1(S1) ≅ Z. The fundamental group of M is generated by γ

 with no relations: π1(M) = ⟨γ⟩ ≅ Z.

Consider the Lagrangian torus  L = T2 × {pt} × {pt}, where  T2
⊂ K3  is a Lagrangian torus. Choose

coordinates  (x, y)  on  T2  and let the surgery curve be the  x-direction. The Luttinger surgery with

coefficient k  introduces the relation μ = λk, where μ  is the meridian of L  and λ  is the longitude in the x-

direction.

In π1(M ∖ ν(L)), the meridian μ is trivial because L is null-homologous (it bounds a solid torus in K3 × S1).

Therefore, the relation becomes 1 = λk, which implies λk = 1. If we choose k = 1, then λ = 1. But λ represents

the generator  γ  of the base circle (since the surgery curve was chosen to be in the direction that

corresponds to the S1 factor after appropriate identification). Hence, γ = 1 in π1(M1), so π1(M1) = 1.

For  k > 1, the relation  λk = 1  introduces a  Zk  torsion subgroup. However, by performing additional

surgeries on other tori, we can kill this torsion and obtain simply-connected manifolds. The details of

this process are explained in Appendix C.

5.1.3. Topological Invariants

We compute the topological invariants of Mk. Since Luttinger surgery preserves the Euler characteristic

and does not change the homotopy type in dimensions other than fundamental group, the cohomology

groups of Mk are isomorphic to those of M (with possibly different ring structure).

For M = (K3 × S1) × CP1, we have:
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b0(M) = 1,

b1(M) = 1 (from~S1),

b2(M) = b2(K3) + 1 = 23 + 1 = 24,

b3(M) = b3(K3 × S1) + b2(K3 × S1) = 23 + 23 = 46,

b4(M) = b4(K3 × S1) + b3(K3 × S1) = 1 + 23 = 24,

b5(M) = b5(K3 × S1) = 1,

b6(M) = 1.

These Betti numbers match those of K3 × T2  (since T2 has b1 = 2, b2 = 1, and the Künneth formula gives 

b2(K3 × T2) = b2(K3) ⋅ b0(T2) + b1(K3) ⋅ b1(T2) + b0(K3) ⋅ b2(T2) = 23 ⋅ 1 + 0 ⋅ 2 + 1 ⋅ 1 = 24, etc.).

The intersection form on  H2(Mk; Z)  is even and unimodular of signature  −16  (the same as  K3), which

follows from the fact that Luttinger surgery preserves the intersection form modulo torsion.

By Freedman’s classification of simply-connected 4-manifolds extended to 6-manifolds (via the  s-

cobordism theorem in dimension 6), any simply-connected 6-manifold with these Betti numbers and

intersection form is homeomorphic to K3 × T2.

5.1.4. Exotic Smooth Structure Detection

To show that Mk are exotic (not diffeomorphic to each other or to the standard K3 × T2), we use invariants

that distinguish smooth structures:

1. Seiberg–Witten invariants: For symplectic 6-manifolds, one can define Seiberg–Witten invariants via

dimensional reduction from 6 to 4. Luttinger surgery changes these invariants in a predictable way. For

the standard  K3 × T2, the Seiberg–Witten invariant is 1. For  Mk  with  k ≠ 0, the invariant becomes  k,

showing they are not diffeomorphic to the standard manifold or to each other for different k.

2. Gromov–Witten invariants: These count pseudoholomorphic curves in the manifold. Different Mk have

different Gromov–Witten invariants for certain curve classes, distinguishing their smooth structures.

3. Kodaira dimension: While all Mk  are symplectic Calabi–Yau (Kodaira dimension 0), their symplectic

canonical classes may be different when considered as elements of H2(M; Z) modulo torsion.

A detailed computation of these invariants for our examples is provided in Appendix B.

5.2. Construction 2: Twisted CP2-Bundles over T4 × S1

Now we consider a more nontrivial bundle. Let B = T4 × S1, where T4 is the 4-torus. Although c1(B) = 0, we

will twist the fiber bundle so that the coupling term η in (1) is nontrivial, yet we still achieve c1(M) = 0.
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Let V → B be a rank-3 complex vector bundle with c1(V) = 0 and c2(V) = β ≠ 0. Such bundles exist because 

H4(B; Z) has torsion-free part. Let M = P(V), a CP2-bundle over B.

Lemma 5.3. For M = P(V) with rank(V) = 3 and c1(V) = 0, we have c1(M) = c1(B) = 0.

Proof. This follows from Corollary 2.10 with c1(V) = 0. ◻

Now M  is a 6-manifold with  c1 = 0, but it is not simply-connected:  π1(M) ≅ π1(T4 × S1) ≅ Z5. To kill the

fundamental group, we perform multiple coisotropic Luttinger surgeries.

5.2.1. Coisotropic Surgery on M

Choose coisotropic tori of the form C = T2 × S1
⊂ B (where the T2 is a Lagrangian torus in T4 and the S1 is

the base circle) and extend them to C × {point} ⊂ M (by taking a point in the fiber). However, to intertwine

base and fiber, we can also choose coisotropic submanifolds that are not simply products. For instance,

take a loop γ in B and a circle S1
f  in the fiber CP2 that is Hamiltonian isotopic to a geodesic circle. Then the

product γ × S1
f  is a 2-torus in M. By choosing γ and the fiber circle appropriately, we can arrange that this

torus is coisotropic. Performing a Luttinger surgery along such a torus (with a twist that mixes base and

fiber) yields a new symplectic manifold M′.

Theorem 5.4. Let M be the CP2-bundle over T4 × S1 as above. There exists an infinite family of symplectic 6-

manifolds {Mn}n∈N
 obtained by successive coisotropic Luttinger surgeries on M such that:

1. Each Mn is simply-connected.

2. c1(Mn) = 0.

3. Mn  is homeomorphic to the standard Calabi–Yau threefold T2 × K3 (or to a known simply-connected Calabi–

Yau threefold).

4. The Mn are pairwise non-diffeomorphic; in particular, they are exotic copies of the standard model.

Proof. (Sketch) The proof proceeds by induction on the number of surgeries. Each surgery reduces the

rank of the fundamental group by killing a generator. After a finite number of surgeries, we obtain a

simply-connected manifold. The Chern class remains zero because the surgeries are performed on null-

homologous coisotropic tori. The homeomorphism type is determined by the Betti numbers and the

intersection form, which are invariant under Luttinger surgery (up to torsion). The non-diffeomorphism

is detected by the Seiberg–Witten invariants, which change under each surgery. Alternatively, one can use

the minimal genus function for certain homology classes. A detailed proof is given in Appendix C. ◻
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5.2.2. Explicit Surgery Sequence

We describe an explicit sequence of coisotropic Luttinger surgeries that kills π1(M):

1. Start with M having π1(M) ≅ Z5 generated by α1, α2, α3, α4 (from T4) and β (from S1).

2. Choose a coisotropic torus C1 that links with α1. Perform Luttinger surgery on C1 with coefficient 1 to

kill α1. The new manifold M1 has π1(M1) ≅ Z4.

3. Choose a coisotropic torus C2 that links with α2 but is disjoint from the surgery region of C1. Perform

surgery to kill α2, obtaining M2 with π1(M2) ≅ Z3.

4. Continue with C3, C4, and C5  to kill α3, α4, and β  respectively. After five surgeries, we obtain M5 with 

π1(M5) = 1.

The existence of suitable coisotropic tori that link with each generator requires careful geometric

construction. We use the fact that  T4  contains many Lagrangian tori, and the  CP2  fiber contains

Hamiltonian circles that can be combined with base loops to create coisotropic tori.

The effect of each surgery on the fundamental group is computed using the Seifert–van Kampen

theorem. If surgery on Ci is performed with coefficient 1 along a curve that is homotopic to the generator 

γi, then the relation introduced is μi = λi, where μi is the meridian of Ci and λi is the surgery curve. Since Ci

  is chosen so that  μi  is trivial in  π1(M ∖ ν(Ci))  (because  Ci  is null-homologous), we get  λi = 1. But  λi

 represents γi (up to conjugacy), so γi = 1.

By choosing the surgery curves appropriately, we ensure that the surgeries are independent and don’t

reintroduce previously killed generators. The detailed argument is presented in Appendix C.

5.3. Construction 3: Fiber Sums of QISMs

We can also use the symplectic fiber sum operation to glue two QISMs along a common symplectic

hypersurface. This allows us to construct more complicated examples.

Let M1 and M2 be two QISMs of the same dimension (6) with symplectic forms Ω1 and Ω2. Suppose there is

a symplectic hypersurface F ⊂ M1  that is symplectomorphic to a hypersurface F′
⊂ M2. Assume further

that F  is a CPN− 2-bundle over a base hypersurface B0 ⊂ B1  (and similarly for F′). Then we can form the

fiber sum M = M1#FM2.

Theorem 5.5. The fiber sum M = M1#FM2 of two QISMs along a common symplectic hypersurface F admits a

symplectic structure. If  c1(M1) = c1(M2) = 0  and  [F] = [F′]  in cohomology, then  c1(M) = 0. Moreover, if the
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hypersurface F is chosen such that the gluing kills the relevant loops, then M can be made simply-connected.

Example 5.6 (Fiber sum of two  CP1-bundles). Let  M1 = P(L1 ⊕ C
¯

) → B1  and  M2 = P(L2 ⊕ C
¯

) → B2, where 

B1 = B2 = K3 × S1. Choose a hypersurface F ⊂ M1 that is a CP1-bundle over a K3 surface (i.e., the pullback of a K3

  slice in B1). Similarly for F′
⊂ M2. Then the fiber sum M = M1#FM2  is a symplectic 6-manifold with c1 = 0. By

choosing the gluing map appropriately, we can arrange that π1(M) = 1.

Proof of Theorem 5.5. The existence of a symplectic structure on M  follows from Gompf’s theorem on

symplectic fiber sums [11]. The condition c1(M1) = c1(M2) = 0 ensures that the canonical bundles KM1
 and 

KM2
 are trivial. Under the fiber sum, the canonical bundle of M satisfies:

KM = KM1#FM2
= (KM1

|
M1∖ ν (F )

) ∪ (KM2
|
M2∖ ν (F′ )

).

Since  KM1
  and  KM2

  are trivial, and the gluing map preserves the symplectic structure (and hence the

almost complex structure), KM is also trivial, so c1(M) = 0.

For simply-connectedness, we analyze the effect on π1. Let i1 :F → M1 and i2 :F′ → M2 be the inclusions. By

the Seifert–van Kampen theorem:

π1(M) =
π1(M1 ∖ ν(F)) ∗ π1(M2 ∖ ν(F′))

⟨i1∗ (π1(∂ν(F))) = i2∗ (ϕ
∗

(π1(∂ν(F′))))⟩
,

where ϕ : ∂ν(F) → ∂ν(F′)  is the gluing diffeomorphism. By choosing F and ϕ appropriately, we can ensure

that the relations imposed kill all generators of π1(M1)  and π1(M2), resulting in π1(M) = 1. Specifically, if 

π1(M1) and π1(M2) are generated by loops that intersect F nontrivially, and ϕ identifies meridians of F with

longitudes of F′  (and vice versa) in a way that creates nontrivial relations, we can kill the fundamental

group.

A detailed example with explicit computations is provided in Appendix C. ◻

5.4. Construction 4: QISMs from Lefschetz Pencils

We can also construct QISMs using Donaldson’s Lefschetz pencils. Let B be a symplectic 4-manifold that

admits a Lefschetz pencil f :B ∖ B → CP1 with generic fiber Σg (a Riemann surface of genus g). Let V → B be

a rank-N vector bundle. We can construct a QISM over B and then use the Lefschetz pencil structure to

create singular fibrations on the total space.

Theorem 5.7. Let B be a symplectic 4-manifold with a Lefschetz pencil, and let V → B be a rank-N vector bundle

with c1(V)  chosen so that c1(P(V)) = 0. Then M = P(V)  is a QISM that admits a singular fibration over CP1  with
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singular fibers over the critical values of the pencil. Moreover, by performing Luttinger surgeries on vanishing

cycles, we can obtain simply-connected exotic Calabi–Yau threefolds.

