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Multimodal Vision Language Models (vlms) have emerged as a transformative technology at the
intersection of computer vision and natural language processing, enabling machines to perceive and
reason about the world through both visual and textual modalities. For example, models such as
cLIPLll claude!2], and GPT-4VI3! demonstrate strong reasoning and understanding abilities on
visual and textual data and beat classical single modality vision models on zero-shot
classificationl4l. Despite their rapid advancements in research and growing popularity in
applications, a comprehensive survey of existing studies on vlms is notably lacking, particularly for
researchers aiming to leverage vlms in their specific domains. To this end, we provide a systematic
overview of vlms in the following aspects: [1] model information of the major vims developed over
the past five years (2019-2024); [2] the main architectures and training methods of these vlms; [3]
summary and categorization of the popular benchmarks and evaluation metrics of vims; [4] the
applications of vims including embodied agents, robotics, and video generation; [5] the challenges
and issues faced by current vims such as hallucination, fairness, and safety. Detailed collections
including papers and model repository links are listed in https://github.com/zli12321/Awesome-

VLM-Papers-And-Models.git.

Zongxia Li and Xiyang Wu equally contributed to this work.

1. Introduction

Pretrained large language models (llms), such as LLaMAL3l, GPT-4[8] have achieved remarkable

success across a wide range of nlp taskstl8l However, as these models continue to scalel2, they face
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two challenges: (1) The finite supply of high-quality text datal’2lil; (3) The inherent limitations of
single-modality architectures in capturing and processing real-world information that requires
understanding the complex relationships between different modalitiesl22l13]  These limitations
motivate the efforts to explore and develop vims, which combine both visual (e.g., images, videos) and
textual inputs, providing a more comprehensive understanding of visual spatial relationships, objects,
scenes, and abstract conceptsl24115] yvims expand the representational boundaries that have previous
confined single-modality approaches, supporting a richer and more contextually informed view of the
worldh—élﬂﬂ[@, such as visual question answering (vqa)ﬂQl, autonomous drivingfz—ol. Meanwhile,
vlms encounter new challenges distinct from single-modality models, such as visual hallucination,
which occurs when vlms generate responses without meaningful visual comprehension, instead
relying primarily on parametric knowledge stored in the llm component2122] There are already
several reviews on single-modality models23124] while the multi-modality one is still missing. In
this paper, we provide a critical examination of research results on vlms, offering a systematic review
of current major architectures of vims, evaluation and benchmarks, applications, and challenges faced

by vlms.

2. State-of-the-Art vims

In recent years, leading Artificial Intelligence (AI) organizations are consistently releasing new
VLMs[253], From OpenAl’s CLIPI26l salesforce’s BLIPL27] DeepMind’s Flamingofﬁ1 to GPT-4V3l and
Geminil22l, these models are becoming larger and more interactive and illustrate the integration of
chatbot functionality within VLM frameworks to support multimodality user interaction to improve
user experience. The SoTA VLMs from 2019 to the end of 2024 are listed in Table 1 according to the

following three principal research directions.
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Vision Encoder

Pretrained Backbone

Model Year | Architecture | Training Data | Parameters
/ Tokenizer Model
Encoder- Faster R- Pretrained from
VisualBERT3Y | 2019 cocol3l 110M
only cNNIz2l scratch
Encoder- 400M image- viTi33l / Pretrained from
cLiplil 2021 63M-355M
decoder text pairs ResNet34l scratch
cocot3,
Encoder- 223M- Pretrained from
BLIPL2Z] 2022 Visual ViT-B/L/gl33l
decoder 4,00M scratch
Genomel331
Decoder- M3w(28])
Flamingo[28] | 2022 80B Custom Chinchilla37l
only ALIGNBS
cocol3,
Encoder- Open Pretrained
BLIP-2038]  [2023 Visual 7B-13B ViT-gl33)
decoder Transformer (opt)L3-9-1
Genomel33
Decoder-
GPT-4V13] 2023 Undisclosed |Undisclosed | Undisclosed Undisclosed
only
Decoder-
Geminil22! 2023 Undisclosed |Undisclosed | Undisclosed Undisclosed
only
Decoder- CLIP ViT-
LLavA-1.5401 | 2023 cocolzl 13B Vicunaléll
only L/14133]
Decoder- All robots,
PaLM-El42l  [2023 562B virl33l PaLMl44]
only WebLI431
LAION-2BL46]
Encoder- CLIP ViT-
CogVLMU45] | 2023 COYO- 18B Vicunal4d)
decoder L/ 14[-33-1
700MLAZL
Encoder- CoCoBll, Flan—T5[591,
InstructBLIPL48] | 2023 13B viTi33l
decoder VQAv2!£9] Vicunal41]
InternvL5 2023| Encoder- | LAION-enl52l 7B/20B Eva CLIP ViT- QLLaMALz3l
decoder LAION- gll
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Vision Encoder

Pretrained Backbone

Model Year | Architecture | Training Data | Parameters
| Tokenizer Model
multil52]
Decoder-
Claude 312! 2024 Undisclosed |Undisclosed | Undisclosed Undisclosed
only
Decoder-
Emu3!54] 2024 Aquilal53] 7B MoVQGANI(56] LLaMA-2!5]
only
Encoder- LAION-
NvLMZl 2024 8B-24B Custom ViT | Qwen-2-Instructl39l
decoder 115ML381
Decoder- EVA-CLIP ViT-
Qwen2-VLI6A 2024 Undisclosed | 7B-14B Qwen-2[5
only L33l
Decoder- CLIP ViT-
Pixtrall6ll  |2024 Undisclosed 12B Mistral Large 21621
only L/1i33l
LLaMA 3.2- Decoder-
2024, Undisclosed 11B-90B crLipldl LLaMA-3.1163]
visionl631 only
Baichuan Ocean Decoder- Image / Video / CLIP ViT-
2024 7B Baichuanl65!
Minil64l only Audio / Text L/14331
Pretrained from
Encoder- VAE scratch on
TransFusionl&8l 2024 Undisclosed 7B
decoder Encoderle7] transformer
architecture
DeepSeek- Decoder- wiTkel SigLIPDl] /
2024 4.5BX 74 DeepSeekMoE 7311741
vL2L68] only WikiHowl7el sAMBL721
OLMOoE!78] /
Decoder- CLIP ViT-
MolmolZ3l 2024 PixMolZ5l 1B-72B OLMolZZl / qwen-
only L/1433]
50591
Decoder- OLMo-mix- GPT-NeoX- Pretrained from
OLMo-2L781  [2024 7B-13B
only 11241-7§1 20BL29] scratch
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Table 1. There is a growing number of vims released in recent years, has expanded rapidly in recent years,
with architectural variations enabling better and deeper integration between visual and textual
representations. However, most current SOTA models use pretrained language models as the backbone
model recently. DeepSeek-VL2 has a mixture of experts (MoE) architecture. The table only shows the

primary sources/composition of the training data.

