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In the domain of emotion recognition using body motion, the primary challenge lies

in the scarcity of diverse and generalizable datasets. Automatic emotion recognition

uses machine learning and arti�cial intelligence techniques to recognize a person's

emotional state from various data types, such as text, images, sound, and body

motion. Body motion poses unique challenges as many factors, such as age, gender,

ethnicity, personality, and illness, affect its appearance, leading to a lack of diverse and

robust datasets speci�cally for emotion recognition. To address this, employing

Synthetic Data Generation (SDG) methods, such as Generative Adversarial Networks

(GANs) and Variational Auto Encoders (VAEs), offers potential solutions, though these

methods are often complex. This research introduces a novel application of the Neural

Gas Network (NGN) algorithm for synthesizing body motion data and optimizing

diversity and generation speed. By learning skeletal structure topology, the NGN �ts

the neurons or gas particles on body joints. Generated gas particles, which form the

skeletal structure later on, will be used to synthesize the new body posture. By

attaching body postures over frames, the �nal synthetic body motion appears. We

compared our generated dataset against others generated by GANs, VAEs, and another

benchmark algorithm, using benchmark metrics such as Fréchet Inception Distance

(FID), Diversity, and a few more. Furthermore, we continued evaluation using

classi�cation metrics such as accuracy, precision, recall, and a few others. Joint-related

features or kinematic parameters were extracted, and the system assessed model

performance against unseen data. Our �ndings demonstrate that the NGN algorithm

produces more realistic and emotionally distinct body motion data and does so with

more synthesizing speed than existing methods.
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1. Introduction

De�nition and Importance

Automatic Emotion Recognition (ER)[1][2][3][4]  technology

has rapidly evolved over recent decades, becoming a crucial

tool in enhancing Human-Computer Interaction (HCI)[3][5].

This �eld uses advancements in arti�cial intelligence and

machine learning to analyze human expressions, aiming to

accurately interpret and respond to human emotions. The

ER will mostly be conducted using different modalities of

facial expressions[6][7], vocal expressions[8], text[9],

physiological signals[2][10], and body motion[11][12]. Emotion

recognition is important because of its diverse applications

across various sectors. In healthcare, it assists in

monitoring patient well-being and mental health[13]. In the

automotive industry, emotion detection systems improve

safety by assessing the driver’s alertness and emotional

state[14]. Additionally, in customer service, it enables more

responsive and tailored interactions, enhancing user

experience and satisfaction[15]. The integration of emotion

recognition technologies into everyday devices and services

emphasizes its growing signi�cance in augmenting human

interactions with digital systems, making them more

intuitive and empathetic.

Challenges

The �eld of emotion recognition, particularly when using

body motion or tracking data, faces signi�cant challenges
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due to the scarcity of available diverse datasets[16][17][18].

This rarity stems from various factors, including the

complexity and cost associated with capturing detailed and

accurate movement data. Moreover, the use of body motion

data in emotion recognition is further complicated by its

inherent variability[19][2], which results in a lack of data

diversity and data scarcity of this modality, especially in

emotion recognition. The lack of data diversity means that

they don’t cover different variants of age, gender, ethnicity,

and disability, which don’t make fair and unbiased datasets.

This phenomenon is sometimes called a lack of data

heterogeneity.

Body Motion

Body motion is the tracking of the position and rotation of

various body joints across 3-Dimensional (3-D) space over

time, as captured in sequential frames[20][21]. This data is

crucial for understanding the dynamic and expressive

nature of human gestures and movements, which can vary

signi�cantly as emotions are expressed physically.

Individuals express emotions through body movements in

highly subjective ways, in�uenced by cultural, social, and

personal differences[19], which introduces a layer of

complexity in designing universally applicable recognition

systems.