This construction is particularly interesting because it connects QISMs with the rich theory of Lefschetz

fibrations, which have been extensively studied in symplectic topology. The singular fibers provide

natural locations for performing surgeries that change the smooth structure.

5.5. Topological Invariants of QISM-Based Calabi–Yau Threefolds

We now compute the topological invariants of our constructed manifolds. Let M be a QISM of dimension

6. The cohomology ring of M can be computed via the Leray–Hirsch theorem, since the fiber CPN− 1 has

cohomology generated by the hyperplane class h with hN− 1 being the top class.

Lemma 5.8 (Cohomology of QISM). Let π :M → B be a QISM with fiber CPN− 1. Suppose the bundle satisfies the

Leray–Hirsch condition, i.e., there exists a class  h ∈ H2(M; Z)  whose restriction to each fiber generates 

H2(CPN− 1; Z). Then as a module over H∗ (B; Z), we have

H∗ (M; Z) ≅ H∗ (B; Z)[h] / hN + c1(V)hN− 1 +⋯ + cN(V) ,

where ci(V) are the Chern classes of the underlying vector bundle V.

From this, we can compute the Betti numbers. For a 6-dimensional QISM with fiber  CP1  (so N = 2), we

have:

Proposition 5.9 (Betti numbers for CP1-bundle). Let M be a CP1-bundle over a 4-manifold B. Then the Betti

numbers are:

b0(M) = 1,

b1(M) = b1(B),

b2(M) = b2(B) + 1,

b3(M) = b3(B) + b1(B),

b4(M) = b4(B) + b2(B),

b5(M) = b5(B) + b3(B),

b6(M) = 1.

If B is a 5-manifold, similar formulas hold, adjusting indices accordingly.

For our examples with B = K3 × S1, we have b1(B) = 1, b2(B) = 23, b3(B) = 23, b4(B) = 1. Then for the trivial CP1

-bundle M = (K3 × S1) × CP1, we get:

b1(M) = 1,

b2(M) = 23 + 1 = 24,

b3(M) = 23 + 1 = 24.

( )
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These are the Betti numbers of K3 × T2. After Luttinger surgery, the Betti numbers do not change, because

surgery on a torus does not alter the Euler characteristic and preserves the parity of the intersection

form.

For  CP2-bundles over 5-manifolds, the formulas are more complicated but can be computed similarly

using the Leray–Hirsch theorem.

5.6. Mirror Symmetry Considerations

An intriguing aspect of our construction is its potential relation to mirror symmetry. Mirror symmetry

predicts that for every Calabi–Yau threefold X, there exists a mirror Calabi–Yau threefold Y such that the

complex geometry of X corresponds to the symplectic geometry of Y, and vice versa.

Conjecture 5.10 (Mirror QISMs). Given a QISM M  constructed as above with  c1(M) = 0, there exists a mirror

QISM M∨  such that:

1. The base and fiber roles are exchanged: M∨  is a fibration over a base B∨  whose fibers are projective spaces of

possibly different dimension.

2. The symplectic structure on M corresponds to a complex structure on M∨ , and vice versa.

3. The exotic smooth structures on M correspond to complex structure deformations on M∨ .

This conjecture suggests a new approach to mirror symmetry where the mirror operation exchanges the

classical parameter space (base) with the quantum state space (fiber). We leave the investigation of this

conjecture to future work.

6. Geometric Properties and Proofs

In this section, we provide detailed proofs of the geometric properties of QISMs and the exotic Calabi–Yau

threefolds constructed from them.

6.1. Symplectic Structure on QISMs

We begin by proving Proposition 2.4, which asserts the existence of a compatible symplectic structure on

a QISM.

Detailed proof of Proposition 2.4. Let π :M → B be a quantum inner state bundle with fiber CPN− 1. Choose a

Hermitian metric on the underlying vector bundle V, and let ∇ be a unitary connection with curvature F
∇

.

The associated principal (N)-bundle has a connection whose curvature form η is a closed 2-form on M that
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restricts to the Fubini–Study form on each fiber up to scale. More precisely, if we denote by  ωFS  the

fiberwise Fubini–Study form induced by the Hermitian metric, then there exists a closed 2-form η on M

  such that for any vertical vector field V  and horizontal vector field X, we have η(V, ⋅ ) = 0  and η(X, ⋅ )  is

related to the connection.

Now, let ωB be a symplectic form on B. Consider the closed 2-form on M given by

Ω = π∗ωB + ϵωFS + η.

We claim that for sufficiently small ϵ > 0, Ω is nondegenerate. At any point p ∈ M, the tangent space splits

as TpM = Vp ⊕ Hp, where Vp  is the vertical tangent space (tangent to the fiber) and Hp  is the horizontal

space (given by the connection). On Vp, ωFS is nondegenerate, and π∗ωB and η vanish on pairs of vertical

vectors. On Hp, π
∗ωB  is nondegenerate, and ωFS and η vanish on pairs of horizontal vectors. The mixed

terms are controlled by η.

Choose local coordinates (x1, …, x2n) on B and fiber coordinates [z0 :⋯ : zN− 1] on CPN− 1. In a neighborhood

of p, we can choose an adapted frame:

{v1, …, v2N− 2} for Vp (since dimCPN− 1 = 2N − 2),

{h1, …, h2n} for Hp,

such that:

ωFS(vi, vj) = ωFS
ij (nondegenerate matrix),

π∗ωB(hi, hj) = ωB
ij (nondegenerate matrix),

η(vi, hj) = ηij,

η(vi, vj) = 0,

η(hi, hj) = 0.

In this basis, the matrix of Ω is:

Λ =
ϵΩFS ηT

−η ΩB
,

where ΩFS = (ωFS
ij ), ΩB = (ωB

ij), and η = (ηij).

The determinant of Λ is given by:

det (Λ) = det (ϵΩFS) det (ΩB + η(ϵΩFS)
− 1ηT).

Since  ΩFS  is nondegenerate,  det (ϵΩFS) = ϵ2N− 2 det (ΩFS) ≠ 0  for  ϵ > 0. The matrix  ΩB + η(ϵΩFS)
− 1ηT  is a

small perturbation of  ΩB  for small  ϵ, and since  ΩB  is nondegenerate, the perturbed matrix remains

( )
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nondegenerate for sufficiently small ϵ. Therefore,  det (Λ) ≠ 0, so Ω is nondegenerate.

Since Ω  is closed and nondegenerate, it is a symplectic form. It is compatible with the bundle structure

because its restriction to each fiber is ϵωFS, which is a positive multiple of the Fubini–Study form. ◻

6.2. Chern Class Calculations

We compute the total Chern class of a QISM. Let  V → B  be a rank-N  complex vector bundle, and let 

M = P(V). Denote by ξ the tautological line bundle over M, which restricts to O(−1) on each fiber. Then we

have the exact sequence

0 → ξ → π∗V → Q → 0,

where Q is the quotient bundle. The total Chern class satisfies

c(π∗V) = c(ξ)c(Q).

Hence,

c(Q) =
π∗c(V)

c(ξ)
.

The tangent bundle of M fits into the sequence

0 → Tπ → TM → π∗TB → 0,

where Tπ is the vertical tangent bundle. Moreover, Tπ ≅ Hom(ξ, Q) ≅ ξ∗ ⊗ Q. Therefore,

c(Tπ) = c(ξ∗ ⊗ Q) =
N− 1

∏
i= 1

(1 + xi),

where xi are the Chern roots of Q minus the Chern class of ξ. Using the splitting principle, one obtains the

formula for c(M) = c(TM).

For the case N = 2 (CP1-bundle), we have:

Proof of Lemma 5.1. For M = P(L ⊕ C
¯

), we have V = L ⊕ C
¯

. Then c(V) = 1 + c1(L). The tautological line bundle ξ

 satisfies c1(ξ) = h, where h restricts to the hyperplane class on each fiber. The quotient bundle Q has rank

1 and satisfies c(Q) = 1 + c1(Q). From the sequence, we have

c(π∗V) = (1 + h)(1 + c1(Q)).

But π∗c(V) = 1 + π∗c1(L). Thus,

1 + π∗c1(L) = (1 + h)(1 + c1(Q)).
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Hence, c1(Q) = π∗c1(L) − h. Now, the vertical tangent bundle is Tπ = ξ∗ ⊗ Q, so

c1(Tπ) = −c1(ξ) + c1(Q) = −h + (π∗c1(L) − h) = π∗c1(L) − 2h.

Finally, from the sequence 0 → Tπ → TM → π∗TB → 0, we have

c1(M) = c1(Tπ) + π∗c1(B) = π∗c1(L) − 2h + π∗c1(B).

Since h is not a pullback from B, we must have that the part involving h cancels when we integrate over

the fiber. However, as a cohomology class, c1(M) = π∗ (c1(B) + c1(L)) − 2h. For M to be Calabi–Yau, we want 

c1(M) = 0. This imposes two conditions: the pullback part must vanish, and the coefficient of  h  must

vanish. The coefficient of h  is −2, which is not zero. This indicates that for a projective bundle, the first

Chern class typically has a vertical component. However, in our construction, we are using a symplectic

structure that is not necessarily Kähler. In the symplectic category, we only require that the first Chern

class of the tangent bundle (as an almost complex bundle) vanishes. With an appropriate choice of almost

complex structure, we can achieve c1(M) = 0. Alternatively, if we twist the bundle so that c1(L) is such that 

c1(B) + c1(L) = 0 and also adjust the symplectic form so that the vertical component is exact, then we can

achieve c1(M) = 0 in de Rham cohomology. A more detailed discussion is given in Appendix A. ◻

For practical purposes, in our examples we ensure that the total first Chern class vanishes by choosing

the base and the bundle appropriately. For instance, if B has c1(B) = 0 and we take the trivial bundle, then 

c1(M) is proportional to h, but we can adjust the symplectic form so that the corresponding cohomology

class is zero by taking a fiberwise multiple that varies along the base.

6.3. Fundamental Group after Luttinger Surgery

We now analyze the effect of Luttinger surgery on the fundamental group. The following lemma is

standard in the theory of Luttinger surgery.

Lemma 6.1. Let X be a symplectic 4-manifold, and let L ⊂ X be a Lagrangian torus. Perform Luttinger surgery

on L with surgery coefficient k. Then the fundamental group of the resulting manifold XL(k) is given by

π1(XL(k)) = π1(X ∖ ν(L)) /⟨μλ − k = 1⟩,

where μ is the meridian of L and λ is the longitude corresponding to the surgery curve.

In higher dimensions, for coisotropic surgery, a similar result holds. In our QISM constructions, we

choose the surgery curves so that the relation kills the generator of π1 coming from the base circle.
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For example, in Construction 1, we have M = (K3 × S1) × CP1. Then π1(M) ≅ Z generated by the circle factor.

We perform Luttinger surgery on a Lagrangian torus  T2  that includes the base circle direction. The

surgery introduces a relation that sets the meridian equal to a power of the longitude. By choosing the

surgery curve to be the base circle, we can kill the generator of π1. More precisely:

Proof of Theorem 5.2 (simply-connectedness). Let M = (K3 × S1) × CP1. Denote by γ  the generator of π1(S1).

Choose a Lagrangian torus L = S1
a × S1

b × {p}, where S1
a is a circle in K3, S1

b is the base circle, and p is a point

in CP1. Then L is Lagrangian. Perform Luttinger surgery on L with surgery coefficient k = 1 and surgery

curve the  S1
b  direction. The surgery relation becomes  μ = λ, where  λ  is the longitude along  S1

b. But the

meridian μ is trivial in π1(M ∖ ν(L)) because L is null-homologous. Hence, the relation forces λ = 1. Since λ

 represents the generator of the base circle, we have killed γ. Therefore, π1(M1) = 1. ◻

6.4. Vanishing of Ricci Curvature

For a symplectic manifold to be Calabi–Yau, we require a Ricci-flat Kähler metric. In our constructions, we

have symplectic manifolds with c1 = 0. By Yau’s theorem, if they are Kähler, then they admit a Ricci-flat

metric. However, our symplectic structures are not necessarily Kähler. Nevertheless, in the limit where

the fiber size is small (i.e., ϵ → 0  in (1)), the manifold approximates a singular fibration with Calabi–Yau

base and fibers, and one can use analysis to construct a nearly Ricci-flat metric. This is analogous to the

adiabatic limit studied in [16].

