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Abstract. Dataset Distillation (DD) seeks to create a condensed dataset
that, when used to train a model, enables the model to achieve perfor-
mance similar to that of a model trained on the entire original dataset.
It relieves the model training from processing massive data and thus
reduces the computation resources, storage, and time costs. This paper
illustrates our solution that ranks 1st in the ECCV-2024 Data Distillation
Challenge (track 1). Our solution, Modified Difficulty-Aligned Trajectory
Matching (M-DATM), introduces two key modifications to the original
state-of-the-art method DATM: (1) the soft labels learned by DATM do
not achieve one-to-one correspondence with the counterparts generated
by the official evaluation script, so we remove the soft labels technique
to alleviate such inconsistency; (2) since the removal of soft labels makes
it harder for the synthetic dataset to learn late trajectory information,
particularly on Tiny ImageNet, we reduce the matching range, allowing
the synthetic data to concentrate more on the easier patterns. In the
final evaluation, our M-DATM achieved accuracies of 0.4061 and 0.1831
on the CIFAR-100 and Tiny ImageNet datasets, ranking 1st in the Fixed
Images Per Class (IPC) Track. 1
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1 Introduction

Large-scale training data plays a key role in the remarkable success of modern
deep learning methods across natural language processing [1, 4, 15], computer
vision [2,5] and multi-modal AI [11,12,14]. However, training models with mas-
sive data is extremely resource-intensive in terms of computation, storage, and
time, which poses a barrier for researchers with limited computational resources.

⋆ J. Yang is the project lead.
1 Codes are available at https://github.com/ChuhaoZhou99/M-DATM.
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Fig. 1: The goal of dataset distillation (DD) challenge. In the challenge, the large origi-
nal CIFAR-100 (Tiny ImageNet) dataset with size 50K (100K) is distilled to a synthetic
small dataset with size 500 (1,000), and the ‘ConvNet’ trained on both datasets are
expected to have comparable performances. The classification accuracy serves as the
evaluation metric in the challenge.

To this end, Dataset Distillation (DD) has been proposed to distill a large-scale
dataset into a small synthetic one so that the training effort can be reduced.
As shown in Fig. 1, the goal of DD is that a model trained on the synthetic
small dataset could obtain a comparable performance as a model trained on the
original large dataset. The emergence of DD advances data-efficient model train-
ing, substantially reducing the costs of the tasks associated with data storage,
hyper-parameter tuning, and architectural search [6].

So far, the DD task remains an open problem due to the significant perfor-
mance gap between results obtained on synthetic datasets and those on real-
world counterparts. Many works have been proposed to alleviate the issue from
the perspectives of gradient matching [8, 13, 18], distribution matching [16, 17]
and trajectory matching [3, 6, 7]. Among them, MTT [3] serves as the seminal
trajectory matching (TM) method that learns synthetic datasets by matching
the training trajectory segments (i.e., the time sequences of network parame-
ters) of surrogate models optimized over both the synthetic dataset and the
real one. It simultaneously alleviates existing DD methods from (1) being short-
sighted (i.e., focusing on single steps) and (2) being difficult to optimize (i.e.,
modeling the full trajectories), which makes the TM-based methods achieve im-
pressive performance. However, as the size of the synthetic dataset increases,
MTT becomes less effective. DATM [7] further reveals the fact that matching
early or late training trajectories will cause the synthetic data to learn easy
or hard patterns. Additionally, mismatches between the learning patterns and
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the capacity of the synthetic dataset (which depends on its size) can degrade
the effectiveness of the distillation. Therefore, the difficulty of the learning pat-
terns must be carefully set to align with the capacity of the distilled dataset. To
address this issue, DATM manages to control the difficulty of learning patterns
by only matching the training trajectories within specific ranges. The alignment
can then be achieved by selecting the optimal matching ranges that correspond
to the size of synthetic datasets. Thanks to the strategy, DATM maintains its
effectiveness across both low- and high-IPC (Images Per Class) settings, taking
the very first step to lossless dataset distillation.

To promote the development of DD techniques and drive future work, the first
DD challenge at ECCV 2024 is held and establishes standard baselines on public
datasets, ensuring a fair evaluation of various methods. This report illustrates
the ranking 1st solution in this challenge with our revamps and implementa-
tion details based on existing state-of-the-art approaches. In the challenge, we
chose the DATM as our baseline model since its flexibility caused by controlling
the difficulty of learning patterns allows the DATM to perform well on differ-
ent datasets. However, two problems have arisen when implementing the DATM
to the DD challenge. To begin with, the DATM is originally designed to learn
soft labels for the synthetic dataset during the distillation. Nevertheless, we find
the learned soft labels do not achieve one-to-one correspondence with the labels
generated by the official evaluation script that follows a default order. Such label
inconsistency will make certain synthetic images assigned to incorrect labels dur-
ing the evaluation, which causes significant performance degradation when the
official evaluation script is utilized. Besides, it is observed the DATM consistently
obtains poor performance on the Tiny ImageNet dataset. The vanilla DATM at-
tempts to capture relatively hard patterns in Tiny ImageNet by matching the
late trajectory information. However, we observe that the learning objective can-
not be effectively optimized. Therefore, we hypothesize that it is not reasonable
to let DATM focus on the hard patterns in Tiny ImageNet when the size of the
synthetic dataset is limited.