Vision-Language correlation

considers how training objectives or architectural design facilitate multimodal integration@l.
Training objectives such as contrastive learning are exemplified by approaches like SimCLREEL, which
is originally developed for self-supervised vision tasks, adapts neatly to multimodal settings by
bringing paired images and text closer together in the embedding space while pushing apart unpaired
examples. Vision-language architecture considers how structural choices in model design facilitate or
constrain multimodal integrationls—ol. Older architectural approaches primarily train models from
scratch (CLIPM), whereas more recent methods (LLaMA 3.2—ViSiOIl[Q3-1) leverage the power of pre-
trained LLMs as a backbone to improve the ability to correlate vision and language to better

understand visual content (Section 3).

Benchmarks and evaluation

focuses on designing, collecting, and generating multimodal data, primarily in the format of
question-answering (QA), to test VLMs on a variety of tasks such as visual text understanding, chart

understanding, video understanding (Section 4).

Applications of VLMs

focuses on deploying VLM models in real-world scenarios. Virtual applications typically involve
controlling personal device screens or simulated agent game playing (Section 5.1). Meanwhile,
physical applications of VLMs primarily pertain to interactions with real-world physical objects, such
as robotic human interaction or autonomous driving (Section 5.3).

These three directions provide a structured framework for analyzing, comparing, and guiding future

progress in the rapidly evolving domain of vision-language modeling.[zi]‘[ﬁ]‘
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3. Building Blocks and Training Methods

The architectures of VLMs are changing from pre-training from scratch to using pre-trained LLMs as
a backbone to align the vision and textual information (Table 1). However, the fundamental
components remain largely unchanged. We summarize the most foundational and widely adopted
architectural components of VLMs, followed by an explanation of the popular pre-training and
alignment methods. Details of SOTA VLM are given in Table 1 to show the shift in basic VLM
architectures and newer architecture innovations that fuse visual features with textual features by

treating visual features as tokens (Section 3.4).

3.1. Common Architecture Components

Vision Encoder

plays a crucial role in projecting visual components into embedding features that align with
embeddings from large language models (LLMs) for tasks such as text or image generation83l, It is
trained to extract rich visual features from image or video data, enabling integration with language

representations[841(85],

Specifically, vision encoders used in many VLMs[861(60l(57](51] are pretrained on large-scale
multimodal or image data: These encoders are jointly trained on image-text pairs, allowing them to
capture visual and language relationships effectively. Notable examples include cLIP) which aligns
images and text embeddings via contrastive learning, and BLIP!58]) which leverages bootstrapped

pretraining for robust language-image alignment. Pretrained on large scale ImageNet[§7-1 or Similar
Datasets: These encoders are trained on vast amounts of labeled visual data or through self-
supervised training!88), enabling them to capture domain-specific visual features. While initially
unimodal, these encoders, such as ResNet[34] or Vision Transformers (ViTs)[33], can be adapted for
multimodal tasks. They excel at extracting meaningful object-level features and serve as a solid

foundation for vision-language models. Many SoTA VLMs, such as Qwenz—VL[@] and LLaVA[§9-],

commonly incorporate pretrained vision encoders. These encoders not only provide robust and
meaningful visual representations but are also highly effective for transfer learning!22). They

outperform randomly initialized encoders!9!) by leveraging learned vision knowledge from their

training domains.
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Text Encoder

projects tokenized text sequences into an embedding space, similar to how vision encoders process
images. Models such as CLIP[}, BLIP!38], and ALIGN{38) use both an image encoder and a text encoder.
These models use contrastive learning to align image and text embeddings in a shared latent space,
effectively capturing cross-modal relationships. However, newer models, such as LLaVA[82] often do
not include a dedicated text encoder. Instead, they rely on large language models (LLMs) (e.g.,
LLaMA[%!, Vicunal22l) for text understanding, integrating visual inputs through projection layers or

cross-attention mechanisms(93]. This shift shows a growing trend of using the capabilities of LLMs

over vision components for more versatile and advanced multimodal reasoning and generation tasks.

Text Decoder

leverages llms as the primary text generator, using visual encoders to project image features!94), GPT-
4V8), Flamingol25), and Kosmos-2[28] use this approach. These models typically use a minimal visual
projection mechanism, allowing the powerful language decoder to generate contextually rich outputs.
VisualBERT and VilBERTL27)032] provide the foundation to decoder architectures for multimodal
pretraining. Training vlms from scratch typically requires a separate text decoder, whereas using llms

as the backbone often uses the original decoders from the llm. (Figure 1).

geios.com doi.org/10.32388/GXR68Q


https://www.qeios.com/
https://doi.org/10.32388/GXR68Q

VLM - Train From Scratch (E.g. CLIP [277], BLIP [ 35 ])
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Figure 1. The basic components of common SoTA vlms.

Cross-Attention Mechanisms

enable dynamic interactions between visual and textual features by allowing tokens from one
modality (vision) to influence tokens from the other modality (text)[23, Cross-attention layers are
commonly used to integrate information across modalities by computing attention scores between
every pair of visual and textual tokens. Not all models use the cross-attention mechanism. For
example, VisualBERTI2Z] and Flamingo/28] both have cross-attention mechanisms while CLIPE has

no cross-attention..

3.2. Building Blocks of Training From Scratch

Training a vlm from scratch typically uses distinct training objectives and methodologies compared to
using an llm as the backbone. Self-Supervised Learning (ssl) pre-trains without needing human
labeled data to scale up pretrainingwﬁl_ Variants of ssl techniques include masked image modelingL9-9-]-,
contrastive learning%9), and image transformation prediction22], In this section, we delve into

contrastive learning, a common pre-training process to scale up vlm training from scratch.
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Contrastive Learning

involves using separate encoders for visual and textual inputs, which are trained to map their
respective modalities into a shared embedding space. The visual encoder processes images, generating
feature embeddings from models like convolutional neural networks (cnn)292] or vision transformers
(ViTs)[193), The text encoder processes textual inputs into embeddings. Contrastive learning aligns
related image-text pairs by minimizing the distance between their visual and text embeddings in the
shared space. At the same time, it maximizes the distance between embeddings of unrelated pairs.
Pioneering models like cLIPdl, BLIP‘[&‘*-]-, and ALIGN(3&] leverage this approach, pre-training on

large-scale image-text datasets to develop robust, transferable representations for downstream tasks.

3.3. Building Blocks of Using llms as Backbone

Large Language Models

serve as the text generation component that processes encoded visual and textual inputs to produce
text outputs auto1:egressivelylﬁ'ﬂ[ﬂ&1 for vlms. In the context of vims, llms include their original text

decoders. In this section, we list two common ways to align visual and pre-trained llm text features.