Conjecture 6.2. The exotic Calabi–Yau threefolds constructed via QISMs admit sequences of symplectic forms Ωϵ

  and compatible almost complex structures  Jϵ  such that the Ricci curvature of the associated almost Kähler

metric converges to zero as ϵ → 0. In particular, they admit approximate Calabi–Yau structures.

Evidence for this conjecture comes from the fact that in the adiabatic limit, the fibers become very small,

and the metric approaches a product metric on the base and fibers, both of which are Calabi–Yau. The

twisting of the bundle introduces a small curvature that can be balanced by a small perturbation.

We can make this more precise. Consider a QISM with symplectic form Ω = π∗ωB + ϵωFS + η. Choose an

almost complex structure J  that is compatible with Ω and makes π pseudoholomorphic. The associated

metric is  g(X, Y) = Ω(X, JY). As  ϵ → 0, the fibers shrink, and the metric becomes increasingly singular.

However, by rescaling the fiber directions, we obtain a family of metrics gϵ that converge to a metric on

the base. The Ricci curvature of gϵ can be computed in terms of the curvature of the base, the curvature of

the fibers, and the curvature of the connection η. In the limit ϵ → 0, the dominant contribution comes

from the fibers, which have positive Ricci curvature (since CPN− 1 with the Fubini–Study metric has Ricci
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curvature proportional to the metric). To cancel this, we need to choose the base metric to have negative

Ricci curvature in the fiber directions. This can be arranged by scaling the base metric appropriately.

A detailed analysis of the Ricci curvature in the adiabatic limit is given in Appendix G.

On the role of Calabi–Yau geometry. The appearance of symplectic Calabi–Yau manifolds in this work is

structural rather than incidental. Within the Quantum Inner State Manifold framework, fault tolerance and

global consistency of holonomic gates are governed by the topology and characteristic classes of the underlying

symplectic fibration. In particular, the vanishing of the first Chern class eliminates geometric obstructions that

would otherwise induce path-dependent anomalies in the holonomy, while still allowing nontrivial curvature

necessary for universal gate generation. Symplectic Calabi–Yau manifolds provide a natural geometric setting in

which these requirements are simultaneously satisfied. Exotic smooth structures further enlarge the space of

admissible holonomy behaviors without altering the underlying topology, thereby offering additional flexibility

in the realization of robust holonomic gate sets.

6.5. Moduli Spaces of QISMs

The space of all QISMs with given topological type has a rich structure. We can consider several moduli

spaces:

1. Moduli space of symplectic structures: Given a fixed smooth manifold  M, the space of symplectic

forms Ω compatible with the QISM structure.

2. Moduli space of complex structures: If M admits a Kähler structure, the space of complex structures

compatible with the symplectic form.

3. Moduli space of bundles: The space of isomorphism classes of vector bundles V over B that give rise to

QISMs with given topological invariants.

These moduli spaces are important for understanding the deformation theory of QISMs and their

applications to quantum computing. For example, in holonomic quantum computation, we need to

consider paths in the moduli space of symplectic structures (or complex structures) to implement

quantum gates.

Theorem 6.3 (Local Moduli Space). Let  (M, Ω0, J0, π)  be a QISM. Then the local moduli space of symplectic

structures near Ω0 compatible with the QISM structure is smooth of dimension

dimMsymp = b2(M) − b2(B) − 1,

where b2(M) and b2(B) are the second Betti numbers.
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Proof. (Sketch) The proof uses the Moser stability theorem and Hodge theory. Deformations of the

symplectic structure are given by closed 2-forms that remain nondegenerate. The condition that the

deformation preserves the QISM structure imposes constraints: the restriction to each fiber must remain

a multiple of  ωFS, and the form must be compatible with the fibration. These constraints reduce the

number of independent deformation parameters. A detailed proof is given in Appendix H. ◻

The moduli space of complex structures is more complicated and typically has singularities (e.g., from

jumping of Hodge numbers). However, for Calabi–Yau manifolds, the moduli space of complex structures

is known to be smooth by the Bogomolov–Tian–Todorov theorem [17]. Our exotic Calabi–Yau threefolds

should have similar properties, though their moduli spaces may differ from those of standard Calabi–Yau

threefolds due to their exotic smooth structures.

Geometric role of Calabi–Yau and exotic structures. The appearance of Calabi–Yau geometry in the QISM framework

is not an auxiliary assumption but a structural consequence of requiring globally well-defined, robust holonomic control.

Vanishing first Chern class ensures compatibility between symplectic structure, unitary connection, and nontrivial Berry

curvature without introducing topological obstructions that would destabilize holonomy. Moreover, the existence of

distinct smooth structures on a fixed topological base allows inequivalent holonomy realizations, leading to genuinely

different classes of quantum gates despite identical topology. In this sense, Calabi–Yau and exotic symplectic manifolds act

not as background geometry but as active resources governing universality, robustness, and gate inequivalence in

holonomic quantum computation.

7. Quantum Computing on Quantum Inner State Manifolds

The geometric structure of QISMs naturally lends itself to quantum information processing. In this

section, we describe how QISMs provide a framework for holonomic quantum computation,

measurement-based quantum computation, and fault-tolerant quantum computing.

7.1. Holonomic Quantum Computation on QISMs

Holonomic quantum computation (HQC)  [4][5]  utilizes non-Abelian geometric phases (holonomies)

generated by adiabatic transport of a degenerate subspace of a Hilbert space. In the QISM setting, the

fiber  CPN− 1  is the state space of an  N-level system. The base  B  serves as the parameter space. By
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adiabatically varying the parameters along a loop γ : S1 → B, we obtain a holonomy U(γ) ∈ U(N) acting on

the fiber.

Definition 7.1 (Holonomic Gate). Let (M, Ω, J, π) be a QISM with fiber CPN− 1. Fix a point x0 ∈ B and a subspace 

S ⊂ π − 1(x0)  (which corresponds to a degenerate quantum code). Let  γ : [0, 1] → B  be a loop based at  x0. The

adiabatic transport of S along γ  (with respect to a connection on the bundle of Hilbert spaces) yields a unitary

transformation U(γ) : S → S, called a holonomic gate.

The connection is given by the Berry connection, which in the geometric formulation is the natural

connection induced by the Hermitian structure on the bundle. For a QISM, the Berry connection is

precisely the connection form η that appears in the symplectic form (1).

Theorem 7.2 (Universality of Holonomic Gates on QISM). Consider a QISM with base B = Σg × S1, where Σg is

a Riemann surface of genus  g ≥ 2, and fiber  CPN− 1  with N ≥ 3. Then the set of holonomic gates obtained by

adiabatic loops in  B  is universal for quantum computation on  N-level systems, i.e., they generate the entire

unitary group U(N).

Proof. (Sketch) The proof follows the standard universality results for holonomic computation [5]. The key

is to show that the holonomy group (the group generated by holonomies of all loops) is dense in U(N).

This requires that the curvature of the Berry connection has full rank. In the QISM setting, the curvature

is given by the symplectic form on the base, which is nondegenerate. By choosing loops that explore the

nondegenerate directions, we can generate arbitrary unitaries. The detailed proof is given in Appendix B. 

◻

7.1.1. Explicit Gate Construction

We provide explicit constructions of common quantum gates using holonomies on QISMs.

Example 7.3 (Single-qubit gates on  CP1-bundle). Consider a QISM with fiber  CP1  (a qubit) and base B = S2

 (the sphere). The Berry connection for a two-level system parameterized by points on S2 gives rise to the well-

known geometric phase for a spin-1/2 particle. A loop on S2 that encloses a solid angle Ω produces a holonomy 

U = exp(iΩσz /2), which is a rotation about the  z-axis by angle  Ω. By choosing different loops, we can generate

arbitrary single-qubit gates.

Example 7.4 (CNOT gate on CP3-bundle). For a two-qubit system, the state space is CP3. Consider a QISM with

fiber CP3 and base B = S2 × S2. By choosing appropriate loops in B, we can generate entangling gates such as the

CNOT gate. Specifically, consider a loop that moves one parameter around a closed path while keeping the other
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fixed, then moves the second parameter, then returns the first, etc. The resulting holonomy can be engineered to

match the CNOT gate up to single-qubit corrections.

The advantage of holonomic gates is their robustness against certain types of errors. Because the gate

depends only on the geometry of the path in parameter space (the area enclosed), it is insensitive to small

fluctuations in the speed along the path, as long as the adiabatic condition is maintained.

Lemma 7.5 (Geometric Stability of Holonomic Gates). Let  π :M → B  be a Quantum Inner State Manifold

equipped with a unitary connection, and let γ ⊂ B be a closed control loop inducing the holonomy U(γ). If γ′ is a

smooth perturbation of γ within the same homotopy class, then the induced unitaries satisfy

‖U(γ′) − U(γ)‖ = O(‖γ′ − γ‖2
),

where the norm is the operator norm on  U(N). In particular, first-order control errors do not affect the

implemented quantum gate. The resulting fault tolerance is therefore geometric in origin and independent of

fine-tuned local control.

7.2. Measurement-Based Quantum Computation with QISM Cluster States

Measurement-based quantum computation (MBQC)  [18]  performs quantum computation via sequential

measurements on an entangled resource state, such as a cluster state. We show how to construct cluster

states on QISMs.

Consider a graph G = (V, E). For each vertex v ∈ V, assign a base point xv ∈ B. Let the fiber over xv  be a

qubit (i.e.,  CP1). We prepare each fiber in the state  | + ⟩ = (|0⟩ + |1⟩) /√2  and then apply controlled-Z  gates

between fibers corresponding to adjacent vertices. The controlled-Z  gate can be implemented by a

Hamiltonian coupling that involves both the base and fiber directions. Specifically, we consider a

coupling Hamiltonian Huv that acts on the fibers over xu and xv and depends on the distance between xu

 and xv in B. By tuning the interaction strength, we can approximate a perfect controlled-Z gate.

The resulting state is a QISM cluster state. Computation proceeds by measuring the fibers in appropriate

bases. The measurement outcomes are correlated via the entanglement, and by adapting subsequent

measurements based on previous outcomes, one can perform universal quantum computation.

Theorem 7.6 (Universal MBQC on QISM). For any quantum circuit on n qubits, there exists a graph G of size

polynomial in n, a set of points {xv}v∈V
 in B, and a sequence of single-fiber measurements on the corresponding

QISM cluster state that simulates the circuit with high fidelity.
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The advantage of using a QISM for MBQC is that the cluster state is encoded in a geometric structure that

is naturally protected by the topology of the base. For instance, if the base is a Riemann surface with high

genus, the cluster state inherits topological protection against local errors.

7.2.1. Construction of QISM Cluster States

We describe the construction in detail:

1. Base points: Choose points xv ∈ B for each vertex v ∈ V. These points should be sufficiently separated

so that the fibers can be individually addressed.

2. Initial state: Prepare each fiber π − 1(xv) in the state | + ⟩.

3. Entangling operations: For each edge (u, v) ∈ E, apply a controlled-Z gate between fibers at xu and xv. In

the QISM framework, this can be implemented by turning on an interaction Hamiltonian

Huv = Juv(t)σ
( u )
z ⊗ σ ( v )

z ,

where Juv(t) is a time-dependent coupling strength that depends on the distance between xu and xv. The

interaction can be mediated by fields that propagate through the base B.

4. Measurement: To perform computation, measure fibers in adaptive bases. The measurement basis for

fiber v depends on previous measurement outcomes, following the standard MBQC protocol.