Synthetic Data Generation

Generative AI[22]  is a subset of AI where the systems learn

underlying patterns of data to create new content that

mimics real-world data across various formats. It is the

exact opposite of discriminative AI-like classi�cation,

which solves from data to label. That means generative AI

solves form labels to multiple desired data. This technology

powers diverse applications, including creating new

images, generating text, converting text to images,

synthesizing music, producing videos, crafting digital art,

translating text into music, and more. Basically, it produces

real-world-like synthetic data, which its application is

formally known as Synthetic Data Generation (SDG)[23][24]

[25][26]. The SDG emerges as a potent solution to the above-

mentioned challenges, offering a way to create large,

diverse, and controlled datasets that can signi�cantly

enhance the training and performance of machine learning

models in emotion recognition. This approach not only

addresses the issue of data scarcity but also enables the

exploration of nuanced emotional states that may not be

well-represented in available real-world datasets. By using

algorithms capable of simulating realistic human emotions

and movements, researchers can generate data that closely

mimic real-life scenarios, thus providing valuable resources

for training more robust and accurate emotion recognition

systems. The potential of synthetic data extends beyond

�lling gaps in existing datasets; it also supports the

development of more ethical AI systems by reducing the

reliance on personal data and adhering to privacy concerns,

making it a cornerstone for future advancements in the

�eld.

Neural Gas Network

The Neural Gas Network (NGN)[27]  is a machine learning

algorithm designed to learn topologies in an unsupervised

manner, similar to Self-Organizing Maps. It excels in

clustering and visualizing high-dimensional data by

iteratively adapting to a set of input vectors, reducing the

dimensions while preserving the topological properties of

the input space. This approach is particularly valuable in

complex pattern recognition tasks where the underlying

data structures are non-linear and multidimensional. The

NGNs distinguish themselves through their �exibility in

forming clusters of varying densities, making them highly

effective for applications that require detailed feature

extraction[28], segmentation[29], and robust pattern

recognition[28] capabilities across diverse datasets. Some of

these applications implemented by Python are available in

this1 GitHub repository.

Contribution

In addressing the challenge of synthesizing body motion

data for emotion recognition due to data scarcity, this

research utilizes a supervised version of the Neural Gas

Network (NGN)[30]  to generate diverse and realistic

datasets. The NGN effectively maps the complex topology of

the human skeletal structure by positioning its neurons, or

gas particles, on critical joints of the body. These particles

capture the dynamic changes in position and rotation

across the 3-D space over time, creating a faithful

representation of human motion. More explanation of the

method is in section three.

Evaluations Materials

In order to evaluate the robustness of our approach, some

benchmark State of the Art (SoA) algorithms are considered

for generating synthetic body motion datasets, which are

Generative Adversarial Networks (GANs)[22], Variational

Auto Encoder (VAEs)[31], Long Short-Term Memory (LSTM)
[32], diffusion models[33], and copula models[34]. Also,

multiple joint-related features (kinematic parameters) are

extracted and fused for the machine learning evaluation

aspect. Furthermore, metrics of Fréchet Inception Distance

(FID)[35], Diversity[35], Fidelity[36], Dynamic Time Wrapping

(DTW)[37], Mean Per-Joint Position Error (MPJPE)[38],

accuracy[39], precision[39], recall[39], f1 score[39], and

Matthews Correlation Coef�cient (MCC)[39][40]  are

employed for evaluating and comparing the quality of the

generated body motions. 
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Research Questions

This research is trying to answer the following Research

Questions (RQs). RQ1: How properly does the supervised

Neural Gas Network (NGN) capture and reproduce the

complex dynamics of human emotional expressions

through body motion compared to other generative

models? RQ2: What are the key factors in�uencing the

generalizability and diversity of body motion data

generated by NGN, and how do these factors affect the

emotional clarity of the synthesized outputs? RQ3: How do

variations in the training dataset size and composition

impact the NGN's ability to generalize body motion for

unseen emotional expressions in terms of kinematic

parameters? RQ4: In practical applications, how can NGN-

synthesized body motion data enhance real-time emotion

recognition systems? RQ5: Can the Neural Gas Network

effectively differentiate and synthesize body motion data

for subtle emotional variations, and what impact does this

have on the model's training ef�ciency and data generation

speed?

Paper Structure

The paper is structured as follows: The introduction

outlines the importance of emotion recognition using body

motion data, emphasizing challenges like data scarcity and

the potential of synthetic data generation with the Neural

Gas Network (NGN). The "Chronicle of Prior Research"

section reviews existing literature, highlighting gaps in

current methodologies. The "Proposed Method" explains

the application of NGN in synthesizing realistic body

motion datasets. "Evaluation and Results" assesses the

effectiveness of this approach through various metrics,

ending with a discussion for answering RQs. Finally, the

"Conclusion and Future Works" discusses the �ndings and

proposes directions for further research.