Projector

Projector maps visual features extracted by the vision encoder into a shared embedding space aligned
with the text embeddings from the LLM. It typically consists of multi-layer perceptron (MLP)
layers[m, which transform high-dimensional visual representations into compact embedding
tokens compatible with the textual modality. The projector can be trained jointly with the rest of the

model to optimize cross-modal objectives or freezing certain parts of the model, such as the LLM, to
preserve pre-trained knowledge. Most cotemporary examples include LLavA8¢l Qwen-2-vLI6ol

Nvidia VLML37] Baichuan Ocean-minil®4! Emu3[34, and Pixtral (multimodal decoder)Loll

Joint Training

is an end-to-end approach that updates weights of all components of the model in parallel without
freezing any weights, including the LLM and projector layers. This approach has been used in models

such as Flamingo(28),
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Freeze Training Stages

involves selectively freezing model components during training, preserving pre-trained knowledge
while adapting to new tasksll27). Common strategies include freezing pre-trained vision encoders
while fine-tuning projector layers, and implementing gradual unfreezing of components198] or

freezing LLM layers while only updating vision encoder weights102],

3.4. Newer Architectures

Recent works have focused on enhancing the fusion of visual and textual features which we discuss in

this section.

Treating all modalities as tokens

is a more recent approach that reads and encodes visual inputs (images and videos) as tokens similar
to text tokens. Emu39 uses SBER-MoVQGAN to encode visual inputs into tokens and employs
special separators, such as [SOT] and [EOV], to mark the start and end of visual tokens.! It still retains
the LLMs architectures such as Llamal3], but comes with an expansion of the embedding layer to
accommodate discrete vision tokens (Root Mean Square Layer Normalizatio layer!2l and Multi-query

attention12l). Additionally, it treats the generation of both visual and textual outputs as a token

prediction task for a unified multimodal representation.

Transfusion

processes different modalities simultaneously within a single transformer architecturel®8l. This
method treats discrete text tokens and continuous image vectors in parallel by introducing strategic
break points. While not yet perfected, this approach shows promising potential for developing more

unified multimodal models that can handle diverse input types.

4. Benchmarks and Evaluation

The number of VLM benchmarks has grown rapidly with the quick development of new VLMs since
202211131014) - comprehensive benchmarking is important for evaluating model performance and
ensuring robust training across different capabilities various aspects such as math reasoning, scene

recognition, etc[1151[49] Modern VLM benchmarks have moved beyond simple tasks like basic visual
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question answering to include a wider range of tests that better evaluate the models’ multimodal
abilities from more aspectsi1®l In this section, we summarize and categorize existing 38 vision-
language benchmarks for evaluating VLMs, including image-text and video-text benchmarks. We
then summarize the commonly used evaluation metrics for these benchmarks, the typical methods for
creating benchmark datasets, and the strengths and weaknesses of current benchmarks and
evaluation practices. We highlight how most benchmarks prioritize data diversity and quantity while
often overlooking improvements in evaluation quality, which hinders the effective assessment of

VLMs.

Benchmark Categorization.

Benchmarks are designed with specific testing objectives, and we classify to ten primary categories

(Table 2).
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Category Description Datasets
Evaluates models’ ability to
Visual text
extract and understand texts TextVQAm, DocvQalsl
understanding
within visual components
Evaluates VLMs on different
Multilingual
languages on different tasks MM—En/Cle, CMMLU@I, C—Eval[ﬁl,
multimodal
such as question answering MTvQALl22]
understanding

and reasoning

Visual math reasoning

Tests models’ ability to solve

math problems in image forms

MathVista[Eﬂ, MathVision@l, MM-Vetl124]

Optical Character Test models’ ability to extract MM-Vetl124] 0CRBench[125], MME[126])
Recognition (OCR) objects from visual inputs MMTBenchl[1271
Chart graphic Evaluates models’ ability to infographic vQali28l A1opli291 chartall3ol
understanding interpret graphic-related data MMMyt

Text-to-Image

Evaluates models’ ability to

MscocoBl, GenEvalll32l T21-CompBenchl133],

generation generate images DPG-Bench!134] vQaScorel135), GenAI-Bench(138]
Evaluates whether models are
Hallucination likely to hallucinate on certain HallusionBench[2l, popg[1371
visual and textual inputs
Multimodal general Evaluates models’ ability on MMLU[B&, MMMU[BH, MMStaruﬂl, M3GIAI¥Q1,
intelligence diverse domains of tasks AGIEvall24]

Video understanding

Evaluates models’ ability to
understand videos (sequences

of images)

EgoSchemaQ@], MLVUM, MVBenchm*—‘*-l,

VideoMME!45], Perception-Test[146]

Visual reasoning,
understanding,
recognition, and

question answering

Evaluate VLMs’ ability to
recognize objects, answer
questions, and reason through
both visual and textual

information

MMTBench[127] GQA47]) MM-En/CNIL2]
VCRI8), VOAV2142), MM-Vet224), Mmula),
SEEDBench[142] Real World Qal1391 MMMU-

prol25l ppgli34l  MScoco-30ki3, MM-vetli24]

ST-vQAll32] NaturalBenchli33l

geios.com
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Category Description Datasets

Evaluate the embodied vlms’ Habitatl234] Gibson[t33], iGibson[t36l Isaac
Robot simulator, web
abilities online in rule-based Labﬂiﬂ, WebArena[ﬂﬂ, CALVINLL5~9~],
agent simulator
simulators VLMBench{262l GemBench16ll vIMA-Bench[162]

Evaluate the embodied vims’
abilities using offline datasets
Robotic benchmarks Habitat[54] Gibson[!32], iGibson[t36]
recording collected

interactions

Evaluate the embodied Al
Generative model, models’ abilities with

GAIA-11203] UniSim164] 1 wM65] Genesis1061
world model interactive models

representing the environments

Table 2. The categories are surveyed from 15 SoTA vlm papers and collect the popular evaluation

benchmarks used, categorized to 10 categories.

4.1. How Are Benchmark Data Collected

Benchmark datasets are typically created using one of three common data collection pipelines: fully
human-annotated datasets; partially human-annotated datasets scaled up with synthetic data
generation and partially validated by humans; and partially human-annotated datasets scaled up with

synthetic data and fully validated by humans.

Fully human-annotated datasets

are created by having humans collect or generate adversarial or challenging test questions from
diverse subjects and fields. For example, MMMUI3L has 50 college students from various disciplines
to collect existing test questions from textbooks and lecture materials, often in multiple choice

format. Another approach involves humans creating questions and having annotators provide answers
to these questions. In VCRI48] Mechanical Turks are tasked with using contexts, detected objects, and

images to write one to three questions about each image, along with reasonable answers and

geios.com doi.org/10.32388/GXR68Q

13


https://www.qeios.com/
https://doi.org/10.32388/GXR68Q

explanations. Fully human annotated datasets are time-consuming and hard to scale up, which brings

inspiration to automatic question generation with human validation.