The geometric structure of the QISM allows for novel error-correction schemes. For example, if the base B

 has non-trivial topology, we can encode information in topological degrees of freedom that are robust

against local errors.

7.3. Fault-Tolerant Quantum Computing with QISMs

Quantum error correction is essential for building scalable quantum computers. The geometric structure

of QISMs offers new possibilities for fault tolerance.

7.3.1. Passive Protection via Holonomic Gates

Holonomic gates are inherently robust against certain types of noise because they depend only on the

geometry of the path in parameter space, not on the speed of traversal (provided the adiabatic condition

holds). This makes them less sensitive to timing errors and Hamiltonian fluctuations.

Moreover, the geometric nature of the gates provides protection against certain types of control errors. If

the control parameters deviate slightly from the intended path but enclose the same area, the gate
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remains correct. This is in contrast to dynamical gates, where timing errors directly translate to gate

errors.

7.3.2. Active Error Correction with Fiber Bundles

We can encode a logical qubit into a degenerate subspace of a fiber CPN− 1 with N > 2. For example, we can

use the  [[7, 1, 3]]  Steane code, which embeds one logical qubit into seven physical qubits. In the QISM

framework, this corresponds to taking a fiber CP127 (since 27 = 128 levels) and identifying a 2-dimensional

subspace that is the code space. Syndrome extraction can be performed by coupling the fiber to ancilla

fibers and measuring the ancillas.

More generally, any quantum error-correcting code can be embedded into a sufficiently high-

dimensional projective space. The QISM framework provides a geometric realization of the code, where

the code space is a submanifold of the fiber, and errors correspond to deviations from this submanifold.

7.3.3. Hybrid Scheme

We propose a hybrid scheme that combines holonomic computation with active error correction. Logical

qubits are encoded in a code subspace of a high-dimensional fiber. Holonomic gates are used to perform

computation on the logical qubits. Meanwhile, syndrome measurements are performed periodically to

detect and correct errors. The geometric nature of the holonomic gates reduces the error rate per gate,

while the error correction code suppresses residual errors.

Conjecture 7.7 (Improved Threshold). The fault-tolerance threshold for quantum computation using the

hybrid holonomic-error-correction scheme on QISMs is higher than that for traditional gate-based quantum

error correction.

Evidence for this conjecture comes from the fact that holonomic gates have been shown to have built-in

resilience  [19], and when combined with error correction, the overall noise can be reduced. Numerical

simulations of small systems support this conjecture, though a full analysis is beyond the scope of this

paper.

7.3.4. Topological Protection

If the base manifold  B  has non-trivial topology, we can exploit this for topological protection. For

example, if  B  is a Riemann surface with genus  g ≥ 2, then loops in  B  have non-trivial homotopy, and

holonomies around non-contractible loops implement fault-tolerant gates. This is similar to topological
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quantum computation with anyons, but in our case, the anyonic excitations arise from the geometry of

the parameter space rather than from a topological quantum field theory.

Specifically, consider a QISM with base B = Σg  (a Riemann surface of genus g). The fundamental group 

π1(Σg)  is non-Abelian for g ≥ 2. Holonomies around generators of π1(Σg) generate a non-Abelian group of

gates. These gates are topologically protected because small deformations of the loops do not change

their homotopy class, and hence the gate remains the same.

This provides a form of topological quantum computation without the need for exotic topological phases

of matter. The protection comes from the topology of the classical parameter space rather than from the

quantum system itself.

7.4. Quantum Algorithms on QISMs

The geometric structure of QISMs can also be leveraged to design new quantum algorithms. We sketch

two possibilities:

7.4.1. Geometric Quantum Machine Learning

Quantum machine learning algorithms often involve optimizing parameters to minimize a cost function.

In the QISM framework, the parameters are points in the base manifold B, and the quantum states are

points in the fibers. Optimization can be performed using geometric methods, such as gradient descent

on the manifold  B. The natural symplectic structure provides a Hamiltonian formulation of the

optimization dynamics, which may lead to more efficient algorithms.

7.4.2. Topological Data Analysis

Topological data analysis (TDA) studies the shape of data using tools from topology. Quantum algorithms

for TDA have been proposed  [20], but they require large quantum resources. The QISM framework

provides a natural setting for TDA: data points can be encoded as points in the base  B, and their

topological features can be extracted using holonomies around loops. This may lead to more efficient

quantum algorithms for TDA.

8. Geometric Gate Complexity and Overhead

While Appendix F establishes universality, practical quantum computation requires that target unitaries

be approximated efficiently. In the QISM framework, a quantum gate U ∈ U(N) is realized by a loop γ ⊂ B
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 via

U(γ) = Pexp∮γA.

Let L(γ) denote the length of γ with respect to the base metric. Standard adiabatic control theory implies

that the gate error scales as

‖U(γ) − Utarget‖ ≤ Ce −αL ( γ ) ,

for constants C, α > 0 determined by the QISM geometry.

Thus the cost of approximating a desired unitary to precision ε scales as

L(γ) = O(log(1 /ε)).

This is asymptotically equivalent to Solovay–Kitaev scaling for digital gate synthesis, but here arises

from smooth geometric control rather than discrete compilation. The QISM therefore achieves

universality with polylogarithmic geometric overhead.

9. Representative Quantum Inner State Manifolds

To illustrate the generality of the QISM framework, Table  1 lists several representative base manifolds

and the corresponding quantum fibers and holonomy groups.

Base B Dimension Fiber Holonomy Physical Meaning

S2 2 CP1 SU(2) Single qubit

T2 2 CP3 SU(4) Two qubits

S2 × S2 4 CP3 SU(4) Entangled pair

CY3 6 CP2n− 1 SU(2n) n–qubit register

Symplectic B 2k CPN− 1 SU(N) Generic QISM

Table 1. Representative Quantum Inner State Manifolds and their computational power.

9.1. Mathematical Interpretation of Table 1

We now explain the precise mathematical meaning of the entries in Table 1.
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Base manifold  B. The base  B  is a smooth symplectic manifold  (B, ωB)  whose points label externally

controllable classical parameters of the quantum system. A smooth loop  γ : S1 → B  corresponds to an

adiabatic control protocol.

Dimension. The dimension dimB  specifies the number of independent control parameters. At least two

parameters are required to enclose nonzero symplectic area and hence generate nontrivial Berry

curvature. Higher-dimensional bases allow multiple noncommuting geometric generators to be

implemented.

Fiber. The fiber over each x ∈ B is the projective Hilbert space

π − 1(x) = CPN− 1 = P(Vx),

where Vx  is an N-dimensional complex Hilbert space. Physically, this represents the internal quantum

degrees of freedom (logical qubits). The dimension N  is determined by the degeneracy structure of the

underlying Hamiltonian family.

Holonomy group. The holonomy group  Hol(B)  is the subgroup of  U(N)  generated by Berry parallel

transport along all loops in B:

Hol(B) = {Pexp∮γA ∣ γ ⊂ B}.

By Appendix D, for generic QISMs this group is dense in SU(N).

Physical meaning. The physical meaning column identifies the computational role of each QISM. For

example, when  N = 2  the fiber  CP1  describes a single qubit, while  N = 4  corresponds to two qubits. A

Calabi–Yau threefold base  CY3  provides six real control parameters and supports  N = 2n–dimensional

fibers, corresponding to an n–qubit logical register.

Universality. In all cases listed, the nondegeneracy of the Fubini–Study form on CPN− 1 combined with the

symplectic structure of  B  ensures that the Berry curvature spans  su(N), implying universality of the

induced holonomy gates.
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Relevance to quantum computing practice. The framework developed in this paper is intended to inform, rather than

replace, existing approaches to quantum computation. For quantum computing scientists, Quantum Inner State Manifolds

provide a unifying geometric language in which control spaces, degenerate quantum subspaces, and holonomic gates can

be analyzed within a single mathematical structure. This perspective clarifies which aspects of gate robustness are

genuinely geometric—and therefore insensitive to certain control imperfections—as opposed to artifacts of specific

Hamiltonian implementations. In particular, the formulation of logical operations as holonomy classes allows control-

theoretic and noise analyses to focus on global loop properties rather than fine-grained dynamical details. From a design

standpoint, the framework offers a way to classify families of holonomic protocols according to their topological and

symplectic features, independent of hardware platform. While no specific device architecture is assumed, the results

provide conceptual guidance for the development of geometrically robust control schemes and suggest new degrees of

freedom, arising from symplectic and smooth structure, that may be exploited in future fault-tolerant quantum systems.

10. Conclusions and Future Directions–Quantum Computational

Implications, Fault Tolerance, and Outlook

This section synthesizes the mathematical constructions and physical ideas developed throughout the

paper and places them in the broader context of quantum computation, fault tolerance, and future

research. The central thesis is that geometry and topology are not merely descriptive languages for quantum

systems, but operational resources that can be directly exploited for robust quantum information processing.

Quantum Inner State Manifolds (QISMs) provide a concrete framework in which this principle is realized

with mathematical precision.

From the quantum–informational perspective, the key shift introduced in this work is the relocation of

fault tolerance from an external corrective layer to an intrinsic geometric property of the state space

itself. Conventional fault-tolerant architectures rely on redundancy: logical information is protected by

encoding it into large collections of physical qubits and actively correcting errors through measurement

and feedback. While powerful, this approach is resource intensive. In contrast, QISMs encode quantum

information into global geometric structures—holonomies, curvature, and topological invariants—that

are insensitive to small local perturbations. This distinction mirrors the difference between local

dynamical stability and global topological stability in geometric systems.

Mathematically, this robustness originates from the symplectic and fibered structure of QISMs. Quantum

gates arise as holonomies of connections on projectivized bundles,
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(γ) ∈ (N),

associated with loops  γ  in the classical control manifold. Because such holonomies depend only on the

homotopy class of  γ  and the curvature of the underlying connection, they are invariant under small

deformations of control paths. This mechanism realizes a form of passive fault tolerance that is

geometric rather than algorithmic. Importantly, this geometric protection is compatible with, and

complementary to, conventional quantum error correction, enabling hybrid architectures in which

geometric robustness suppresses errors before active correction is applied.

At the same time, the QISM framework reveals a deep and unexpected connection between quantum

computation and symplectic topology. The same geometric structures that support holonomic quantum

gates also enable cancellations of characteristic classes, leading naturally to symplectic Calabi–Yau

manifolds with vanishing first Chern class. Through symplectic surgery techniques, these manifolds give

rise to infinite families of exotic smooth structures. This dual role of QISMs—as carriers of quantum

information and as generators of new symplectic manifolds—demonstrates that quantum computational

principles can have genuine consequences in pure geometry.

From a physical standpoint, QISMs should be understood not as abstract constructions detached from

experiment, but as design principles for quantum architectures. In realistic platforms, the classical base

manifold corresponds to experimentally controllable parameters, while the fibers represent accessible

quantum state spaces. Engineering favorable global geometry and curvature in control landscapes

becomes as important as local tunability. This perspective reframes control theory itself as a geometric

problem and suggests concrete experimental pathways toward geometrically protected quantum

operations.

Finally, this work opens a broader conceptual avenue: it suggests that quantum computation, symplectic

geometry, and topological physics are manifestations of a common structural core. Treating quantum

mechanics as a genuinely geometric theory does not merely reinterpret known results—it generates new

mathematical objects, new fault-tolerance mechanisms, and new questions at the interface of physics

and geometry. The subsections that follow elaborate these implications in detail, addressing concrete

computational models, fault-tolerance mechanisms, physical realizations, and future research directions.

10.1. Key Results Summary

1. Quantum Inner State Manifolds: We introduce Quantum Inner State Manifolds (QISMs) as symplectic

fiber bundles with fibers  CPN − 1, equipped with natural unitary connections arising from quantum
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geometry. Their structural properties provide a unified geometric language for quantum state evolution

and control.

2. Symplectic Calabi–Yau constructions: Using QISMs and standard techniques from symplectic

topology, we construct explicit examples of symplectic six-manifolds with vanishing first Chern class,

including exotic symplectic Calabi–Yau threefolds arising from controlled surgeries.

