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This report introduces Make-A-Character 2, an advanced system for generating high-quality 3D

characters from single portrait photographs, ideal for game development and digital human

applications. Make-A-Character 2 builds upon its predecessor by incorporating several signi�cant

improvements for image-based head generation. We utilize the IC-Light method to correct non-

ideal illumination in input photos and apply neural network-based color correction to harmonize

skin tones between the photos and game engine renders. We also employ the Hierarchical

Representation Network to capture high-frequency facial structures and conduct adaptive skeleton

calibration for accurate and expressive facial animations. The entire image-to-3D-character

generation process takes less than 2 minutes. Furthermore, we leverage transformer architecture to

generate co-speech facial and gesture actions, enabling real-time conversation with the generated

character. These technologies have been integrated into our conversational AI avatar products.

1. Introduction

Make-A-Character[1]  introduced a system that generates 3D characters based on text descriptions.

Although text is e�ective and lightweight, it struggles to describe the precise nuances of facial

features, limiting its controllability on detailed attributes. As the saying goes, a picture is worth a

thousand words, images can convey far more detailed information than text, allowing users to

generate characters with greater intuitiveness and control.

Given the aforementioned content, we introduce Make-A-Character 2, a system for 3D characters

generation from single images. We wish to generate a 3D character with consistent appearance (e.g.,
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face, hairstyle, skin color) given a frontal face portrait photo, and the 3D character is equipped with

sophisticated underlying skeleton and ready for animation. The Make-A-Character 2 inherits key

properties from Make-A-Character, such as highly-realistic rendering, full-body completed and

industry-compatible. Further more, we propose the following major improvements:

Portraits Illumination Harmonization. To ensure the high quality of the generated 3D head, ideal

input portraits should be captured under optimal lighting conditions. This includes uniform lighting

that avoids asymmetry, excessive shadows, or overexposure. However, daily portraits often fail to

meet these strict requirements. To address this issue, we utilize the latest di�usion-based

illumination editing method IC-Light[2] to correct the lighting in the given photos, bringing them to

an ideal illumination state for subsequent operations.

Color Correction in Game Engine. We aim to ensure that the generated 3D character maintains

consistent lighting and skin tone with the input photo. However, predicting the lighting environment

from an input portrait and replicating it in render engine is challenging. The �nal color appearance in

a game engine cannot be precisely predicted from a di�use texture map alone due to various

in�uencing factors, such as lighting setup, material properties, re�ections, subsurface scattering, and

ambient occlusion. We draw inspiration from[3] and address the challenge of non-di�erentiability in

game engines by training a neural network to learn the color discrepancies between di�use maps and

their corresponding renders from the game engine. After the network successfully models this color

o�set, we utilize the learned model to adjust the di�use map, allowing the render engine to produce

the desired color outcome more accurately.

Detailed Face Reconstruction. Our initial head geometry, reconstructed guided by facial dense

landmarks, often lacks high-frequency details. To address this limitation, we leverage HRN[4]  facial

geometry to augment the surface details of our initial model. For essential facial regions, such as

around the eyes and lips, we increase the density of landmark predictions, enabling to capture

intricate nuances with greater precision.

Facial Skeleton Calibration. According to industry standards, the creation of 3D facial assets

necessitates a well-designed skeletal structure and specialized rigging to achieve satisfactory

animation outcomes. In our work, we conducted skeleton �tting on the reconstructed facial meshes,

utilizing several neutral face models sourced from MetaHuman, which had already undergone

comprehensive rigging processes as described in[5]. This approach guarantees that each facial mesh
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produced through the aforementioned geometric reconstruction algorithm is equipped with a

customized skeletal con�guration.

Real-Time Speech-driven Animation. Although there are many researches[6][7][8][9][10]  addressing

the problem of audio-driven motion generation, the produced expression and gesture animations are

far from satisfactory. They mainly adopt ARKit blendshapes to represent the facial expressions. The

ARKit blendshapes are not able to express detailed mouth shapes. As for the gesture, their generated

results are not restricted and the motions are jittering. In order to produce realistic motions, we follow

Metahuman’s control rig to animate facial expressions and employ two senior animators to revise

motion capture data. Instead of generating gestures freely, we predict indices of motion pieces, which

are intentionally designed by animators. This allows our system to generate natural and realistic body

motions.