Synthetic question generation

has become a more popular part of benchmark generation pipeline on various disciplines such as chart
understanding!32), video understanding(42! to quickly scale up dataset sizes. Common practices
include using human written examples as seed examples, giving a powerful llm to generate more
adversarial example questions and answers[42]. Often, the generation process is only involved with
texts. Chart and video data are often paired with visual content and captions, which are often used by
authors as context to prompt llms to extract answers and generate questions242)[144), However, llms
are not always accurate and may produce unfaithful content or hallucinations!287). To address this,
pipelines typically include automatic filters to remove low-quality outputs, followed by crowdworker
validation of either randomly sampled or all generated examples230)(149]1142] Aytomatic benchmark
generation helps scale dataset size with reduced human effort. However, current automatic question-
generation methods primarily rely on captions and textual contexts, which can lead to the creation of
questions that are easy to answer without requiring significant visual reasoning!2ll, which
undermines the benchmark’s primary goal—evaluating a vlm’s ability to comprehend and reason

about visual content.

Interaction in the Simulator

is mainly targeted at VLM benchmarks in robotics . It gathers data for training and evaluation by
assessing the VLM-powered agents online. As a data generation method stemming from
reinforcement learning, such a data generation method is applicable for those scenarios that human-
labeled datasets or synthetic datasets are hard and expensive to acquire, while the data construction
follows some common rules like the physical law or some other common senses. With this rule-based
data acquisition method, the outcome VLMs are more robust to the deviation within the multimodal
inputs. During recent years, many works focus on realistic simulators for either robotics[1541(155](156]
(1571(259](160](161] anq web agents!258] to simulator human agents or robots’ interactions with the
physical world. Nonetheless, benchmarks(254)(255)(156] hased on the interaction data records from the
simulator are also widely used for VLM agents training and evaluation. Notably, more efforts have

been used for generative modelll]) or even world model(1651(1631(166] 4 replace the previous
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simulators or datasets in generating more practical and better-quality datasets for VLMs. Though
simulators are widely used in training and evaluating the VLM-power agents, the potential sim2real
gap might exist when transplanting the terminal VLM into real-world applications, i.e. the VLM-
powered agents might not be able to handle some real-world situations. More efforts towards the

mitigation of these issues are still expected in this direction.

4.2. Evaluation Metrics

Benchmarks are designed for evaluation, with metrics established during their creation. VLM
evaluation metrics are automatic to support repeated use at scale, and they often influence the
question formats used in the benchmarks. We show the common evaluation metrics used in our

surveyed benchmarks (Figure 2b, Figure 3).

Image-Text Alignment Score

World model 6.1% (4)
Robotics 4.5% (3)
Robot simulator | 13.6% (9) 9.8% Yes/No
Video understanding 4 7.6% (5) (4) .
Multimodal general intelligence - 7.6% (5) Q(E)A’
Hallucination 3.0% (2)
Text-to-Image 9.1% (6) Multiple Choice 48.8%
Chart understanding 4 6.1% (4) (20)
OCR 6.1% (4)
Visual math reasoning 4.5% (3) 31.7%
Multilingual multimodal 6.1% (4) (13)
Visual text understanding 3.0% (2) _
Visual reasoning 1 42.7% (15) Answer Matching
0 5 10 15 20
Percentage of Datasets (%)
(a) Most of our surveyed data tests VLMs’ visual (b) Majority of the benchmarks are designed in
reasoning abilities. multiple choice format for ease of evaluations.

Figure 2. Our surveyed benchmark dataset categories and common evaluation practices.
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1) Answer Matching

Q: What s the price of the ba-

nanas per kg? say?
A: $11.98 A: Stop
ST-VQA[180]

Evaluation: Accuracy
Metric: Exact Match
Format: Specific short-form
answers, such as objects...

2) Multiple Choice

Art & Design |
Question: Among the following harmonic intervals,
which one is constructed incorrectly?

Options: = =1

(A) Major third <image 1> e
(B) Diminished fifth <image2>
(Q Minor seventh <image 3> 40—

(D) Diminished sixth <image 4> 3=}

Q: What does the red sign

Evaluation: Accuracy

Metric: E

Format: Multiple choice

| questions

Subject: Music; Subfield: Music;
Image Type: Sheet Music;
Difficulty: Medium

MMMU-Pro [45]

Me: 1 dotat 8
Time: 8.05
Me: looks ko | gotta wa 81 9 now

L =

Q: Can you explain this meme?

GT: This meme is a humorous take on
procrastination and the tendency 1o delay
tasks until a specific time

MM-Vet[123]

Evaluation: Average Score
Metric: ROUGE, LLM Eval

Format: Long-form open-ended

answers

Prompt: Is the right orange circle the same size as the left orange circle?

Original

Answer: Yes, the orange balls have the same size.
GPT-4V: Yes, the right orange circle appears 10 be the

same size as the left orange circle.

LLaVA-1.5: No, the right orange circle is smaller than

the left orange circle.

No, the orange balls have different size.
Yes, the right orange circle and the left
orange circle appear to be (HESRIERIZE.
LLaVA-1.5: Yes, the right orange circle is ihe same
§ize as the left orange circle.

HallusionBench [63]
Evaluation: Accuracy / Precision / Recall

Metric: Exact Match

3) Image-Caption Similarity

xact Choice Match

a brown bear? -> 0.9925
ablue boat? > 0.9878

Score: 0.9804

“A brown bear and a blue boat”

T2I-CompBench[270]

Format: Yes/No question

Evaluation: Average Similarity

Metric: CLIPScore, GenEval
Format: text to image
generation

Figure 3. Common benchmark evaluation metrics restrict the formats of most benchmarks, which mostly