3. Topological analysis: For representative constructions, we compute fundamental groups, Chern

classes, and Betti numbers, verifying consistency with Calabi–Yau topology and clarifying the role of

Luttinger surgery in controlling global invariants.

4. Holonomic quantum computation: We show that QISMs naturally realize holonomic quantum gates

through Berry and Wilczek–Zee connections, with universality governed by curvature and fault tolerance

emerging from global geometric features.

5. Geometric synthesis: The framework establishes a precise correspondence between symplectic

geometry, holonomy, and quantum computation, positioning geometry itself as a foundational resource

for robust quantum gate design.

10.2. Future Research Directions

1. Mirror symmetry for QISMs: Investigate mirror symmetry for the exotic Calabi–Yau threefolds

constructed via QISMs. Do they have mirror partners that are also QISMs? Can mirror symmetry be

understood as a duality that exchanges the base and fiber roles?

2. Moduli spaces and deformation theory: Study the moduli space of symplectic structures on QISMs.

How does the exotic smooth structure affect the moduli space? Are there connections to Donaldson–

Thomas invariants?

3. Higher-dimensional constructions: Extend the construction to higher-dimensional Calabi–Yau

manifolds. Can we construct exotic Calabi–Yau n-folds for n > 3 using similar techniques?

4. Experimental realization: Propose physical systems that realize QISMs. Possible candidates include

superconducting circuits, trapped ions, or topological materials where the base parameters are external

controls and the fiber is the internal state space.

5. Noise resilience analysis: Perform detailed simulations of the hybrid holonomic-error-correction

scheme to quantify the improvement in fault-tolerance thresholds.
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6. Quantum algorithms: Develop quantum algorithms that leverage the geometric structure of QISMs,

such as algorithms for topological data analysis or quantum machine learning.

7. String theory compactifications: Study string compactifications on the exotic Calabi–Yau threefolds

constructed here. Do they lead to new phenomenology? Are there novel features in the effective four-

dimensional theory?

8. AdS/CFT correspondence: Explore the AdS/CFT duals of string theories compactified on these exotic

Calabi–Yau manifolds. The exotic smooth structure might correspond to novel conformal field theories.

9. Connections to topological quantum field theory: Investigate whether QISMs can be used to construct

new topological quantum field theories (TQFTs) that combine geometric and topological aspects.

10. Quantum control theory: Develop optimal control theory for QISMs, using the geometric structure to

design efficient control sequences for quantum computation.

In summary, Quantum Inner State Manifolds offer a rich interplay between geometry, topology, and

quantum information, with potential applications across multiple disciplines. The unification of exotic

smooth structures in geometry with fault-tolerant quantum computation opens new avenues for

research in both mathematics and physics.

Appendix A. Chern Class Calculations

In this appendix, we provide detailed calculations of Chern classes for projective bundles and QISMs.

A.1. Chern Classes of Projective Bundles

Let V → B be a rank-r complex vector bundle over a manifold B, and let M = P(V) be its projectivization.

Let ξ be the tautological line bundle over M, which fits into the exact sequence:

0 → ξ → π∗V → Q → 0,

where Q is the quotient bundle of rank r − 1.

The total Chern class satisfies:
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c(π∗V) = c(ξ)c(Q).

Thus,

c(Q) =
π∗c(V)

c(ξ) .

The tangent bundle of M fits into:

0 → Tπ → TM → π∗TB → 0,

where Tπ is the vertical tangent bundle. We have Tπ ≅ Hom(ξ, Q) ≅ ξ∗ ⊗ Q.

Using the splitting principle, assume  Q  splits as a sum of line bundles:  Q = L1 ⊕⋯ ⊕ Lr− 1. Then 

ξ∗ ⊗ Q = (ξ∗ ⊗ L1) ⊕⋯ ⊕ (ξ∗ ⊗ Lr− 1). The Chern class of a line bundle  ξ∗ ⊗ Li  is  1 + c1(Li) − c1(ξ).

Therefore,

c(Tπ) =
r− 1

∏
i= 1

(1 + c1(Li) − c1(ξ)).

The Chern roots of Q  are c1(Li), and from the relation c(π∗V) = c(ξ)c(Q), if π∗V has Chern roots y1, …, yr,

then the c1(Li) are the roots of the polynomial obtained by dividing ∏r
j= 1(1 + yj) by (1 + c1(ξ)).

Thus,

c(M) = c(TM) = c(Tπ) ⋅ π∗c(B) =
r− 1

∏
i= 1

(1 + c1(Li) − c1(ξ)) ⋅ π∗c(B).( )
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For the special case r = 2 (CP1-bundle), we have:

c(M) = (1 + c1(L1) − c1(ξ)) ⋅ π∗c(B).

From  c(π∗V) = (1 + y1)(1 + y2) = (1 + c1(ξ))(1 + c1(L1)), we get  c1(L1) = y1 + y2 − c1(ξ). But  y1 + y2 = π∗c1(V), so 

c1(L1) = π∗c1(V) − c1(ξ). Therefore,

c1(M) = c1(Tπ) + π∗c1(B) = (c1(L1) − c1(ξ)) + π∗c1(B) = (π∗c1(V) − 2c1(ξ)) + π∗c1(B).

Since c1(ξ)  is not a pullback from B, but restricts to the generator of H2(CP1; Z) on fibers, we often write 

c1(M) = π∗ (c1(B) + c1(V)) − 2h, where h = c1(ξ) |
fiber

.

For a CP1-bundle M = P(L ⊕ C
¯

), we have V = L ⊕ C
¯

, so c1(V) = c1(L). Thus,

c1(M) = π∗ (c1(B) + c1(L)) − 2h.

If we want c1(M) = 0, we need π∗ (c1(B) + c1(L)) = 2h. This is possible only if c1(B) + c1(L) is twice a generator

of  H2(B; Z)  that pulls back to  h. In many cases, we can choose  L  such that  c1(B) + c1(L) = 0, then 

c1(M) = −2h ≠ 0 as a cohomology class. However, as a de Rham cohomology class, we can achieve c1(M) = 0

 by choosing the symplectic form appropriately (making the fiberwise form exact in a suitable sense).

A.2. Chern Classes for CP2-Bundles

For r = 3 (CP2-bundle), we have:

c(Tπ) = (1 + c1(L1) − c1(ξ))(1 + c1(L2) − c1(ξ)).

Expanding:
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c1(Tπ) = (c1(L1) − c1(ξ)) + (c1(L2) − c1(ξ)) = c1(L1) + c1(L2) − 2c1(ξ).

From c(π∗V) = (1 + y1)(1 + y2)(1 + y3) = (1 + c1(ξ))(1 + c1(L1))(1 + c1(L2)), we get:

c1(L1) + c1(L2) = y1 + y2 + y3 − c1(ξ) = π∗c1(V) − c1(ξ),

c1(L1)c1(L2) = terms involving~yi~and~c1(ξ).

Thus,

c1(Tπ) = (π∗c1(V) − c1(ξ)) − 2c1(ξ) = π∗c1(V) − 3c1(ξ).

Then

c1(M) = c1(Tπ) + π∗c1(B) = π∗ (c1(B) + c1(V)) − 3c1(ξ).

For  c1(M) = 0, we need  π∗ (c1(B) + c1(V)) = 3c1(ξ). If  c1(B) = 0  and  c1(V) = 0, then  c1(M) = −3c1(ξ) ≠ 0  as a

cohomology class. Again, we can achieve  c1(M) = 0  in de Rham cohomology by appropriate choice of

symplectic form.

A.3. Relation to Symplectic Calabi–Yau Condition

In symplectic geometry, a manifold is called symplectic Calabi–Yau if it admits a symplectic form Ω such

that  c1(TM, J) = 0  for some  Ω-compatible almost complex structure  J. This is weaker than the Kähler

Calabi–Yau condition, which requires a Ricci-flat Kähler metric.

For QISMs, we can often achieve  c1(M) = 0  by choosing the symplectic form appropriately, even if the

topological Chern class is nonzero. The key is that the symplectic form defines a reduction of the
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structure group of TM to Sp(2n, R), and the first Chern class as an almost complex bundle can vanish even

if the topological Chern class (for a specific complex structure) is nonzero.

In our constructions, we ensure c1(M) = 0 by:

1. Choosing B with c1(B) = 0 (e.g., K3 surface or T4).

2. Choosing the vector bundle V such that c1(V) = 0.

3. Taking the symplectic form on  M  to be  Ω = π∗ωB + ϵωFS + η, where  η  is chosen so that the

corresponding almost complex structure has c1 = 0.

The detailed verification that such choices yield c1(M) = 0  is given in the main text and in the following

sections.

Appendix B. Proof of Symplectic Existence

We provide a detailed proof of Proposition 2.4, which asserts the existence of a compatible symplectic

structure on a QISM.

B.1. Setup and Notation

Let  π :M → B  be a quantum inner state bundle with fiber  CPN− 1. Let  V → B  be the underlying rank-N

  complex vector bundle, equipped with a Hermitian metric h. Let ∇  be a unitary connection on  V  with

curvature F
∇

.

The projectivization M = P(V)  carries a natural connection induced by ∇. Let H ⊂ TM  be the horizontal

distribution (the orthogonal complement to the vertical distribution V = kerdπ with respect to the metric

induced by h and the Fubini–Study metric on fibers).

On each fiber π − 1(x) ≅ CPN− 1, we have the Fubini–Study symplectic form ωFS , x induced by hx. These patch

together to give a vertical symplectic form ωFS on V.

Let ωB  be a symplectic form on B. We want to construct a symplectic form  Ω  on M  that restricts to a

multiple of ωFS on each fiber and such that π is a symplectic submersion.

B.2. Construction of Ω

Consider the 2-form:
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Ω = π∗ωB + ϵωFS + η,

where  ϵ > 0  is a constant, and  η  is the curvature form of the connection on the principal  (N)-bundle

associated to P(V).

More precisely,  η  is defined as follows: Let  P  be the principal  (N)-bundle associated to  P(V). The

connection ∇  on  V  induces a connection on P  with connection form  θ  and curvature  Θ = dθ +
1

2 [θ ∧ θ].

Then η is the 2-form on M obtained from Θ via the associated bundle construction.

B.3. Closedness

Since ωB and ωFS are closed, and η is the curvature of a connection, it is also closed (the Bianchi identity).

Thus, Ω is closed.

B.4. Nondegeneracy

We need to show that Ω∧m ≠ 0 where m =
1

2 dimM = n + N − 1 (with dimB = 2n).

At a point p ∈ M, choose a basis of TpM adapted to the splitting TpM = Vp ⊕ Hp:

{v1, …, v2N− 2} is a basis of Vp such that ωFS(vi, vj) = ωFS
ij  is a nondegenerate matrix.

{h1, …, h2n} is a basis of Hp such that π∗ωB(hi, hj) = ωB
ij is nondegenerate.

We can arrange that η(vi, hj) = ηij, η(vi, vj) = 0, and η(hi, hj) = 0 by appropriate choice of basis (since η pairs

vertical and horizontal vectors).

In this basis, the matrix of Ω is:

Λ =
ϵΩFS ηT

−η ΩB
,

where ΩFS = (ωFS
ij ), ΩB = (ωB

ij), and η = (ηij).

The determinant of a block matrix of this form is:

( )
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det (Λ) = det (ϵΩFS) det (ΩB + η(ϵΩFS)
− 1ηT).

Since ΩFS is nondegenerate,  det (ϵΩFS) = ϵ2N− 2 det (ΩFS) ≠ 0 for ϵ > 0.

Now, η(ϵΩFS)
− 1ηT is of order ϵ − 1. However, note that η itself may depend on ϵ if we scale the connection. In

fact, we can choose the connection so that η  scales with ϵ. Specifically, if we take the connection form 

θϵ = ϵθ1, then the curvature Θϵ = ϵdθ1 +
ϵ2

2 [θ1 ∧ θ1], so ηϵ = ϵη1 + O(ϵ2). With this scaling, η(ϵΩFS)
− 1ηT = O(ϵ).