2. Related Work

Single-View 3D Reconstruction. Reconstructing a 3D object from a single image is an ill-posed

problem that typically relies on speci�c prior knowledge. Inspired by the Scaling Law, which

demonstrates notable success in natural language processing (NLP) tasks through the utilization of

scalable network architectures and large training datasets, recent works[11][12] propose a large-scale

3D reconstruction model based on the Transformer architecture. These models aim to extract a

generalized 3D prior from extensive datasets, thereby enabling the prediction of Neural Radiance Field

(NeRF) representations from a single image. While these methods demonstrate remarkable

reconstruction quality and generalization capabilities, they face signi�cant challenges in the realm of

3D avatar generation, which demands sophisticated structures to ensure animatability and

compatibility with existing industry CG pipelines.

Single-View 3D Head Generation. The 3D Morphable Model (3DMM)[13]  captures the variability

inherent in human face by representing facial geometries as a linear combination of blendshapes. This

approach has become a foundational technique in 3D face reconstruction. By �tting the model

parameters to 2D images, it enables face reconstruction from single images.

With the advent of deep learning, researchers[14][15]  have developed methods to leverage neural

networks for predicting 3D face shapes directly from images. To better capture �ne details, many

approaches aim to improve the 3D Morphable Model (3DMM)-based framework by introducing
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nonlinear 3DMM[16], deformation maps generation[4], and displacement maps generation[17]  for

higher-quality geometry. Regarding texture, the traditional linear combination of texture bases often

results in a blurred texture map. Thus, techniques like di�erentiable rendering[4]  or directly

unwrapping the input image into UV space[18] are more e�ective alternatives.

Advancements in neural 3D representations have led to the development of a variety of models for

detailed human head reconstruction. The Neural Parametric Head Models (NPHM)[19] e�ectively use a

signed distance �eld (SDF) to achieve high-�delity capture of complete human head geometry.

Despite their detailed geometrical focus, NPHMs do not support appearance modeling or hair

reconstruction. In contrast, Rodin[20]  employs di�usion models to create 3D digital avatars using

neural radiance �elds (NeRF), which incorporate both geometry and appearance. Additionally, the 3D

Gaussian Parametric Head Model (GPHM)[21]  leverages 3D Gaussian to deliver photorealistic

rendering quality and real-time performance. Nonetheless, several challenges persist, including

integrating the Gaussian head model with a full body and adapting these models to varying lighting

conditions.

Speech-driven 3D Gesture Generation. Gesture generation is a complex task that requires

understanding speech, gestures, and their relationships. To address this, BEAT[22]  presents a high-

quality, multi-modal motion data set captured from 30 speakers. Along with the data set a Cascaded

Motion Network is proposed to generate gestures from speech. Based on this data set, EMAGE[23] and

ProbTalk[24] utilize masked transformer to predict gestures from audio in the latent space of VQ-VAE.

Although improved results are observed, the motion diversity is restricted. Di�usion based models[8]

[9][7] are also explored in the literature of speech-driven motion generation. Compared to the previous

methods, these could generate diverse motions. However, the results produced by all of these methods

are far from industrial standards. The predicted motions are usually jittering. Instead of unrestricted

generation, we directly predict the indices of prede�ned motions, which are designed by senior

animators. Based on this, it is able to generate realistic gestures motions.

Speech-driven 3D Face Animation. Speech-driven 3D face animation focuses on creating realistic

facial animations from the input speech signals. This �eld has developed for a long history and

achieved signi�cant progress, which can be broadly categorized into visme-based and deep learning-

based methods. Visme-based methods primarily focused on establishing mapping relationships from

phonemes to visemes[25][26][27]. These methods allow for explicit control and can be easily integrated
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into industrial animation pipelines. However, they have some disadvantages: they mainly concentrate

on lip region animations and lack comprehensive strategies for animating the entire face.