evaluates whether a VLM can generate a short-form answer that matches the correct answers.
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Size
Benchmark Evaluation Category Annotation
(K)
MMTBench Multiple Choice Visual reasoning Al Experts 30.1
MM-Vet LLM Eval Visual reasoning Human 0.2
Visual reasoning / Multilingual
MM-En/CN Multiple Choice Human 3.2
understanding
GQA Answer Matching Visual reasoning Seed with Synthetic | 22,000
VCR Multiple Choice Visual reasoning, MTurks 290
Answer Matching
VQAv2 Chart graphic understanding MTurks 1,100
Yes/No
Answer Matching
MMMU Chart graphic understanding College Students 11.5
Multiple Choice
SEEDBench Multiple Choice Visual reasoning Synthetic 19
Visual reasoning, understanding,
RealWorld QA Multiple Choice Human 0.765
recognition, and question answering
MMMU-Pro Multiple Choice Visual reasoning Human 3.64
Semantic Visual reasoning / Text-to-Image
DPG-Bench Synthetic 1.06
Alignment generation
BLEU
Visual reasoning / Text-to-Image
MSCOCO-30K Rouge MTurks 30
generation
Similarity
TextVQA Answer Matching Visual text understanding CrowdSource 45
DocVQA Answermatching Visual text understanding CrowdSource 50
Multilingual multi-modal
CMMLU Multiple Choice College Students 11.5
understanding
Multilingual multi-modal
C-Eval Multiple Choice Human 13.9
understanding
TextVQA Answer Matching Visual text understanding Expert Human 28.6
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Size
Benchmark Evaluation Category Annotation
(K)
Answer Matching
MathVista Visual math reasoning Human 6.15
Multiple Choice
Answer Matching
MathVision Visual math reasoning College Students 3.04
Multiple Choice
OCRBench Answer Matching OCR Human 1
MME Yes/No OCR Human 2.8
InfographicVQA | Answer Matching Chart graphic understanding CrowdSource 30
AI2D Answer Matching Chart graphic understanding CrowdSource 1
CrowdSource and
ChartQA Answer Matching Chart graphic understanding 32.7
synthetic
CLIPScore
GenEval Text-to-Image generation MTurks 1.2
GenEval
T2I-
Multiple Metrics Text-to-Image generation Synthetic 6
CompBench
HallusionBench Yes/No Hallucination Human 113
POPE Yes/No Hallucination Human 9
MMLU Multiple Choice Multimodal general intelligence Human 15.9
MMStar Multiple Choice Multimodal general intelligence Human 1.5
M3GIA Multiple Choice Multimodal general intelligence Human 1.8
InternetAGIEval | Multiple Choice Multimodal general intelligence Human 8.06
EgoSchem Multiple Choice Video understanding Synthetic/Human 5
MVBench Multiple Choice Video understanding Synthetic/Human A
MLVU Multiple Choice Video understanding Synthetic/Human 2.6
VideoMME Multiple Choice Video understanding Experts 2.7
Perception-Test | Multiple Choice Video understanding CrowdSource 11.6
VQAScore Yes/No Vision-Language Alignment Al 665
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Size
Benchmark Evaluation Category Annotation
(K)
GenAI-Bench Human Ratings Generative AI Evaluation Human 80.0
Yes/No
NaturalBench Vision-Language Adversarial Testing Human 10.0
Multiple Choice

Table 3. Benchmarks and evaluations, along with their annotation and data source.

Answer matching

is widely used for open-ended and closed-ended question types, which are the answers are short-form
entities, long-form answers, numbers, or yes/no. Generative vlms are more verbose than extractive llms
and vlms, where they often generate verbose but correct answers2081  containment exact
matchl269 js a more practical version used more often in the evaluation, which includes removing
articles and space of predicted answers and check whether the normalized predicted answer is
contained in the normalized gold answerl270l171 However, exact match tends to have high recall,
which often fails to account for semantic equivalence between the gold and predicted answers,
frequently misjudging human-acceptable correct answers as incorrect[27211731168] 3nq becomes
impossible for benchmarks that seek long-form answersl174l, Prior to the instruction following
success of llm period, standard token overlapping socres such as Fi, ROUGEL73l) BLEUL78] to

measure the similarity score between the gold and predicted answers, but start failing when

generative models are generating more complex and diverse but correct answersH74101731[1681(172]

Thus, some of the benchmarks like MM-Vet[224] adopts llms to evaluate generated responses when
the responses are long-form answers that requires semantic understanding to judge correctness. llm
evaluations are shown to have the highest correlations to human evaluation, but they also face the
struggles of producing consistent outputs with internal model updates or changing prompt
instructions[1771178111791 While no current answer-matching evaluation method is perfect, yes/no
questions are the easiest to evaluate compared to open-ended ones. As a result, most benchmarks rely

on a multiple-choice format to assess vlms (Figure 2b).
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Multiple Choice

format involves selecting an answer from a set of options, including distractors, for a given visual
question[127][1481(149(150]  This format provides definitive answers and is among the easiest to
evaluate, as it measures the percentage of questions a vlm answers correctly. However, 1lms have

demonstrated an unusual ability to select correct answers even without access to the actual

questionsm—o]-. Since vlms incorporate an llm component for generating responses (Section 3), further

research is required to assess the robustness and reliability of current vlm benchmarks.

Image/text similarity scores

are commonly used in image generation benchmarks like T2I-CompBench, GenEvall133)1132] to
evaluate the alignment between generated images and their corresponding textual descriptions. They
often rely on measures such as CLIPScorel28!) for image-text alignment or ROUGE for caption
matching to assess the semantic and lexical similarity between the outputs and the references.

In summary, vlm benchmarks encompass a wide range of question types, fields of expertise, and

tasks, with MMLU[38] alone covering 57 distinct tasks. However, popular evaluations remain largely

confined to simple answer matching or multiple choice formats, far from the broader definition of

general intelligence of the Turing test[182],

5. Applications

VLMs are adopted to a wide variety of tasks, from virtual world applications such as virtual embodied

agents to real world applications such as robotics and autonomous driving.

5.1. Embodied VLM Agents

Visual question answering (VQA) is a foundational task that involves answering questions based on
visual and textual content22], It requires extracting meaningful information from images or video
sequences, such as identifying objects, scenes, and activities. In practice, embodied VLM agentslﬁﬂ is
a popular application of VQA, ranging from embodied personal device chatbot assistance to visual

chart interpretation and diagram generation for low-vision users1841(185],

Embodied agents are AI models with virtual or physical bodies that can interact with their

environment(288], pure textual agents such as Apple Intelligence[ﬁﬂ can process, reason, and execute
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user requests by converting them to executable code to control phone applications, but lacks visual
reasoning abilities. In this context, we focus specifically on embodied agents with virtual bodies,

particularly in relation to the application of VQA models for personal assistance and accessibility.

Embodied VLM agents as assistive applications and accessibility aims at helping users perform actions
on devices or providing on-screen answers to assist individuals with low vision. Recent developments
include: ScreenA7l188] specializes in understanding user interface (UI) components and answering
questions about screen elements. Smartphone assistant[182 extends this capability by using an end-
to-end VLM that directly reads visual screen inputs and user requests and converts into executable
code sequences to fulfill user request actions. Similar to Smartphone assistant, ScreenAgentﬂ‘?gl uses
a three-step approach (planning, acting, reflecting) to process user requests. It first understands UI
components through natural language descriptions, then decomposes user requests into subtasks,
and finally generates mouse and keyboard operations in a function-call format to execute actions on
user screens. In addition, some of these VLM agents might also require chart understanding or
generation capabilities to tell a user what the graphics, diagrams or charts are about. VLMs are often
prone to hallucination, especially for chart understanding that often extracts wrong numbers.
ChartLLaMAL184] is finetuned specifically for understanding various chart or plot visual inputs with
more accuracy number extraction and interpretation. Nonetheless, these VLM applications serve as an
assistant to help users automatically execute actions without user involving and help disabled people
access and understand Ul pages better to improve accessibilityﬂ‘?—ll.

Despite the advancements of embodied virtual VLM agents, there is a limitation of their reliance on
language models, often using vision as a supplementary role rather than fully integrating the two
modalities[2l. These models often use language reasoning as the primary driver, with visual input
playing a secondary role, leading to insufficient visual understanding to inform decision-making
effectively.[1221193] Besides virtual applications, embodied VLMagents are also used to perform real

physical world applications such as surgical planning and simulation to reduce risks[221 with more

physical details in Section 5.3.