In this report, we propose Modified DATM (M-DATM) to tackle the afore-
mentioned issues. To eliminate the label inconsistency and ensure the identical
labels in the synthetic dataset and those generated during evaluation, M-DATM
removes the soft labels technique and directly optimizes the synthetic dataset
utilizing labels in default order. However, the removal of soft labels will addi-
tionally restrict the information capacity of the synthetic dataset. According
to our hypothesis, its ability to capture the late trajectory information (hard
patterns) will be further reduced. Therefore, we seek to reduce the difficulty of
the learning patterns and let the synthetic dataset concentrate on much easier
patterns for effective optimization. Thanks to the property of DATM, it could
be easily achieved by adjusting the matching ranges of the training trajectory.
In summary, our contributions lie in three folds:

– Remove the soft labels. We remove the soft labels technique in M-DATM
to ensure consistency between the labels in the synthetic dataset and those
generated in the default orders.
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Fig. 2: The insights of our M-DATM. (a) Two key modifications in M-DATM: the
removal of soft labels technique and the adjustment of the matching ranges. (b) The
inconsistency between soft labels learned by DATM and the counterparts generated by
the official evaluation script. (c) The DATM could not effectively capture discriminative
information through the distillation.

– Adjust the matching range. We identify the poor performance on Tiny
ImageNet results from the difficulty of learning late trajectory information,
which is addressed by reducing the matching range.

– Strong baseline. Our M-DATM ranks 1st in Track 1 of the ECCV-2024
DD challenge, establishing a strong baseline for future works.

2 Method

In this section, we first introduce our baseline model, Difficulty-Aligned Trajec-
tory Matching (DATM). Then the two problems encountered by DATM during
the challenge are discussed. Subsequently, we elaborate on two key modifications
made to establish the M-DATM, which essentially address label inconsistency
and difficulty in capturing late trajectory information.

2.1 Difficulty-Aligned Trajectory Matching (DATM)

The goal for dataset distillation is to synthesize a small dataset Dsyn that a model
trained on Dsyn could achieve comparable performance as a model trained on
the full, real dataset Dreal.

For the trajectory matching (TM) methods, the distillation process is con-
ducted by matching the training trajectories of several surrogate models opti-
mized over Dreal and Dsyn. Specifically, the training trajectories obtained from
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training a surrogate model on Dreal are termed as expert training trajectories.
They are denoted as τ∗ = {θ∗t }n0 , where the θ∗t means the expert network pa-
rameters at the training step t and n denotes the total number of training steps
for a certain expert. Similarly, the θ̂t represents the network parameters trained
on the Dsyn at the t-th training step.

Difficulty-Aligned Technique. During the distillation, the DATM will
sample θ∗t and θ∗t+M from the expert training trajectories τ∗ to form the start
and target parameters for the matching. The M is a preset hyper-parameter.
As mentioned in Sec. 1, DATM demonstrates that matching early or late trajec-
tories causes the synthetic data to learn easy or hard patterns. Therefore, the
difficulty of the generated patterns could be controlled by restricting the match-
ing range of the trajectories. In detail, a lower bound T− and an upper bound
T+ are separately set to establish a sample range, i.e., only the expert network
parameters within {θ∗t |T− ≤ t ≤ T+} could be sampled for the distillation. As a
result, the segment of expert training trajectories utilized for the matching can
be formulated as:

τ∗ = {θ∗0 , θ∗1 , · · · ,︸ ︷︷ ︸
too easy

θ∗T− , · · · , θ∗T+ ,︸ ︷︷ ︸
matching range

· · · , θ∗n︸ ︷︷ ︸
too hard

}. (1)

Soft Labels Technique. The soft labels technique is adopted in DATM to
enrich the information capability of the synthetic dataset. To avoid mislabelling,
DATM firstly samples a pre-trained model f∗

θ from expert training trajectories.
Afterward, all samples in Dreal that can be correctly classified by the f∗

θ are
selected to form the subset Dsub. Then, DATM randomly selected samples from
Dsub to initialize the Dsyn = {(xi, ŷi = softmax(Li))}. Notably, the classification
logits Li = f∗

θ (xi) are treated as the soft labels, which will be updated in each
distillation iteration.