Additionally, the expressiveness of these methods is limited, making it di�cult to capture detailed lip

movements. Recently, deep learning-based methods have been increasingly researched. Karras et al.

[28]  proposed an deep neural network to learn a mapping from input waveforms to 3D vertex

coordinates of a face model. VOCA[29] utilizes an encoder-decoder network where the encoder learns

to transform audio features to a low-dimensional embedding and the decoder maps this embedding

into a high-dimensional space of 3D vertex displacements. Faceformer[30] also leverages an encoder-

decoder model, but with Transformer-based architecture and autoregressively generates a sequence

of animated 3D face meshes from input raw audio. To avoid over-smoothed facial motions,

Codetalker[31]  adopts a pre-trained VQ-VAE motion prior. MeshTalk[32]  achieves highly realistic

motion synthesis results for the entire face based a categorical latent space that disentangles audio-

correlated and audio-uncorrelated information. SelfTalk[33]  involve a self-supervision framework to

exchange cross-modals information to generating realistic and accurate lip movements with

lipreading comprehensibility. However, the methods mentioned above are all based vertex o�set,

usually lacking components like teeth, tongue, and eyelashes, leading to �aws during animation.

Additionally, they are di�cult to integrate into existing animation production pipelines. However,

these approaches can serve as valuable references.

3. 3D Character Generation

Figure 1. Pipeline for generating animatable 3D characters from a single image.

qeios.com doi.org/10.32388/H03RE1 5

https://www.qeios.com/
https://doi.org/10.32388/H03RE1


3.1. Geometry Generation

3.1.1. Hierarchical Facial Details Transfer

Unlike our prior work[1]  which relied on textural descriptions, this research uses a single portrait

image as input, requiring more accurate and detailed face generation. Our prior triplane-based

method, which used total variation loss for smoothness, struggled to reconstruct intricate facial

details like wrinkles and dimples in the initial head geometry. Lei et al.[4]  proposed a Hierarchical

Representation Network (HRN) enabling highly accurate single-image facial reconstruction. We

utilize this HRN to transfer detailed facial features to our initial head model, overcoming previous

geometric limitations. To align the detail-rich HRN geometry with our model, we apply a rigid

transformation based on 7 facial landmarks, followed by details geometry transfer. However, direct

transfer can induce artifacts at the junctions between the detail-enhanced facial areas and the �xed

head region. To ensure a seamless transition and achieve a natural appearance, we employ a

smoothing operation at these junctions. The complete pipeline is shown in Figure 2.
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Figure 2. The facial details transfer pipeline. We align the HRN geometric model (a) with the initial

geometric model (b) through a rigid alignment process (d) based on seven key points indicated in (c).

Following this, we �x the positions of the points within the blue region, as depicted in (e) of our initial

model, and subsequently transfer the HRN facial details to the replaceable gray region also shown in (e),

leading to the creation of a replaced head model with HRN face details (f). Finally, we determine the gray

transition region as shown in (g) and apply a smoothing technique to attain a �nal model (h) that

seamlessly integrates facial details and exhibits a natural appearance.

Figure 3 showcases the e�ectiveness of our HRN-guided facial detail transfer. Using images from the

SCUT-FBP5500[34] as input, the �gure highlights a substantial enhancement in facial details. Notably,

the pre-transfer faces appear smooth and lack �ne features, whereas the post-transfer faces exhibit

detailed characteristics, such as nasolabial folds and dimples.
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Figure 3. Results with facial details generated using our facial detail transfer pipeline.

The complexity of the eyes and mouth requires a more detailed representation than the original

landmarks could provide. Therefore, we increased the landmark count to 20 for the eyes and 28 for the

mouth. This crucial modi�cation signi�cantly improves the geometric precision of these facial

features, resulting in superior alignment with the input image data. Figures 4 and 5 visually

demonstrate this improvement.
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Figure 4. An example of mouth geometric results landmarks obtained by expanding the mouth landmarks

Figure 5. An example of eyes geometric results landmarks obtained by expanding the eyes landmarks

Because the nose and adjacent facial areas have similar skin tones, accurately detecting nose

landmarks for shape reconstruction is a di�cult task. To improve the precision of nose shape

reconstruction, we leverage the shape knowledge encoded within the Basel Face Model (BFM).