2. Chronicle of Prior Research

This section mentions widely used core algorithms which

has applications in SDG and covers SDG research on non-

body motion modalities and body motion modality. 

Benchmark Core Algorithms

First, we mention the main algorithms in the �eld of SDG.

Widely used benchmark algorithms that could be used in

SDG applications are divided into unintelligent and

intelligent algorithms. Unintelligent (not learning-based)

methods are basic augmentation (rotation, resizing,

smoothing, and more), Principal Component Analysis (PCA)
[41], and Synthetic Minority Over-sampling Technique

(SMOTE)[42]. PCA is a statistical technique that reduces the

dimensionality of data by �nding the most signi�cant

features that capture the maximum variance or

information. SMOTE is a method used to generate synthetic

samples from the minority class to balance the class

distribution in datasets, improving the performance of

classi�cation algorithms on imbalanced data. Additionally,

the most widely used intelligent (learning-based)

algorithms are GANs[22], VAEs[31], LSTM[32], copula

models[34], diffusion models[33], transformers[43],

Convolutional Neural Network (CNN)[44]. A GAN is a type of

machine learning model that involves two neural networks,

a generator and a discriminator, which compete against

each other to generate new, synthetic instances of data that

are indistinguishable from real data. A VAE is a type of

neural network that uses probabilistic encoders and

decoders to model the data distribution and generate new

data points by learning a latent space representation of the

input data. An LSTM is a type of recurrent neural network

designed to remember information for long periods of time,

making it effective for tasks involving sequential data like

time series prediction and natural language processing.

Copula models are statistical tools used to describe the

dependency structures between multiple variables,

allowing modeling of their joint distribution by specifying

the marginal distributions separately from the copula,

which captures the dependencies. Transformers are a type

of neural network architecture that relies on self-attention

mechanisms to weigh the in�uence of different parts of the

input data, enabling parallel processing and signi�cant

improvements in tasks like language understanding and

translation. A CNN is a type of deep neural network that is

particularly effective for processing data with a grid-like

topology, such as images, using convolutional layers that

apply �lters to capture spatial hierarchies and features.

SDG Literature on Other Modalities

This paragraph explains non-body motion SDG research.

The following research[45]  explores the application of

Borderline-SMOTE for augmenting Electro Encephalo

Graphy (EEG) data to improve emotion recognition using

convolutional neural networks. The research focuses on

enhancing data quality and model performance in the

domain of brain-computer interfaces for emotion

recognition. Also[46] uses PCA for synthesizing tabular data

similar to the probabilistic physiological data type. The

following research[47]  used NGN for SDG of emotional and

physiological data (EEG, Electro Cardio Graphy (ECG), and

Galvanic Skin Response (GSR)), increasing synthesis quality

and optimizing runtime speed. Implementation can be

found here2. The research[48]  focuses on generating texts

with speci�c sentiment/emotion labels. This method

addresses challenges like the poor quality and lack of

diversity in generated texts by implementing a mixture of

adversarial networks, potentially improving user

interaction systems in educational and therapeutic settings.

For audio modality, the[49]  combines a VAE with a GAN to

perform emotional speech conversion. The VAE component

is used to encode emotional nuances from speech, which
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are then enhanced for clarity and realism by the GAN

component, synthesizing new vocal expressions. The

following research[50]  employs an LSTM to extract

emotions from text, which then guides a GAN to modify

facial expressions in images accordingly. The LSTM

processes the textual input to determine the desired

emotional expression, and the GAN alters the facial image

to match this emotion. The[51]  presents a method for

generating synthetic cardiac signals by employing a

copula-based statistical approach. The authors utilize

marginal distributions of key parameters and their linear

correlations to de�ne a Gaussian copula. From this copula,

random sets of parameters are generated, which are then

used to synthesize cardiac signals. This study[52] addresses

the task of altering facial expressions in images using

conditional diffusion models. The authors propose

incorporating a semantic encoder to guide the diffusion

process, enabling the generation of speci�c emotional

expressions while preserving the individual's identity. The

research introduced in[53]  integrates transformer models

into a cycle GAN framework to enhance emotional voice

conversion. The study investigates the transformer's ability

to capture intra-relations among frames by augmenting the

receptive �eld of models, aiming to improve the conversion

of emotional expressions in speech. Also, for SDG using

CNN, authors of[54]  used the CNN algorithm for

synthesizing emotional ECG signals on the DREAMER

database3, generating a realistic and diverse dataset, and

answering data scarcity challenges.