Once the matching range is determined, the DATM would optimize the syn-
thetic dataset Dsyn by minimizing the distilled loss:

L =
∥θ̂t+N − θ∗t+M∥22
∥θ∗t − θ∗t+M∥22

(2)

where N is a preset hyper-parameter that determines the number of training
steps on Dsyn for each distillation iteration, the θ̂t+N is obtained in the inner
optimization with soft cross-entropy (SCE) loss lsoft and the trainable learning
rate α:

θ̂t+i+1 = θ̂t+i − α∇lsoft(θ̂t+i,Dsyn),where θ̂t := θ∗t (3)

where the θ∗t is uniformly sampled from the pre-defined matching range and
could be formulated as:

θ∗t ∼ U({θ∗T− , · · · , θ∗T }),where T → T+ (4)

In Eq. (4), T is a floating upper bound that is relatively small at the begin-
ning and will be increased during the distillation process until it reaches T+.
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In this way, more easy patterns would be sampled at the earlier stage, and the
distillation can become more stable.

In each distillation iteration, the θ∗t and θ∗t+M are first sampled from ex-
pert training trajectories as start and target parameters. Then, the θ̂t+N can
be obtained by classification with soft labels ( Eq. (3)). At the end of the dis-
tillation iteration, the matching loss can be calculated by Eq. (2). It is then
back-propagated to update the synthetic data xi as well as the soft labels Li,
Dsyn = {(xi, ŷi = softmax(Li))} denotes the targeted synthetic dataset.

2.2 Modified Difficulty-Aligned Trajectory Matching (M-DATM)

During the challenge, we identify two problems when applying DATM to the DD
task. In this subsection, we first elaborate on these issues, followed by a compre-
hensive analysis and the corresponding modifications (as shown in Fig. 2(a)) to
solve them.

Remove Soft Labels. The first problem we met during the challenge is
the performance gap between the evaluation script of DATM and that of the
DD challenge. In other words, the test performance obtained from the official
evaluation script of the DD challenge is much lower than that obtained from
the DATM evaluation script. We have found that the problem is related to the
soft labels technique in DATM. As shown by the red squares in Fig. 2(b), the
soft labels learned by DATM do not achieve a precise one-to-one correspondence
with the labels generated by the evaluation script (which are generated in the
default order). Such label inconsistency will cause certain synthetic images to
be assigned incorrect labels during evaluation, leading to a performance gap. To
this end, we remove the soft labels techniques from DATM and directly optimize
the synthetic dataset utilizing labels generated in the default order. Formally,
the soft cross-entropy (SCE) loss lsoft in Eq. (3) is replaced by the standard
cross-entropy (CE) loss l:

θ̂t+i+1 = θ̂t+i − α∇l(θ̂t+i,Dsyn),where θ̂t := θ∗t (5)

where the Dsyn = {(xi, yi = i | IPC}, i is the index of each synthetic image, and
IPC = 10 means the number of images per class. For example, the generated
labels for a synthetic dataset with 3 classes and IPC = 2 would be {0, 0, 1, 1, 2, 2}.
With this modification, the synthetic dataset can be directly optimized to meet
the requirement of the DD challenge, thereby achieving better performance.

Adjust Matching Range. In the challenge, the other problem for DATM
is its poor performance on Tiny ImageNet. Compared to CIFAR-100, Tiny Ima-
geNet dataset contains richer information, with more classes (200 V.S. 100) and
a higher resolution (64×64 V.S. 32×32), making it more challenging for existing
DD methods. After removing the soft labels technique, we found that the origi-
nal DATM, which matches a relatively late trajectory on Tiny ImageNet, could
not be effectively optimized. As shown in Fig. 2(c), the loss function and accu-
racy repeatedly oscillate around the initial point, indicating that the synthetic
dataset fails to capture discriminative information during the distillation. With
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this observation, we conjecture that the removal of soft labels further reduces the
information capacity of the synthetic dataset, making it more challenging to cap-
ture the late trajectory information (hard patterns). Consequently, we reduce the
matching range to (T−, T+) = (0, 20) to let the synthetic dataset concentrate
on easier patterns. This solution has proven effective, achieving the expected
performance on Tiny ImageNet. Additionally, we conduct further experiments
in Sec. 3.3 to explore the optimal matching ranges for both CIFAR-100 and Tiny
ImageNet datasets.

3 Experiments

3.1 Dataset

The DD challenge utilize two datasets: CIFAR-100 [9] and Tiny ImageNet [10],
both of which are commonly used datasets in dataset distillation literature. The
IPC is set to 10 for both datasets in the DD challenge.

CIFAR-100. The CIFAR-100 dataset has 100 classes containing 600 32×32
colour images each. There are totally 50,000 images for training and 10,000
images for testing.

Tiny ImageNet. The Tiny ImageNet dataset has 200 classes containing 500
64× 64 images each for training. Each class additionally contains 50 images for
validation and 50 images for testing.