Speci�cally, we augment the nose representation with 80 shape bases from the BFM to obtain the �nal

geometry  :

As shown in Figure 6, the nose shape of    is consistent with BFM shape basis, but the topology is

geometrically identical to the triplane representation, and   is the nose shape coe�cient.

V

V = triplane[v, u, :] +∑
i=0

80

Siαi (1)

Si

αi

qeios.com doi.org/10.32388/H03RE1 9

https://www.qeios.com/
https://doi.org/10.32388/H03RE1


Figure 6. Nose Shape Basis Set Derived from the Basel Face Model.

3.1.2. Facial Skeletons Calibration

Once high-�delity human face meshes are generated, accurate skeleton(i.e., joint, bone) binding is

crucial for ensuring the realistic and nuanced animation driving performance. We achieve this by

�tting the skeleton (joints and bones) from a pre-rigged, neutral-shaped face mesh onto the newly

generated target model.

Our approach begins by implementing the forward propagation of a skeleton-driven skinning system.

This system uses a hierarchical, multi-branch, loop-free tree structure to organize hundreds of

skeleton nodes, mirroring the rig logic systems of MetaHuman[35]. Each node stores its local

translation and rotation relative to its parent. Once a skeleton moves, we update the absolute positions

of all descendant nodes of this skeleton using forward kinematics. These displacements in absolute

coordinate, combined with Linear Blend Skinning (LBS) weights, determine the displacements of

mesh vertices and deform the mesh. Since our geometry reconstruction maintains consistent face-

vertex topology, we can compute the vertex di�erences between the target mesh and the deformed

mesh on a per-vertex basis. These di�erences are then used as the loss function for skeleton �tting:

where   denotes the number of vertices in the mesh,   and   are the   coordinates of

the i-th vertex in the current deformed mesh and the target mesh, respectively. We aim to move the

current vertices towards their corresponding target positions.

= ∥ −Lv ∑
n=1

N

v
current
i v

target
i ∥2

2 (2)

N v
current
i v

target
i (x, y, z)
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Leveraging the complete forward path from skeleton displacement to mesh vertex displacement, we

can directly utilize automatic di�erentiation to optimize skeleton parameters. This process iteratively

adjusts the skeleton position, aiming to minimize the loss and drive the current mesh closer to the

target shape. This iterative �tting pipeline, visualized in Figure 7, continues until convergence is

achieved.

Figure 7. The skeleton calibration pipeline.

We also observe signi�cant spatial overlap between the leaf node skeletons and the mesh vertices on

both the neutral and rigged face meshes. We denote the index set of these overlapping leaf skeletons

as  :Φ

M(i) = j, i ∈ Φ (3)
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the function   maps each index of a skeleton to the corresponding index of its associated vertex in

the mesh. Therefore, the positional di�erences between these overlapping skeleton nodes and their

mesh counterparts are used as a supervision component in the �tting process:

the total loss function is given by  .

Through practical experimentation, we observed that enabling updates for all skeleton parameters

during the optimization process can lead to unreasonable skeleton con�gurations. Speci�cally, the

optimizer tends to induce exaggerated movements in the skeleton in an attempt to align the deformed

mesh with the target mesh. To mitigate this issue, we impose a constraint by allowing updates only for

the leaf node skeletons within the skeleton tree system.

Simply �ne-tuning the skeletons alone is insu�cient to perfectly match the target shape (the loss

cannot be reduced to zero). Therefore, our process �rst applies the residual o�set as a blend shape to

the neutral face mesh. Subsequently, skeletons are adjusted according to the results of the above

solution. This two-step calibration enables a well-rigged face mesh.