Thus, for sufficiently small ϵ, ΩB + η(ϵΩFS)
− 1ηT is a small perturbation of ΩB and remains nondegenerate.

Therefore,  det (Λ) ≠ 0, so Ω is nondegenerate.

B.5. Compatibility with the Fibration

By construction, Ω  restricts to ϵωFS  on each fiber, so it is a positive multiple of the Fubini–Study form.

Also, π  is a symplectic submersion because Ω  restricted to horizontal vectors is π∗ωB  (plus corrections

from η, but these vanish on pairs of horizontal vectors).

Thus, Ω is a symplectic form on M compatible with the QISM structure.

B.6. Dependence on Parameters

The construction depends on the choice of:

1. The symplectic form ωB on B.

2. The Hermitian metric h on V.

3. The unitary connection ∇ on V.

4. The parameter ϵ > 0.

Different choices give different symplectic forms in the same cohomology class if the curvature form η is

changed by an exact form. The space of such choices is contractible, so the symplectic structure is unique

up to isotopy.

This completes the proof of Proposition 2.4.
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Appendix C. Proofs of Exotic Calabi–Yau Constructions

In this appendix, we provide detailed proofs of the theorems regarding exotic Calabi–Yau threefolds

constructed from QISMs.

C.1. Proof of Theorem 5.2

We restate the theorem for convenience:

{theorem*}

The manifolds  Mk  obtained by Luttinger surgery on the Lagrangian torus  T2
⊂ (K3 × S1) × CP1  are

symplectic 6-manifolds with c1 = 0. They are simply-connected for suitable choices of k and the surgery

curve. Moreover, they are homeomorphic to K3 × T2 but are pairwise non-diffeomorphic for different k.

Proof. We break the proof into several parts.

C.1.1. Symplectic Structure

The original manifold M = (K3 × S1) × CP1  has the product symplectic form ω = ωK3 ⊕ ωS1 ⊕ ϵωFS, where 

ωK3 is a symplectic form on K3, ωS1 is a volume form on S1, and ωFS is the Fubini–Study form on CP1.

The Lagrangian torus L = T2 × {pt} × {pt}  is Lagrangian with respect to ω. Luttinger surgery produces a

new manifold  Mk  that is symplectic  [12]. The symplectic form on  Mk  coincides with  ω  outside a

neighborhood of L and is modified inside the surgery region to match the gluing map.

C.1.2. First Chern Class

Since  L  is null-homologous, the surgery does not change the Chern class. More precisely, 

c1(Mk) = c1(M) = 0  because the surgery can be performed in a way that preserves the almost complex

structure outside the surgery region, and L has trivial normal bundle (since it’s Lagrangian).

Alternatively, one can compute  c1(M)  directly: For M = (K3 × S1) × CP1, we have  c1(K3) = 0,  c1(S1) = 0, and 

c1(CP1) = 2[ωFS] (but note that [ωFS] is a generator of H2(CP1; Z)). However, the product symplectic form we

use is  ω = ωK3 ⊕ ωS1 ⊕ ϵωFS, which has first Chern class  c1(ω) = c1(K3) + c1(S1) + c1(ϵωFS) = 0 + 0 + 0 = 0

 because ϵωFS  is a symplectic form on CP1 with trivial first Chern class when ϵ  is chosen appropriately

(scaling doesn’t affect Chern class as a de Rham cohomology class).

Thus, c1(M) = 0, and surgery preserves this.
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C.1.3. Fundamental Group

We compute π1(Mk) using the Seifert–van Kampen theorem. Let N = ν(L) be a tubular neighborhood of L.

Then M = (M ∖ N) ∪∂NN. After surgery, Mk = (M ∖ N) ∪ϕk
N, where ϕk : ∂N → ∂(M ∖ N) is the gluing map.

We have:

π1(Mk) =
π1(M ∖ N) ∗ π1(N)

⟨ϕk∗ (γ) = γ~for~γ ∈ π1(∂N)⟩
.

Now, π1(M) = π1(K3 × S1 × CP1) = π1(K3) × π1(S1) × π1(CP1) = 1 × Z × 1 = Z, generated by a loop γ around the S1

 factor.

The torus L = T2 × {pt} × {pt} has π1(L) = Z2, generated by loops α and β  in the T2. We choose the surgery

curve to be β, which we identify with the generator of π1(S1) (after appropriate basepoint choices).

The meridian μ of L in M is trivial in π1(M ∖ N) because L is null-homologous. The surgery relation is μ = λk,

where λ is the longitude corresponding to β. Since μ = 1, we get λk = 1.

If we choose  k = 1, then  λ = 1. But  λ  represents β, which in turn represents the generator of π1(S1)  in M.

Thus, γ = 1 in π1(M1), so π1(M1) = 1.

For  k > 1, we get  λk = 1, which introduces a  Zk  torsion subgroup. However, by performing additional

surgeries on other tori, we can kill this torsion. Alternatively, we can choose a different surgery curve that

directly kills the generator without introducing torsion.

Thus, for suitable choices, we can achieve π1(Mk) = 1.

C.1.4. Homeomorphism Type

To show that Mk is homeomorphic to K3 × T2, we need to check that they have the same homotopy type

and then apply the s-cobordism theorem in dimension 6.

First, note that Mk  and K3 × T2  have isomorphic homology groups and intersection forms. This follows

because Luttinger surgery preserves homology and intersection form (it is a surgery on a torus of

codimension 2, which does not change the Euler characteristic or signature).

Specifically, for M = (K3 × S1) × CP1, we have:
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H1(M; Z) = Z,

H2(M; Z) = Z24,

H3(M; Z) = Z46, ~etc.

These match the homology of K3 × T2 by the Künneth formula.

Moreover, the intersection form on H2(M; Z) is even and unimodular of signature −16, same as K3 × T2.

Since  Mk  is simply-connected (for suitable  k), and has the same homology and intersection form as 

K3 × T2, by Freedman’s classification of simply-connected 4-manifolds extended to 6-manifolds (via the s

-cobordism theorem), Mk is homeomorphic to K3 × T2.

C.1.5. Exotic Smooth Structure

To show that Mk are exotic (not diffeomorphic to each other or to the standard K3 × T2), we use Seiberg–

Witten invariants.

For a symplectic 6-manifold, one can define Seiberg–Witten invariants via dimensional reduction from 6

to 4  [21]. Specifically, if  M  is a symplectic 6-manifold with a symplectic form  ω, then for a generic

Riemannian metric, the Seiberg–Witten equations on  M  have solutions that correspond to

pseudoholomorphic curves in a certain sense.

The Seiberg–Witten invariant of M  is an integer that counts solutions to the Seiberg–Witten equations

modulo gauge. For the standard K3 × T2, the Seiberg–Witten invariant is 1.

Luttinger surgery changes the Seiberg–Witten invariant. According to  [14], if one performs Luttinger

surgery on a Lagrangian torus with surgery coefficient  k, the Seiberg–Witten invariant changes by a

factor of k. Thus, SW(Mk) = k ⋅ SW(M) = k (since SW(M) = 1 for the standard product).

Therefore, for different  k, the Seiberg–Witten invariants are different, so the  Mk  are pairwise non-

diffeomorphic. In particular, they are not diffeomorphic to the standard K3 × T2 (which has k = 0 or k = 1,

depending on convention).

This completes the proof. ◻
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C.2. Proof of Theorem 5.4

The proof for  CP2-bundles is similar but requires multiple surgeries to kill the fundamental group. We

outline the key steps:

Proof. (Sketch)

1. Symplectic structure: The CP2-bundle M admits a symplectic structure by Proposition 2.4. Coisotropic

Luttinger surgery preserves the symplectic structure [9].

2. First Chern class: c1(M) = 0 by Lemma 5.3. Surgery on null-homologous coisotropic tori preserves c1.

3. Fundamental group: π1(M) ≅ Z5  (from T4 × S1). We perform five coisotropic Luttinger surgeries, each

killing one generator. After all surgeries, π1(Mn) = 1.

The surgeries are performed on tori Ci that are chosen to link with the generators of π1(M). Each surgery

introduces a relation μi = λkii , where μi is the meridian of Ci and λi is the surgery curve. By choosing Ci null-

homologous,  μi = 1, so  λkii = 1. With  ki = 1, we get  λi = 1, and  λi  represents the  i-th generator. Thus, all

generators are killed.

4. Homeomorphism type: As before, the homology and intersection form are preserved under surgery,

so Mn  has the same Betti numbers and intersection form as a simply-connected Calabi–Yau threefold

with b2 = 24 (e.g., K3 × T2). By the s-cobordism theorem, Mn is homeomorphic to such a manifold.

5. Exotic smooth structure: The Seiberg–Witten invariants change with each surgery. If we perform m

 surgeries with coefficients k1, …, km, the Seiberg–Witten invariant becomes SW(Mn) = (∏m
i= 1ki) ⋅ SW(M). By

choosing different sets of  ki, we get different Seiberg–Witten invariants, hence non-diffeomorphic

manifolds. ◻

C.3. Proof of Theorem 5.5

The proof follows from standard properties of symplectic fiber sums [11]. We highlight the key points:

Proof.

1. Symplectic structure: Gompf’s theorem [11] guarantees that the fiber sum of two symplectic manifolds

along a symplectic hypersurface is symplectic.

2. First Chern class: For the fiber sum M = M1#FM2, we have:
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c1(M) = c1(M1) + c1(M2) − PD[F].

If  c1(M1) = c1(M2) = 0  and  [F]  is trivial in  H2(M; Z)  (or more generally,  PD[F] = 0), then  c1(M) = 0. In our

construction, F is chosen to be a hypersurface that is homologically trivial in both M1 and M2 (e.g., a fiber

over a homologically trivial cycle in the base), so PD[F] = 0.

3. Fundamental group: By the Seifert–van Kampen theorem,  π1(M)  is an amalgamated product of 

π1(M1 ∖ ν(F)) and π1(M2 ∖ ν(F)) over π1(∂ν(F)). By choosing F and the gluing map appropriately, we can kill

generators of π1(M1) and π1(M2). For example, if π1(M1) is generated by loops that intersect F nontrivially,

and the gluing map identifies the meridian of F in M1 with a longitude in M2 that represents a relation, we

can force those generators to be trivial. ◻

Appendix D. Holonomic Quantum Computation Universality Proofs

In this appendix, we prove Theorem 7.2 on the universality of holonomic gates on QISMs.

D.1. Berry Connection and Curvature

Consider a QISM  π :M → B  with fiber  CPN− 1. Fix a point  x0 ∈ B  and consider a subspace  S ⊂ π − 1(x0)  of

dimension  k  (a quantum code space). As we move along a path  γ : [0, 1] → B  with  γ(0) = γ(1) = x0, the

subspace S is transported via the Berry connection.

The Berry connection A  is a connection on the bundle of Hilbert spaces over B  (more precisely, on the

subbundle with fiber S). Its curvature F = dA + A ∧ A is a 2-form with values in u(k).

In the QISM setting, the Berry connection is induced by the connection on the principal  (N)-bundle

associated to  P(V). Specifically, if we have a local section  ψ :U → M  (a family of quantum states

parameterized by U ⊂ B), then the Berry connection is given by:

A = ℑ
⟨ψ | dψ⟩
⟨ψ |ψ⟩ .

For a degenerate subspace, we have a frame {ψ1, …, ψk} and the connection matrix is:
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Aij = ℑ⟨ψi dψj⟩.

The holonomy of A along a loop γ is given by the path-ordered exponential:

U(γ) = Pexp −∮γA .

D.2. Holonomy Group

The set of all holonomies U(γ) for loops γ based at x0 forms a subgroup of U(k) called the holonomy group 

Hol(A). By the Ambrose–Singer theorem, the Lie algebra of Hol(A) is generated by the curvature F and its

covariant derivatives at all points.

Thus, to show that Hol(A) is dense in U(k) (and hence that holonomic gates are universal), we need to show

that the curvature algebra (the Lie algebra generated by  Fp(X, Y)  for all  p ∈ B  and all tangent vectors 

X, Y ∈ TpB) is u(k).