5.2. Generative Visual Media Applications

Generative vim models, including generative adversarial networks (gan)‘[l‘zi]‘, diffusion models/126],
and newer frameworks like Transfusion are widely used in media applications to aid art and content

creations. One notable application of generative vim models is in the creation of memes, a universal
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language of the Internet. Platforms like Supermeme.aill27! uses vim models to generate customized
memes in over 110 languages, enabling users to express emotions or ideas effectively through
humorous or relatable visual content. In addition, generative vim models are used in cinematic and
visual effects. For instance, MovieGen128l allows users to create dynamic movie scenes by

transforming static images into visually stunning video effects based on user input.

5.3. Robotics and Embodied Al

The integration of vision-language models with robotics is a very heated topic that bridges the
foundation models residing in cyberspace and the physical world222). An enormous amount of
research work has emerged in the last few years, focusing on using vlms’ abilities on visual

reasoning(2901(201] " complicated scene understanding!292(203)) planning!2041[205] gver various tasks

robot coordination(21211213] motion planning!24J215), reward function design{2161(217][218] etc. The
revolutionary development in this area triggers many unexplored research problems that gather much
attention from the robotics community, while also revealing many hidden limitations during

implementation (Section 5.3.5).

5.3.1. Manipulation

The application of vlm in robot manipulation tasks focuses on improving robots’ abilities to
manipulate out-of-domain objects or perform more demanding, expensive action planning using
their language priors. VIMA[162] designs a transformer-based robot agent that processes these
prompts and outputs motor actions autoregressive. Instruct2Act(228] yses an 1lm model to generate
Python programs that constitute a comprehensive perception, planning, and action loop for robotic
tasks. RoboVQA[22] proposes an approach for the efficient collection of robotics data, with a large and
diverse dataset for robotics visual question answering and a single model with embodied reasoning.
Robotool(220] proposes a system developed to enable robots to employ creative tools use through the
integration of foundation models. The RT series!2211(2221[223] pyyrpose a vision-language action model
that encodes visual observations and text prompts and computes the target positions and orientation
for robot manipulation tasks. Though the current vlm applications in robotics show impressive
abilities in visual reasoning and scene understanding in manipulation tasks, their abilities are still

constrained by their generalization levels, given the diversity of the robot manipulators.
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5.3.2. Navigation

The incorporation of VLMs in robot navigation tasks focuses on open-world zero-shot or few-shot
object-goal navigation or semantic cue-driven navigation. ZSON297!. trains agents on image-goal
navigation using a multimodal semantic embedding space, enabling zero-shot ObjectNav from
natural language instructions and robust generalization to complex, inferred instructions. LOC-
ZSON228 introduces a Language-driven Object-Centric image representation and LLM-based
augmentation techniques for zero-shot object navigation. LM-Navi224] is a system for robotic
navigation that combines pre-trained models to enable natural language-based long-horizon
navigation in real-world outdoor environments without requiring fine-tuning or language-annotated
data. NaVILA[225] proposes a vision-language-action (VLA) model for legged robot navigation under
challenging and cluttered scenes. VLFM[222! builds occupancy maps from depth observations to
identify frontiers, and leverages RGB observations and a pre-trained vision-language model to
generate a language-grounded value map to identify the most promising frontier and explore for
finding the given target object. LFG-Nav(226] yses the language model to bias exploration of novel
real-world environments by incorporating the semantic knowledge stored in language models as a
search heuristic for planning. Many existing works follow the Task and Motion Planning (TAMP)
(227] pipeline, a framework convenient in segmenting the entire task into feasible subgoals that are
execrable by low-level planners, though its adaptability is constrained by planners and in lack of

flexibility in handling unexpected situations.

5.3.3. Human-robot Interaction

Human-robot interaction (HRI) is a sub-field demanding cognition and adaptation, as well as the
ability to interpret human intentions in reality and take actions accordingly. vim-powered HRI has
shown much better ability in understanding human intentions and adaptability during interaction.
MUTEX(228] is a transformer-based approach for policy learning and human-robot collaboration
from multimodal task specifications, enabling robots to interpret and follow tasks across six
modalities (video, images, text, and speech). LaMI[229] revolutionizes multi-modal human-robot
interaction by enabling intuitive, guidance-driven regulation of robot behavior, dynamically
coordinating actions and expressions to assist humans while simplifying traditional state-and-flow

design processes. Wang et al.f21l designs a pipeline that uses vlms to interpret human demonstration
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videos and generate robot task plans by integrating keyframe selection, visual perception, and VLM
reasoning, demonstrating superior performance on long-horizon pick-and-place tasks across diverse
categories. vlm-Social-Nav220l leverages Vision-Language Models to enable socially compliant

navigation by detecting social entities and guiding robot actions in human-centered environments.

5.3.4. Autonomous Driving

Autonomous driving is a very intensive research area in robotics, while the long-tail corner cases
covering out-of-domain objects and traffic events have been a long-lasting problem in this field. The
on-board vlm agents for autonomous driving have revealed abilities to overcome both problems with
the better abilities in object recognition(232)(231] navigation and planning(232)(233) and decision-
making(2341[235), yLpD[239] Jeverages self-supervised segmentation and contrastive learning to model
explicit semantic contexts like small or occluded pedestrians without additional annotations.
MotionLM[224] reframes multi-agent motion prediction as a language modeling task by using discrete
motion tokens and autoregressive decoding, enabling efficient and temporally causal joint trajectory
forecasting. DIiLU[238) combines reasoning and reflection modules to enable the system to perform
decision-making based on common-sense knowledge and evolve continuously in traffic. Recently,
more efforts have been made towards end-to-end autonomous driving models that produce actions
from vlms without generating intermediate tasks. VLP[237) introduces a Vision-Language-Planning
framework that integrates language models to enhance reasoning, contextual understanding, and
generalization in autonomous driving. DriveGPT/[238] proposes the first interpretable end-to-end
autonomous driving system leveraging multimodal large language models, capable of processing

video inputs, textual queries, and predicting vehicle control signals.

5.3.5. Limitations

Despite the success of vims’ applications in virtual agents, robotics, and autonomous driving, they

still face several limitations.

1. Generalization vs. Flexibility. Many existing works depend on the TAMP(227] pipeline that uses
the vision-language methods to procedure programming code-like workflows(206]

[217) constructed by pre-defined executable modules, or produce waypoints for external low-

level planners to execute actions. Such a pipeline allows efficient modulized robot action

geios.com doi.org/10.32388/GXR68Q 24


https://www.qeios.com/
https://doi.org/10.32388/GXR68Q

planning, but its upper-bound is constrained by the scope of available executable modules or
low-level planners that are vulnerable to out-of-domain (OOD) scenarios. On the other hand,
many efforts[2141215] haye been made to tokenize the robot’s motions as language-like tokens,
and outputs the low-level actionable trajectories directly. Such methods, though reconciling with
the nature of robot planning, their abilities are highly constrained by the robots models or
datasets encountered in their training procedure, which could be highly diverse in the real world.