3.2. Texture Generation

3.2.1. Texture Correction

In our endeavor to accurately replicate the textures and shadings of the input facial images within

Unreal Engine (UE), the illumination-independent di�use albedos[1]prove to be unsuitable for this

scenario, as demonstrated in Figure  8(b). While textures generated via di�erentiable rendering

initially present as a promising choice, they inherently incorporate baked illumination, leading to

signi�cant discrepancies in light and shadow e�ects when rendered in UE compared to those observed

in the input facial images, as depicted in Figure  8(c). Moreover, recreating identical lighting

conditions in UE is particularly challenging due to the inherently ill-posed problem of inferring

illumination from a single real-world image. To address these issues, we opt to establish a �xed

lighting environment within UE and formulate the task of lighting replication as a classical image-to-

image translation problem. By learning the di�erences between the rendered output and the input

facial image, it corrects the textures generated by the di�erentiable rendering and reproduces the

lighting e�ects of the input images, as illustrated in Figure 8(d).

= , i ∈ Φsi vM(i) (4)

M(. )

= ∥ −Ls ∑
i∈Φ

s
current
i v

current
M(i) ∥2

2 (5)

= +Ltotal Lv Ls
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Figure 8. Comparison of di�erent types of textures rendered in UE. (a) is the input image, (b), (c), (d) are

generated 3D characters using di�use albedo[1], texture generated from di�erentiable rendering and the

corrected textures.

It is well known that the rendering process in UE is not di�erentiable. To overcome this limitation and

facilitate back-propagation of shadings onto facial textures, we propose a neural network, denoted as 

, to emulate the inverse rendering process of the UE. As in Figure 9,   maps the rendered color   to a

corrected color  , such that

When the corrected color    is rendered through UE, the rendered result yields to  , indicating

successful replication of the rendered color. To achieve the replication of the input facial images’

illumination, we apply   to adjust the textures generated by the di�erentiable rendering process.

N N C

C
′

= N (C)C
′ (6)

C
′

C

N
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Figure 9. The color correction pipeline.

We implement the network   as a three-layer MLP with 32 hidden units, and de�ne the loss function

as  . The training data is generated through an intuitive approach: we render a

variety of colors   in UE and store the results as  , yielding over 10,000 color pairs for training.

3.2.2. Facial Lighting Normalization

When dealing with facial images under atypical lighting, such as non-uniform, colored, or

overexposed lighting conditions, the corrected textures often retain these lighting features, including

shadings and highlights. As a result, it presents a dilemma, while these lighting features enhance the

�delity of the rendered face compared to the input, they also create visual inconsistencies within the

uniformly lit UE environment. To address this issue, we employ the IC-light algorithm[2] to attenuate

these atypical lighting features and achieve normalized facial lighting. Given a facial image and the

uniform light map, the IC-light algorithm re-lights the face according to the new lighting condition.

To partially maintain the original shadings and highlights, we blend the re-lit face with the input face,

yielding a similar yet even lighting facial image. Figure  10(a) and Figure  10(b) present the 3D

characters generated by the input facial image and the normalized facial image, demonstrating that

the latter’s shadings and highlights are more natural and harmonious within our UE environment.

N

∥ − N ( )∥∑
n
i=1 C

′
i Ci

C
′

C
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Figure 10. Results of the relighted image. This �gure presents the 3D characters generated by the input

facial image and the normalized facial image, respectively.

3.3. Hair Generation

When generating 3D avatars from single images, capturing the hairstyle is crucial for achieving an

accurate likeness. To facilitate this, we utilize a specialized hairstyle classi�cation model powered by

convolutional neural networks. This model directly maps a portrait image to a speci�c hairstyle within

our asset library, bypassing the need for intermediate feature extraction. Many hairstyles naturally

showcase asymmetry, as seen in the way long hair �ows over the chest or back and the placement of

bangs. In our asset library, we’ve enhanced these asymmetrical hairstyles by applying a horizontal

�ip, treating the �ipped versions as unique styles. Consequently, when labeling the training data, we

distinctly di�erentiate between the left and right variations of these hairstyles.

4. 3D Character Animation

In our application we mainly concerned to animate the generated avatars via speech audio. We

leveraged bone skeleton and facial control rig to generate gesture and facial motion, respectively.