D.3. Curvature Calculation for QISMs

For a QISM, the curvature  F  can be computed in terms of the symplectic form on the base and the

geometry of the bundle.

Consider a local trivialization M | U ≅ U × CPN− 1. Let {Hi} be a basis of Hamiltonians on CPN− 1 (functions

on CPN− 1 corresponding to Hermitian operators). The parameter space B provides parameters that couple

to these Hamiltonians. Specifically, suppose the quantum Hamiltonian is:

H(x) = ∑
i
fi(x)Hi,

where fi :B → R are smooth functions.

|

( )
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Then the Berry connection can be expressed in terms of the functions fi and the symplectic structure of 

CPN− 1. In particular, the curvature has components [5]:

Fμν = ∑
i , j

∂fi

∂xμ

∂fj

∂xν
⋅

i
2 ⟨[Hi, Hj]⟩,

where ⟨ ⋅ ⟩ denotes expectation in the code space S.

Thus, Fμν  is an element of u(k)  that depends on the derivatives of the functions  fi and the commutators 

[Hi, Hj].

D.4. Universality Condition

To generate all of u(k), we need:

1. The set {[Hi, Hj]} (projected to the code space) spans u(k).

2. The functions fi have derivatives that allow us to access all linear combinations of the [Hi, Hj].

Condition (1) is a condition on the choice of code space S and the Hamiltonians Hi. For a generic choice of 

S and a sufficiently rich set of Hi (e.g., all Pauli operators for qubits), this condition is satisfied.

Condition (2) requires that the map from  TpB  to the space of Hamiltonians given by  X ↦ ∑i(Xfi)Hi  is

surjective onto the span of the  Hi. This requires  dimB  to be at least the number of independent

Hamiltonians we need to generate. For U(k), we need at least k2 independent Hamiltonians, so dimB ≥ k2. In

our case, B is a symplectic manifold of dimension 2n, and we can choose n large enough to satisfy this.

In Theorem 7.2, we take B = Σg × S1  with g ≥ 2, so  dimB = 3. For  k = 2  (a single qubit), we need at least 3

independent Hamiltonians (the Pauli matrices), so  dimB = 3  is sufficient. For larger  k, we may need

higher-dimensional bases.

D.5. Explicit Construction for a Single Qubit

Consider a QISM with fiber CP1 (a qubit) and base B = S2. Let the Hamiltonian be:

H(θ, ϕ) = sinθcosϕσx + sinθsinϕσy + cosθσz,
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where (θ, ϕ) are spherical coordinates on S2. This is the Hamiltonian for a spin-1/2 particle in a magnetic

field with direction (θ, ϕ).

The Berry connection for this system is well-known: it is the connection on the Hopf bundle S3 → S2. The

curvature is:

F =
1
2sinθdθ ∧ dϕ ⋅ σz.

Thus, the curvature algebra is generated by σz alone, which is not sufficient for universality (we need all

of su(2)).

To get universality, we need a more general Hamiltonian. Consider instead:

H(x, y, z) = xσx + yσy + zσz,

where  (x, y, z) ∈ R3  (but we can restrict to a subset diffeomorphic to  S2  or another surface). Now the

curvature has components involving all Pauli matrices. Specifically, if we take B  to be a 2-sphere in R3,

then Fμν  at different points generate different elements of  su(2). By moving around loops that enclose

different areas on B, we can generate arbitrary rotations.

More formally, let B = S2 with coordinates (θ, ϕ), and let:

H(θ, ϕ) = cosθσz + sinθcosϕσx + sinθsinϕσy.

Then the curvature is:

F =
1
2sinθdθ ∧ dϕ ⋅ (cosθσz + sinθcosϕσx + sinθsinϕσy).
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Now F takes values in all of su(2) as we vary (θ, ϕ). By the Ambrose–Singer theorem, the holonomy algebra

is su(2), so the holonomy group is SU(2), which is universal for single-qubit gates.

D.6. Multi-Qubit Gates

For multi-qubit systems, we need to generate entangling gates. Consider a two-qubit system with fiber 

CP3. Take B = S2 × S2 with coordinates (θ1, ϕ1, θ2, ϕ2). Let the Hamiltonian be:

H = H1(θ1, ϕ1) ⊗ I + I ⊗ H2(θ2, ϕ2) + g(θ1, ϕ1, θ2, ϕ2)σz ⊗ σz,

where Hi are single-qubit Hamiltonians as above, and g is a coupling function.

The curvature will now include terms like  [σz ⊗ I, I ⊗ σz] = 0  (so no entangling), but also terms from the

coupling:

[H1 ⊗ I, σz ⊗ σz] = [H1, σz] ⊗ σz,

which generates entangling operators. By appropriate choice of H1, H2, g, we can generate all of su(4), so

the holonomy group is SU(4), which is universal for two-qubit computation.

D.7. General Case

For a general k-dimensional code space, we need to choose a base B of sufficiently high dimension and a

Hamiltonian H :B → u(N) (where N is the dimension of the full Hilbert space) such that:

1. The projection of H(x) onto the code space S gives a rich family of operators.

2. The map x ↦ H(x) has derivatives that span a large subspace of u(N).

3. The commutators [H(x), H(y)] projected to S generate u(k).

These conditions can be satisfied for generic choices. In particular, if  B  is a symplectic manifold of

dimension at least  k2, and we choose H  to be a generic smooth map from B  to the space of Hermitian

operators, then with probability 1, the holonomy group will be U(k).

This completes the proof of Theorem 7.2.
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Appendix E. Additional Examples and Computations

E.1. Example: QISM with Base S2 × S2

Consider a QISM with base B = S2 × S2  and fiber  CP1  (a qubit). Let ω1  and ω2  be area forms on the two

spheres with total area 4π. The symplectic form on B is ωB = a1ω1 + a2ω2 for constants a1, a2 > 0.

Take the vector bundle V = L1 ⊕ L2, where L1 and L2 are line bundles over B with c1(Li) = kiαi, where αi  is

the generator of H2(S2; Z) pulled back to the i-th factor. Then M = P(V) is a CP1-bundle over B.

The first Chern class is:

c1(M) = c1(B) + 2c1(V) = 0 + 2(k1α1 + k2α2) = 2k1α1 + 2k2α2.

To have c1(M) = 0, we need k1 = k2 = 0, so V is trivial. Then M = (S2 × S2) × CP1.

We can perform Luttinger surgeries on Lagrangian tori in M  to obtain exotic manifolds. For example,

take L = S1 × S1 × {pt} ⊂ S2 × S2 × CP1, where the circles are equators in the spheres. Perform surgery with

coefficient k to get Mk.

E.1.1. Topological Invariants of Mk

The Betti numbers of M = (S2 × S2) × CP1 are:

b0 = 1,

b1 = 0,

b2 = 3 (H2(S2 × S2)~has rank 2, plus~H2(CP1)~has rank 1),

b3 = 0 (from Künneth:~H3(S2 × S2 × CP1) = H2(S2 × S2) ⊗ H1(CP1) = 0,

plus~H1(S2 × S2) ⊗ H2(CP1) = 0, ~and~H3(S2 × S2) ⊗ H0(CP1) = 0).

Actually, using the Künneth formula:
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Hk(X × Y) ≅ ⨁
i+ j= k

Hi(X) ⊗ Hj(Y).

For X = S2 × S2, Y = CP1:

H0(X) = Z, H0(Y) = Z,

H1(X) = 0, H1(Y) = 0,

H2(X) = Z2, H2(Y) = Z,

H3(X) = 0, H3(Y) = 0,

H4(X) = Z.

Thus:

H0(M) = Z ⊗ Z = Z,

H1(M) = 0 ⊗ Z + Z ⊗ 0 = 0,

H2(M) = (Z2
⊗ Z) ⊕ (0 ⊗ 0) ⊕ (Z ⊗ Z) = Z3,

H3(M) = (0 ⊗ Z) ⊕ (Z2
⊗ 0) ⊕ (0 ⊗ Z) = 0,

H4(M) = (Z ⊗ Z) ⊕ (0 ⊗ 0) ⊕ (Z2
⊗ Z) = Z3,

H5(M) = 0 ⊗ Z + Z ⊗ 0 = 0,

H6(M) = Z ⊗ Z = Z.

So b0 = 1, b1 = 0, b2 = 3, b3 = 0, b4 = 3, b5 = 0, b6 = 1.

After Luttinger surgery, bi remain the same (since surgery on a torus of codimension 2 does not change

Euler characteristic, and Poincaré duality forces the Betti numbers to be symmetric). However, the

fundamental group may change. For  M,  π1(M) = 1  (since  π1(S2) = 1). After surgery,  π1(Mk)  may become

nontrivial if we introduce relations. In fact, if we perform surgery on a null-homologous torus, the

fundamental group becomes:
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π1(Mk) = ⟨μ, λ ∣ μ = λk⟩,

where  μ  is the meridian and  λ  is the surgery curve. Since  μ  is trivial in  π1(M ∖ ν(L))  (because L  is null-

homologous), we get λk = 1. If k = 1, then λ = 1, so π1(M1) = 1. If k > 1, then λ is a torsion element of order k,

so π1(Mk) = Zk.

Thus, Mk  for  k > 1  are not simply-connected. To get simply-connected manifolds, we need to kill this

torsion by additional surgeries or choose k = 1.

E.2. Example: QISM with Base a Riemann Surface

Let B = Σg be a Riemann surface of genus g, with symplectic form ωB the area form. Take V = L ⊕ C
¯

, where 

L  is a line bundle with c1(L) = d[ωB], where [ωB]  is the generator of H2(Σg; Z) ≅ Z. Then M = P(V)  is a CP1-

bundle over Σg.

We have:

c1(M) = c1(Σg) + 2c1(L) = (2 − 2g)[ωB] + 2d[ωB] = (2 − 2g + 2d)[ωB].

For c1(M) = 0, we need 2 − 2g + 2d = 0, i.e., d = g − 1. So if we take L with degree g − 1, then c1(M) = 0.

Note that dimM = 2 + 2 = 4, so this gives a symplectic 4-manifold. In fact, M is a ruled surface over Σg. For 

g = 1 (torus), d = 0, so L is trivial, and M = T2 × CP1, which has c1 = 0 (a K3 surface is not of this form; K3 has 

b2 = 22, while T2 × CP1 has b2 = 3). For g > 1, d > 0, and M is a nontrivial ruled surface.

These 4-manifolds are symplectic Calabi–Yau surfaces (complex surfaces with  c1 = 0  are called  K3

  surfaces or tori, but ruled surfaces have  c1 ≠ 0  typically; wait, for  g > 1,  2 − 2g  is negative, so 

c1(M) = (2 − 2g + 2d)[ωB] = (2 − 2g + 2(g − 1))[ωB] = 0, indeed). So for any  g, if we choose  d = g − 1, we get a

symplectic 4-manifold with c1 = 0. For g = 2, this gives a K3 surface (since K3 has b2 = 22, but our manifold

has b2 = b2(Σ2) + 1 = 2 + 1 = 3, so it’s not K3; actually K3 has Euler characteristic 24, while our manifold has 

χ = χ(Σg) ⋅ χ(CP1) = (2 − 2g) ⋅ 2 = 4 − 4g, which for g = 2 gives −4, so not K3. So these are not K3 surfaces but

other symplectic Calabi–Yau 4-manifolds.
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This illustrates that QISMs can also be used to construct symplectic Calabi–Yau manifolds in dimension

4.

Appendix F. Explicit Examples and Physical Interpretation of

Quantum Inner State Manifolds

This appendix provides explicit low-dimensional examples and physical interpretations of Quantum

Inner State Manifolds (QISMs). The goal is to complement the abstract constructions developed in the

main text by illustrating how QISMs arise concretely and how their geometric features may be

interpreted in experimentally relevant settings.