2. Intelligence vs. Safety. Though the applications of vims improves the abilities of robots, but they
also introduce potential risks that may not be encountered before in robotics research. Risks may
be inherited from the jail-breaking[232l and biases of vims[2401(241] and robot malfunctioning
when executing vlm-determined actions[2421 when applying robot-specific attacks or
performing reward-hacking. These risks must gather more attraction in revealing and resolving
as robots have the access to the physical worlds that could perceive uncensored information in
their routine, incorporate it into their internet-level databases, and execute those hazardous
actions.

3. Embodiment vs. Effectiveness. The current difference in the developing trends of general-
purpose vlms and micro-electronics enlarges the gap between the two, which introduces the
trade-off issues in embodying the state-of-the-art models onboard and the computational
constraints for robots. Many prior works use relatively old models like CLIP, BLIP, ViT or other
small vlms for fine-tuning, or merely use the inference functions of close-source vim like GPT-
4v and Geminil2021[2061[205] without adaptation to domain-specific data. More discussions are
expected in applying large-scale vlms in robotics to show their abilities to enhance the robots’

performance with language priors of Large vlms.

5.4. Human-Centered Al

One important and promising application of vlms is to use their understanding and reasoning abilities
for human intentions and behaviors during human interaction with Al agents. LVLMs help to perform
sentiment analysis[l‘ﬁ]-, predict human intentions(244), and assist human interaction with the real
world[245] across many applications for social goodness like Al4Sciencel2481[247) agriculturel248),
education2421(250]  accessibility!252)252] healthcarel2531(254] climate change(233), etc. VLMs show
impressive potential in all these fields and help the widespread AI revolutions have a broad impact on

every corner of society.
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5.4.1. Web Agents

Web agent‘[;L(’]- is designed to assist human’s daily interaction and activities on the webpages.
Empowered by VLMs, web agents show enhanced abilities in understanding human behaviors and
better adaptation and generalization abilities for human assistance. CogAgent[—Ziﬂ excels in GUI
understanding and  navigation by  utilizing  high-resolution = image  encoding.
WebVoyager[%ﬁ]- demonstrates complete user instructions end-to-end by interacting with real-world
websites by leveraging multimodal understanding abilities. ShowUI1252) introduces UI-Guided visual
token selection to reduce computational costs, interleaved Vision-Language-Action streaming for
flexible task handling, and curated GUI instruction-following datasets. ScreenAgent[m]- is a vlm that
utilizes a planning-acting-reflecting control pipeline. This VLM agent is trained to interact with real

computer screens by observing screenshots and executing GUI actions.

5.4.2. Accessibility

Accessibility intends to help those disabilities living more conveniently, while VLMs help to interpret
the visual contexts to those with vision impairment during their interaction with the webpages and
the physical world. X-World[252) is an accessibility-focused environment generating annotated
simulation data with dynamic agents using mobility aids, enabling analysis of challenges like
occlusion and interaction. Oliveira et al.l251] explores using Multimodal Large Language Models
(MLLMs) to generate high-quality text descriptions for 360 VR scenes based on Speech-to-Text
prompts, enhancing accessibility and dynamic experiences, as demonstrated in educational VR
museum settings. Mohanbabu et al.[28%lintroduces a Chrome Extension that incorporates webpage
context into GPT-4V-generated image descriptions, showing that context-aware descriptions

significantly enhance quality, imaginability, relevance, and plausibility.

5.4.3. Healthcare

Al for Healthcare is a sub-field that requires much expertise knowledge in information interpretation
and very demanding in the accuracy level, due to the severe outcomes. During the recent few years,
given the rapid development of LVLMs, Al for healthcare has been increasingly investigated with

many exciting breakthroughs, helping it become much more practical in the real-world applications.

VisionUnitel234] introduces a vision-language foundation model pretrained on extensive
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ophthalmology datasets, exceling in multi-disease diagnosis, clinical explanations, and patient
interactions. Yildirim et al[233] explores the clinical utility of vlms in radiology through various
clinical applications, revealing high potential from assessment from multiple radiologists and
clinicians. M-FLAG[202] presents a novel method for pre-training medical vision-language models,
utilizing a frozen language model for efficiency and an orthogonality loss to optimize latent space
geometry with significantly fewer parameters and exceptional performance even on limited data.
Medclipfz—f’f"-1 introduces a decoupled approach to multimodal contrastive learning, scaling training
data combinatorially and addressing false negatives with a semantic matching loss based on medical
knowledge. Med—Flamingo@‘*l introduces a multimodal few-shot learner adapted to the medical
domain enabling few-shot adaptations like rationale generation and excelling in clinician-reviewed

evaluations on challenging datasets.

5.4.4. Social Goodness

The strong abilities of vims help a wide range of applications for social goodness. In K-12 education,
the recent works help to reason mathematically over educational content using VLMs!252] or simulate
students with various personalities to improve teachers’ teaching skills'242), VLMs help to diagnosis
disease for plants(248) and optimize the utilization of farmlands!283) in agriculture applications. VLMs
are also used for promoting fundamental science research like chemistry(266] mathematics!2671(268]

etc., and for other impactful field like climate changel255), mitigating social biases(262), and urban

planning(279],

6. Challenges

This section focuses on efforts on 3 challenging areas in vlm evaluation: hallucination, safety, and
fairness. While recent improvements have enabled vlms to continuously attain SOTA performance
(subsubsection 5.4.4), understanding the risks from their misapplication is paramount to assess and
prevent harms to end users, especially those who belong in marginalized groups. The following
discussion serves to highlight current limitations and ongoing research to ensure the reliable and

ethical use of vlms.
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6.1. Hallucination

Hallucination refers to the vlm’s tendency to refer to objects and/or artifacts that do not appear in the

relevant image‘[ﬂ—ﬂ-. Despite benchmark-setting performance, hallucination is still a pervasive issue
especially in visual-text application tasks. Researchers have proposed datasets and metrics to quantify

hallucination, with early efforts tend to require human annotation. For image-captioning, Rorhrbach
et el.272] proposed CHAIR, a metric that calculated the proportion of words generated that appeared in
the image based on ground-truth captions. CHAIR consists of 2 variants: per-instance, which
measures the fraction of hallucinated instances, and per-sentence, which measures the fraction of
sentences that include a hallucinated object. Li et al.’272] developed POPE, which assessed the amount
of hallucination via a series of Yes-No questions about existent and non-existent objects given an
image. Gunjal et al.[273) released M-HalDetect, a fine-grained annotated dataset of 16,000 samples on

visual QA that can be used to train vims to detect and prevent hallucination.