4.1. Speech-driven Gesture Motions

Researchers have explored masked transformers[23][24][10]  or di�usion models[8][9][7]  to predict

gestures from speech with or without additional conditions, like word text, emotional labels or

semantic labels. They all freely generate gestures by learning distribution from motion capture data.

Their jittering results do not meet the industrial requirements. In contrast, we suggest to predict

prede�ned motion pieces for realistic animations.
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In order to produce realistic animations, we use Vicon, which is a sophisticated motion capture

system, to collect body motion data, and employ two senior animators to adapt the data to our

generated avatars. We capture more than one hundred pieces of motion data. The length of each piece

of data falls between 2 seconds and 3 seconds. These data are common nonverbal gestures made by

people while speaking, and they can be divided into 5 categories, which responds to 5 human poses

(see Figure 11). In each category, the start and end pose of each data are same. This allows the motion

data in each category to be smoothly concatenated together to form longer animation. Besides, there

is motion data for transition between di�erent poses. These captured data form the foundation of our

training data.

Figure 11. Pipeline of animations. Coe�cients of facial control rig were directly predicted from speech

audio. Gesture motion clips were selected from the captured data set by optimizing graph path.
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Figure 12. Captured motion data can be divided into 5 categories corresponding to 5 poses. In each

category, the start and end poses of each data are same. This enables us to generate longer animation by

concatenating any two pieces of motion data in a single category.

The animators generate sequences of motion data based on speech audios as our training data set. To

align audio with motion sequences in the data set, we use graph-based optimization method to

generate motion sequences. We take each piece of the data as a graph node, and there is a directed

edge between two nodes if these two nodes are in continuous order in the training data set. The weight

associated with a edge is de�ned as follows:

where    denotes the  th graph node,    is the translation loss between two nodes, 

 is the rotation loss of corresponding joints between two nodes. We also associate each node

with an audio embedding feature which extracted from Wav2Vec2. Given an audio sequence 

, the corresponding motion sequence is obtained by an optimal path in the directed

graph. The cost is de�ned as follows:

where   is the audio embedding loss.   and   denote the embedding features of audio clip 

 and graph node  , respectively.   is the edge loss between the selected nodes with audio

clip   and  . We use The viterbi algorithm[36] to solve this optimization problem.

In application we optimize the graph path within a speci�c motion data category. For lengthy speech

audio, we randomly choose transition data to generate motions in another category. This strategy

T ( , ) = ( , ) + ( , )Ni Nj λ1Tp Ni Nj λ2Tr Ni Nj (7)

Ni i ( , )Tp Ni Nj

( , )Tr Ni Nj

, , . . ,M1 M2 Mn

C = ( , ) + T (i, i + 1)∑
i

n

Ca Ai Âi ∑
i

n−1

(8)

( , )Ca Ai Âi Ai Âi

Mi Ni T (i, i + 1)

Mi Mi+1
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enables us to generate a wide range of realistic animations.

4.2. Speech-Driven 3D Facial Animations

There are typically two parametric representation for creating 3D facial animations: vertex

displacement and blendshapes. While vertex displacement methods can control facial movements

with great precision, it is challenging to animate components such as teeth, tongue, and eyelashes,

which can result in noticeable imperfections. On the other hand, blendshape-based solutions are

stable and less prone to imperfections. However, the expressive capability of such solutions depends

on the number of blendshapes available. A larger number of blendshapes allows for more nuanced

expressions and improved animation quality, whereas a smaller number may result in less satisfactory

outcomes. We adopt the blendshape-based approach, leveraging the robust Control Rig system in

Metahuman[37]  to generate realistic facial animations. In order to obtain high-quality facial

animations data, we employ a tool called MetaHuman Animator[37] to capture ctrlrig coe�cients and

then re�ne them with the expertise of experienced animators.

The entire pipeline of speech-driven 3D Facial Animations is shown in Figure 11. Firstly, we utilize the

state-of-the-art self-supervised pre-trained speech model, wav2vec 2.0[38], to encode audio signals.