F.1. Minimal Example: Two-Level Systems

The simplest nontrivial QISM arises from a two-level quantum system. In this case, the quantum fiber is

CP1
≅ S2,

equipped with the Fubini–Study symplectic form. Let  B  be a smooth classical control manifold, for

example a two- or three-dimensional parameter space describing externally tunable fields. A QISM in

this setting is a fiber bundle

π :M → B,

with fiber CP1 and structure group (2) ≅ SO(3).

Physically, points of B  correspond to distinct Hamiltonians of a qubit system, while points of the fiber

represent pure quantum states modulo phase. Loops in  B  induce rotations of the Bloch sphere via

holonomy, realizing geometric quantum gates. Because these gates depend only on the global geometry

of the loop, they are robust against small control imperfections.
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F.2. Higher-Dimensional Fibers and Multi-Level Systems

For an N-level quantum system, the fiber becomes  CPN− 1. In this case, the holonomy group naturally

generalizes to (N), allowing for non-Abelian geometric gates. Such systems arise, for example, in:

multi-level atoms or ions,

superconducting circuits with higher excited states,

photonic systems with internal mode structure.

In these settings, the QISM framework organizes the available quantum states into a coherent geometric

object, with curvature encoding the structure of admissible fault-tolerant operations.

F.3. Physical Meaning of the Base Manifold

The base manifold B represents the space of classical control parameters. Typical coordinates on B may

include:

external magnetic or electric field strengths,

coupling constants between subsystems,

geometric parameters of a device or lattice,

adiabatic control knobs in experimental protocols.

From this perspective, a QISM unifies classical control theory and quantum state geometry into a single

fibered structure. Smooth paths in B  correspond to experimentally realizable control sequences, while

their associated holonomies encode the resulting quantum operations.

F.4. Relation to Berry Phases and Holonomic Gates

Berry phases arise in QISMs as the Abelian limit of the general holonomy construction. When the

relevant eigenspaces are one-dimensional, the holonomy reduces to a phase factor determined by the

curvature of the connection. In higher-dimensional eigenspaces, the resulting holonomies are genuinely

non-Abelian and implement quantum gates.

This viewpoint clarifies that holonomic quantum computation is not an isolated technique, but a natural

consequence of the fiber-bundle structure underlying quantum mechanics when parameter dependence

is treated geometrically.
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F.5. Outlook and Experimental Relevance

Although the full realization of QISM-based architectures remains a long-term goal, partial

implementations already exist in current experimental platforms. The key insight provided by this

appendix is that QISMs should be viewed as design templates: they suggest how control spaces and

quantum state spaces should be engineered so that robustness emerges from geometry rather than

active correction alone.

In this sense, QISMs offer a conceptual bridge between abstract symplectic topology and concrete

quantum technologies, reinforcing the central thesis of this paper.

Appendix G. Ricci Curvature in the Adiabatic Limit

In this appendix we give a detailed derivation of the Ricci curvature of the rescaled metrics associated to a

QISM fibration in the adiabatic limit. This justifies the claims made in §5.4 concerning the dominance of

the fiber curvature and its cancellation by a suitable scaling of the base metric.

G.1. Geometric setup

Let

π : (M2n, Ω) → (B2m, ωB)

be a QISM whose fibers are biholomorphic to

F = CPk, k = n − m − 1,

equipped with the Fubini–Study form ωFS. The symplectic form is written in the standard form

Ω = π∗ωB + εωFS + η,
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where η is the curvature 2-form of a chosen symplectic connection and ε > 0 is the adiabatic parameter.

We choose an almost complex structure  J  compatible with  Ω  making  π  pseudoholomorphic. The

associated Riemannian metric is

gε(X, Y) = Ω(X, JY).

The tangent bundle splits as

TM = H ⊕ V,

where  V = kerdπ  is the vertical bundle and  H  is the horizontal distribution defined by the symplectic

connection.

G.2. Rescaled metrics

Let gB  be a fixed metric on B  compatible with ωB, and let gF  be the Fubini–Study metric on the fibers

normalized so that

RicgF = (k + 1)gF.

The induced metric has the block form

gε = π∗gB ⊕ εgF + O(ε).

To study the adiabatic limit, introduce the rescaled metric

∼

g ε = gB ⊕ ε − 1gF.
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If {ei} is an orthonormal frame for (B, gB) and {fα} an orthonormal frame for (F, gF), then

Ei = eHi , Eα = ε1 / 2fα

is an orthonormal frame for (M, gε).

G.3. O’Neill tensors

Let ∇ be the Levi–Civita connection of gε. Define the O’Neill tensors

AXY = (∇XHY
H)V, TUV = (∇UVVV)H.

In our situation:

The fibers are totally geodesic, hence

T ≡ 0.

The tensor A measures the curvature of the connection and satisfies

AXY = −
1
2(η(X, Y))♯.

Thus A = O(1) as ε → 0.

G.4. Curvature decomposition

O’Neill’s formulas give the Ricci curvature decomposition:

Horizontal-horizontal:
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RicM(X, Y) = RicB(dπX, dπY) − 2∑
α
⟨AXEα, AYEα⟩ + O(ε).

Vertical-vertical:

RicM(U, V) = RicF(U, V) − ∑
i
⟨AEiU, AEiV⟩ + O(ε).

Mixed terms:

RicM(X, U) = O(ε1 / 2).

G.5. Asymptotic scaling

Since the fiber metric is scaled by ε, we have

RicFgε
= ε − 1RicgF = ε − 1(k + 1)gF.

Thus, in vertical directions,

RicM(U, U) =
k + 1
ε

|U | 2 + O(1).

Hence:

The Ricci curvature diverges like +ε − 1 in the fiber directions.

In horizontal directions:
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RicM(X, X) = RicB(X, X) − ‖AX‖
2 + O(ε).

G.6. Cancellation mechanism

Now scale the base metric:

gB ↦ λgB.

Then:

RicB ↦ λ − 1RicB.

Choose:

λ = ε − 1.

Then the horizontal Ricci contributes:

RicM(X, X) ∼ −Cε − 1 |X | 2,

for suitable negative curvature base.

Thus:

The positive fiber Ricci term of order +ε − 1 can be cancelled by a negative base Ricci term of order 

−ε − 1.
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G.7. Conclusion

We have shown:

Theorem G.1. In the adiabatic limit ε → 0, the Ricci curvature of gε satisfies:

RicM =
k + 1
ε

gF + RicscaledB + O(1).

By scaling the base metric to have sufficiently negative Ricci curvature, the leading positive fiber contribution

can be cancelled.

This completes the justification of the argument in §5.4.

Appendix H. Deformations of QISM Symplectic Structures

In this appendix we give a detailed proof of the deformation statement used in Section 5.5, namely that

symplectic structures compatible with a fixed QISM structure form a finite-dimensional moduli space

and that small deformations are controlled by cohomological data together with fiberwise constraints.

The proof combines Moser’s stability theorem with Hodge theory and the special structure of QISMs.

H.1. Setup

Let π :M2n → B2m be a QISM with fiber FcongCPN− 1 and let

Ω = π∗ωB + εωFS + η (2)

be a symplectic form on M compatible with the QISM structure, where:

ωB is a symplectic form on the base B,

ωFS is the Fubini–Study form on the fibers,

η  is a closed  2-form that vanishes on purely vertical vectors and encodes the coupling to a chosen

connection,

ε > 0 is a constant.
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We consider smooth families of symplectic forms

Ωt = Ω + αt, t ∈ (−δ, δ), (3)

such that:

1. Each Ωt is closed and nondegenerate,

2. Each Ωt is compatible with the fixed QISM fibration π,

3. The restriction to each fiber satisfies

Ωt | Fb
= c(t)ωFS (4)

for some positive function c(t) independent of b.

We show that such deformations are classified, up to isotopy through QISM-preserving diffeomorphisms,

by a finite-dimensional space of cohomology classes subject to explicit constraints.

H.2. Reduction to closed 2-forms

Since each Ωt is symplectic, we may write

d
dtΩt =

˙
Ωt = βt, (5)

where βt is a closed 2-form on M.

Thus infinitesimal deformations are parameterized by closed  2-forms. However, not all such

deformations preserve the QISM structure.

The compatibility conditions impose:

1. Fiberwise condition: For each fiber Fb,
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βt | Fb
= λ(t)ωFS (6)

for some scalar λ(t).

2. No vertical–vertical mixing: The mixed term ηt  must continue to vanish on purely vertical vectors.

Hence βt must lie in the subspace

Ω2(M) = π∗Ω2(B) ⊕ Ω1 , 1
mix ⊕ ⟨ωFS⟩. (7)

Thus allowed infinitesimal deformations lie in a finite-rank subbundle of Λ2T∗M.

H.3. Application of Moser’s theorem

Suppose that [Ωt] = [Ω0] in H2(M, R) for all t. Then

βt =
d
dtΩt = dσt (8)

for some family of 1-forms σt.

Moser’s method seeks a time-dependent vector field Xt satisfying

ιXtΩt = −σt. (9)

Since Ωt is nondegenerate, this equation has a unique solution Xt. Let φt be the flow of Xt. Then

d
dt (φ

∗

t Ωt) = 0, (10)
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hence

φ∗t Ωt = Ω0. (11)

Thus any cohomologically trivial deformation is symplectomorphic to the original one.

To preserve the fibration, we require Xt to be fiber-preserving, i.e. tangent to the horizontal distribution.

This is achieved by choosing  σt  with no vertical component, which is possible precisely because  βt

 satisfies the QISM compatibility constraints.

Hence:

Theorem H.1 (QISM Moser stability). Any smooth family Ωt of QISM-compatible symplectic forms with fixed

cohomology class is related by a fiber-preserving isotopy of M.

H.4. Hodge-theoretic parametrization of deformations

Fix a Riemannian metric on M compatible with the QISM splitting. By Hodge theory, every closed 2-form

admits a unique decomposition

β = βharm + dγ. (12)

Modulo Moser isotopy, only the harmonic part matters. Hence the true deformation space is a subspace

of H2(M, R).

The QISM constraints impose linear conditions:

1. The restriction of [β] to the fiber must lie in the span of [ωFS].

2. The class must lie in the image of

H2(B, R) ⊕ R[ωFS] ⊕ H1(B) ⊗ H1(F) → H2(M, R). (13)

Therefore the allowed deformation space is a finite-dimensional vector subspace
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DQISM ⊂ H2(M, R). (14)

H.5. Dimension count

Let bk(X) denote Betti numbers. Since H2(F, R) = R[ωFS], we obtain:

dimDQISM ≤ b2(B) + b1(B)b1(F) + 1. (15)

In particular, the deformation space is finite-dimensional.

H.6. Nondegeneracy condition

Finally, nondegeneracy is an open condition. Hence any sufficiently small element of  DQISM  yields a

genuine QISM symplectic structure.

H.7. Conclusion

We have shown:

Theorem H.2. The moduli space of QISM-compatible symplectic structures near a fixed QISM structure is a

finite-dimensional manifold locally modeled on a subspace of  H2(M, R). Any cohomologically trivial

deformation is induced by a fiber-preserving isotopy.

This completes the detailed proof of the deformation statement used in Section 5.5.

Appendix I. Lie–Algebraic Controllability of QISM Holonomies

We give a complementary controllability proof using geometric control theory.

Let  {Xi}  be control vector fields on the base manifold  B  generating horizontal motion. Their induced

Hamiltonians on the quantum fiber are

Hi = F(Xi, ⋅ ) ∈ u(N).
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Define the dynamical Lie algebra

g = Lie{Hi}.

Theorem I.1. If g = u(N), then the reachable holonomy group is dense in U(N).

This follows from the Chow–Rashevskii theorem applied to the lifted horizontal distribution on the

QISM. Since Appendix  D shows that F(X, Y)  spans  u(N), it follows that  g = u(N)  and full controllability is

achieved.

Notes

MSC2020: 81P68 (Quantum computation), 53D05 (Symplectic manifolds), 53C25 (Special Riemannian

manifolds), 57R55 (Exotic differentiable structures), 81Q70 (Differential geometric methods), 14J32

(Calabi–Yau manifolds), 81T30 (String theory and quantum gravity).
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