Subsequent research investigated hallucination in finer details. Halle-Switch evaluates hallucination
from the perspective of data amount, quality and granularity; which incorporates both contextual and
parametric knowledge to control hallucination rather than outright removall274).  Hallu-
Pi(275] contains 1260 images of 11 object types with detailed annotation to detect various hallucination
types that occur in perturbed input.[27¢) focuses on before-and-after changes to image while
proposing new metrics to analyze hallucination: true understanding, ignorance, stubbornness,
indecision. Guan et al.l2ll proposed HallusionBench to investigate vlm’s visual reasoning via
dependent questions that have no affirmative answers without visual content to on diverse topics

(e.g.: food, math, meme) and image formats (e.g.: logo, poster, chart) to detect hallucination.
(2771 develops an automatic benchmark generation approach that harnesses a few principal strategies
to create diverse hallucination examples by probing the language modules in vims for context cues.

The advent of more sophisticated llms has also assisted the development of larger benchmark datasets

in this area. GAIVER78] yses GPT-4 to generate 400,000 samples in the form of open-ended

instruction that covers 16 vision-and-language tasks. They account for various semantic levels of
hallucination, such as nonexistent object manipulation and knowledge manipulation(278], Jiang et al.
[279] constructed Hal-Eval using GPT-4 to induce fine-grained hallucination and tailored prompts for

2 million image-caption sample pairs. On the other hand, AMBER[289] s an llm-free multi-
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dimensional benchmark designed for both generative and discriminative tasks with annotation for 4

types of hallucination.

6.2. Safety

Due to vlms’ tremendous versatility, it becomes even more important to safeguard them against
unethical and harmful usage. Malicious actors may utilize vlms to deleterious effects by jailbreaking,
defined as '"deliberately circumventing the ethical and operational boundaries" of the models!281],
which might be harmful for both vims and their applications in downstream tasks like robotics[282
[200](242] yinbg et al.1283) SafeBench, a dataset of harmful queries on 23 risks scenarios generated by
llms, along with a jury deliberation protocol using multiple llm collaborative framework. Similarly,

MM-Safetybench is another benchmark dataset that uses queries of images paired with malicious

texts to assess vims’ behaviors in unsafe scenarios.

Luo et al.[284] released JailbreakV with 28,000 malicious queries as image-based attack that vims
should not respond. This dataset also enables the verification of transferability between models of
jailbreak attacks. Shi et al.[285] developed SHIELD, which uses True-False queries to evaluate vlms’
performance on face spoofing and forgery detection in zero- and few-shot settings. Other research
investigate attacks that can reverse prior efforts to align models towards ethical use. For instance,
HADES by Li et al.[286] exploits gradient updates and adversarial methods to hide and amplify image-
based harmfulness and destroy multimodal alignment. Niu et al.'1287) proposed imgJP, which uses
specific image instead of prompts to bypass refusal guardrails. imgJP has been shown to be highly

transferrable across a wide range of vims287),

6.3. Fairness

Extensive literature has discussed the inequity propagated by llms and vims(2881(289] gimjlar to their
unimodal 1lm counterpart, vims have exhibited disparate performance in downstream applications
particularly ~ towards certain  marginalized  groups!220){240)(241)  janghorbani  and
Gerard(292) introduced MMBias, an human-annotated datasets of images based on target concepts
(religion, nationality, disability, sexual orientation) with a dichotomous grouping on pleasantness.

Wu et al.[292] proposed FMBench, a framework that uses annotated medical images for both direct and

single-choice visal QA to measure bias with respect to gender, skin tone and age. Also in the medical
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domain, Luo et al.l223] released Harvard-FairVL, a dataset of SLO fundus images paired with clinical
notes with demographic attributes. Empirical results on CLIP and BLIP2 show preference Asian, Male,
Non-Hispanic groups compared to other attributes(293l. Jin et al.’s FairmedFM integrates 17 medical
image datasets to evaluate fairness on classification and segmentation on downstream tasks[2241 In
other veins, CulturalVQA by Nayak et al1295 was constructed with 2,378 image-question pairs with
multiple human-annotated answers per question drawn from different cultures, with results showing

better performance for North American cultures and worse on African and Islamic ones.

6.4. Multi-modality Alignment

The alignment issue within the multi-modality models refers to the contextual deviation between the
different modalities. The mis-alignment issue of vims may cause hallucinations!228]. Many efforts
have been made to mitigate this issue by either utlizting the reasoning abilities of vlms to perform
self-reflection(297) or designing projectors to bridge over different modalities. SIMA[297) enhances
alignment between visual and language modalities in large vision-language models (Lvlms) through
self-improvement, using self-generated responses and an in-context self-critic mechanism with
vision metrics. SAIL[228] introduces an efficient transfer learning framework that aligns pretrained
unimodal vision and language models for vision-language tasks, enhancing the language-
compatibility of vision encoders to improve multimodal large language models. Ex-
MCR229) introduces a training-efficient, paired-data-free approach to multi-modal contrastive
representation (MCR) by extending one modality’s space into another, enabling emergent semantic
alignment between extended modalities. OneLLM![399] js 3 unified Multimodal Large Language Model
(mllm) that aligns eight modalities to language through a unified encoder and progressive multimodal

alignment.

6.5. Efficient Training and Fine-Tuning

The efficient training and fine-tuning for vision language models has been a very heated research
topic, as the current large-scale vims are hard and expensive to train. An increasing number of recent
works draw their attentions onto the pre-training procedure of vision language model that tries to
understand the effect of different settings over modules(39 or supervision on the ultimate
performance of vlms. Meanwhile, specific purposes that require the application of vims do not

necessarily require the versatile multi-task performance of vlms, but outstanding one or two
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expertise of tasks. Typically, the Low-Rank Adaptation (LoRa) methodst3221(303] helps to manipulate
the Lvlms by changing fewer parameters and lowering the computational resources. Methods like
reinforcement learning with human or AI feedback (RLHF)[3041(303] are also widely used in fine-

tuning vlms by integrating human or other Lvlms’ knowledge into the fine-tuning procedure.

6.6. Scarce of High-quality Dataset

The abilities and reliabilities of VLMs are highly depending on the availability and diversity of the
training datasets. However, the massive scale of current advanced VLMs and the scarce of high-
quality training datasets add up to the difficulty in continuously improving the performance of the
future VLMs. One potential method to mitigate this issue is to use self-supervised learning (SSL)
[306] that learns the representation automatically from the unlabelled dataset. Another major
direction is to use the synthetic data generated by following some rules(397] or utilizing some third-
party tools!328], In VLM specifically designed for physical world-related purposes, like robotics!322] or
web agents[312], another option is to gather datasets from the interactions with the physical
simulators or world model. Though a lot of efforts have been made in all three directions, more
insights are still expected into the breakthrough of the mass-scale training for LVLMs and the
alternatives to the internet-scale data, given Ilya Sutskever’s quote that “Pre-training as we know it

will unquestionably end.”

7. Conclusion

Developments of VLMs and LLMS are happening at a breakneck pace with more sophisticated
applications and use cases being introduced in quick succession. This paper aims to capture the most
notable architectures, tends, applications along with prominent challenges in this area. We hope that

our survey provides a solid general overview for practitioners as a road map for future works.

Footnotes

L https://github.com/ai-forever/MoVQGAN
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