Secondly, a non-autoregressive architecture is employed as the decoder to directly regress facial

animation weights from audio features. In contrast to autoregressive transformer-based methods, the

non-autoregressive method only call decoder once, so it more e�cient than autoregressive method,

which need a iterative decoding loop. We only employ reconstruction loss and velocity loss which is

also used in Selftalk[33] to train the model. The loss function is formulated as:

The reconstruction loss   measures the di�erence between the predicted ctrlrig coe�cients and the

ground-truth ctrlrig coe�cients. Here,    denotes the ground truth coe�cients of the    ctrlrig at

timestamp  , whereas    represents the predicted value.    is the length of the sequence,    is the

number of ctrlrig.

The velocity loss   is used to reduce lip jittery over time.

L = +Lrec Lvel (9)

Lrec

bt,i ith

t b̂t,i T N

= ∥ −Lrec ∑
t=1

T

∑
i=1

N

bt,i b̂t,i∥2
2 (10)

Lvel

= ∥( − ) − ( − )Lvel ∑
t=1

T

∑
i=1

N

bt,i bt−1,i b̂t,i b̂t−1,i ∥2
2 (11)
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In order to enhance the facial expressions of digital avatars, we pre-create templates for words with

strong emotions, such as interjections. Figure 13 show some screenshots of the Chinese interjections

we created. When these interjections are detected in the input audio, the corresponding facial

expression templates are triggered to enhance the expression of emotions.

Figure 13. Screenshots of some Chinese interjections template animations
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5. Results

5.1. 3D Character Generation

Figure  14 presents the 3D characters created from single images with our method. We compare our

method with several state-of-art 3D avatar generation algorithms, including two text-based avatar

generation methods(DreamFace[39], Rodin[40]  ), and two single image-based avatar generation

methods (MeInGame[41]  and MoSAR[42]). As shown in Table  1, Our method generates complete,

production-ready 3D character assets compatible with modern CG pipelines, o�ering enhanced

rendering �delity, highly accurate rigging, and improved editability compared to other approaches.

Figure 14. Textured 3D character models generated from frontal portrait images. We utilize Unreal Engine

for high-�delity rendering.
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Method
High Fidelity

Generation

Full-Body

Completeness

Facial Rigging

Fidelity

CG Engine

Compatible

Out�t

Editable

DreamFace[39]

Rodin[40]

MeInGame[41]

MoSAR[42]

Ours

Table 1. Comparison of latest related 3D avatar generation algorithms.

5.2. 3D Character Animation

Our system combines the facial animation and gesture animation, it can generate holistic full-body

motions. Figure 15 shows holistic gesture motions and facial animations generated from English and

Chinese speeches. Bene�t from high-quality mouth animations data, and non-autoregressive decoder

architecture, our system can generate realistic lip-sync with e�ciency exceeding real-time

performance. Additionally, suitable expressions are also incorporated into facial animations during

speech to enhance emotions. Our prede�ned motion data set guarantees no jittering gestures. And the

gesture motions are aligned well with speech rhythm(See results in appendix videos).

⋆⋆⋆ × ⋆ ✓ ✓

⋆⋆ × × × ×

⋆ ✓ ⋆ ✓ ✓

⋆⋆ × ⋆ ✓ ✓

⋆⋆⋆ ✓ ⋆⋆⋆ ✓ ✓

qeios.com doi.org/10.32388/H03RE1 21

https://www.qeios.com/
https://doi.org/10.32388/H03RE1


Figure 15. Full-body animations sequences generated by our system with english speech(top row)

,Chinese speech(middle row) and Chinese speech with interjection(bottom row).

6. Limitation

Although our method excels in generating high-quality 3D character assets and animations, it still has

several limitations. Firstly, when the input face does not have a neutral expression, our expression

correction process may introduce artifacts, leading to unsatisfactory facial rig results. Additionally,

our generated characters currently lack the ability to perform complex dynamic animations, such as

singing or dancing, due to a lack of speci�c training data. Furthermore, the general nature of our

animation model limits the personalization of facial and body motion synthesis. We are actively

researching ways to overcome these limitations.
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