3.2 Implementation Details

In this subsection, we provide the detailed settings of the proposed M-DATM,
including the distillation process, network, hyper-parameters, and computing
resources.

Distillation. We generate expert training trajectories in the same way as
FTD [6]. Consistent with the original DATM [7], the distillation process is per-
formed for 10,000 iterations to ensure the convergence. In addition, we remove
the ZCA whitening from the DATM and pre-normalized the data utilizing the
mean and standard deviation provided by the official evaluation script.

Network. Following the requirements of the DD challenge, we use the default
‘ConvNet’ for expert training trajectories extraction and dataset distillation on
both CIFAR-100 and Tiny ImageNet datasets.

Table 1: Hyper-parameters for different datasets.

Dataset IPC N M T− T T+ Interval Synthetic Learning Rate
Batch Size (Label)

CIFAR-100 10 40 2 0 15 20 100 1000 1000
TI 10 25 2 0 15 20 250 1000 10000
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Hyper-parameters. The hyper-parameters of the M-DATM are reported
in Tab. 1.

Computing resources. Our experiments are run on 4 NVIDIA A100 GPUs,
each with 80 GB memory. The experimental environment is strictly followed the
official codes of DATM 2.

3.3 Main Results

In this subsection, we conduct a comprehensive ablation study on the two mod-
ifications of M-DATM. Besides, more experiments are performed to explore the
optimal learning patterns for CIFAR-100 and Tiny ImageNet datasets under the
DD challenge settings. Notably, all results reported in our experiments are ob-
tained using the official evaluation script. Eventually, visualizations are provided
to intuitively show the synthetic datasets learned by matching different patterns.

Table 2: Ablation Results for M-DATM.

Methods CIFAR-100 Tiny ImageNet

DATM 31.11 6.90
DATM+M1 39.90 7.10
DATM+M1+M2 (M-DATM) 40.61 18.31

Ablation Study. In this subsection, we conduct ablation studies to show the
contribution of the proposed two modifications. Specifically, the ‘DATM’ means
our baseline model training on the pre-normalized data as mentioned in Sec. 3.2.
Removing the soft labels (DATM+M1) leads to significant improvement in per-
formance on CIFAR-100, while performance on Tiny ImageNet remains rela-
tively poor. It’s noticeable that the ‘DATM+M1’ only removes the soft labels,
but the matching range still follows the default settings of the original DATM.
After adjusting the matching range to focus the synthetic dataset on easier pat-
terns (DATM+M1+M2), the performances are improved on both datasets, with
a remarkable improvement on Tiny ImageNet (+11.21%). The ablation study
demonstrates that our two modifications are essential and effective.

Performances across Different Matching Ranges. We conduct addi-
tional experiments to explore the optimal matching range for both CIFAR-100
and Tiny ImageNet datasets. Specifically, we simply divide the expert train-
ing trajectories into three stages: early (T− = 0, T = 15, T+ = 20), medium
(T− = 30, T = 45, T+ = 60), and late (T− = 60, T = 75, T+ = 80). The DATM
is then evaluated by matching trajectory information at each stage. As shown
in Fig. 3, the best performances for both datasets are achieved at the early stage.
The results are consistent with the conclusions drawn from the original DATM.
Due to the removal of soft labels and the limited IPC in the DD challenge, the
2 https://github.com/NUS-HPC-AI-Lab/DATM.



Track 1 No.1 Solution: M-DATM 9

Fig. 3: Performances of M-DATM across different matching ranges on CIFAR-100 and
Tiny ImageNet.

information capacity of the synthetic dataset becomes relatively limited. In this
context, making the synthetic dataset focus on the easier pattern, which explains
a larger portion of the real data compared to an equal number of hard patterns,
could be a better choice.

Fig. 4: Visualization of the distilled images across different matching ranges on CIFAR-
100 and Tiny ImageNet.
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3.4 Visualization Analysis

To intuitively show the results of DATM across different matching ranges, we
visualize the corresponding synthetic images. As shown in Fig. 4, significant
changes are observed in the synthetic images when matching early trajectories,
proving that the critical discriminative information is indeed captured through
the distillation. In contrast, the limited information capacity of the synthetic
dataset prevents it from capturing the medium and late trajectory information,
resulting in nearly unchanged synthetic images.

4 Conclusions

In this paper, we introduce M-DATM for the DD challenge, incorporating two
key modifications to the original DATM method. Specifically, we remove the
soft labels technique to ensure one-to-one correspondence between the labels
in the synthetic dataset and those generated by the official evaluation script.
To improve performance on Tiny ImageNet, we carefully adjusted the matching
range to make the synthetic dataset concentrate on the easier patterns. Our M-
DATM achieves 1st place in Track 1 of the DD challenge, establishing a strong
baseline for future work. Eventually, We thank the organizers for their excellent
work in the challenge.
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