SDG Literature on Body Motion Modality

This paragraph explains body motion SDG research.

The[55]  introduces a generative adversarial network GAN-

based technique for augmenting motion capture datasets

with synthetic data. They introduce a novel approach to

augmenting motion capture datasets using GANs. This

technique enhances the diversity and realism of

biomechanical data, which is crucial for improving motion

analysis and other related applications. Another example

that uses GAN for motion synthesis is[56], which introduces

a novel framework for synthesizing diverse and high-

quality human motions from a limited set of examples.

Also, examples of motion synthesis using Conditional

Variational Auto-Encoder (CVAE) are introduced in[38][57].

The framework in[38]  addresses various tasks such as

motion prediction, completion, interpolation, and spatial-

temporal recovery by treating inputs as masked motion

series. It estimates parametric distributions from these

inputs to generate full motion sequences and incorporates

Action-Adaptive Modulation (AAM) to adjust motion styles

based on action labels, enhancing the realism and

coherence of the synthesized motions. Additionally[58]

[59]  are Principle Component Analysis (PCA)-based motion

synthesis researches which are in the category of

traditional yet effective techniques. Lots of research has

been conducted on different variations of LSTM for motion

synthesis as they can handle sequential data (motion

frames) by capturing the temporal dynamics in human

motion. Their architecture allows them to remember

information for long periods, making them ideal for

predicting future frames in a motion sequence based on

past data. This capability enables the generation of smooth,

continuous motions that can adapt over time. Some of these

researches are[60][61]. The following research[62] uses copula

models for hand motion synthesis. This would be used to

enhance the accuracy and robustness of the motion

recognition system by effectively capturing the complex,

multidimensional relationships in hand movement data.

The[63]  presents a novel framework utilizing denoising-

diffusion processes for synthesizing human motion,

effectively balancing the trade-offs between motion

diversity and �delity. The framework employs a

Transformer-based architecture, enabling the synthesis of

long, coherent, and contextually accurate human motions

while accommodating diverse control signals such as text

and music. By pretraining the model as a diffusion model,

MoFusion enhances its ability to complete and integrate

motions, thereby improving the generation of detailed and

dynamic human activities across various scenarios. The

paper[64]  develops a Transformer-based Variational

Autoencoder (VAE) to generate realistic and variable-length

3D human motions conditioned on speci�c actions without

needing a starting pose. This approach, termed ACTOR,

utilizes action-aware latent representations to enhance

action recognition and perform motion denoising,

demonstrating signi�cant advancements over prior

methods on multiple datasets. Notable research which

employed a three-layer CNN and a one-dimensional

convolution autoencoder for motion synthesis is conducted

in[65]. They utilize CNN to synthesize realistic 3D human

motion. This methodology processes motion capture data

to generate motion sequences that are visually smooth and

authentic, employing a one-dimensional convolution

autoencoder to enhance the synthesis and apply various

physical constraints. All mentioned researches have

advantages and disadvantages, but none guarantees the

diverse synthesized body motion alongside high runtime

speed (low complexity), which our method addresses in the

next section.

3. Proposed Method

NGN on Body Motion

Employing the NGN algorithm for synthesizing body

motion in emotion recognition is conducted for the �rst

time in this research. As mentioned in the introduction, the

NGN's main purpose is to learn the topology of any input

data. Here, the input data is the human body skeleton

structure in which NGN learns its topology by scattering
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gas particles (neurons) over body joints. The process begins

by learning from existing datasets to understand the typical

movement patterns associated with different emotions. The

NGN adapts to these patterns, with each neuron adjusting

its position in the 3-D space to minimize the distance to the

nearest data points (joints), which represent speci�c

postures. Over iterations, this creates a �nely tuned

network that can interpolate new body motions by

generating intermediate postures, effectively �lling gaps in

the data landscape. Once the network has learned the

typical postural dynamics, it generates new sequences of

body motion by simulating the transition of these gas

particles across frames. This results in the synthesis of new

body motions that maintain the inherent emotional

expressions of the original data while introducing novel

variations. These variations come from positioning gas

particles around random positions of body joints due to

algorithm parameters and learning processes. So,

determining the number of gas particles (neurons) and

parameter variables plays a signi�cant role in the �nal

synthesized body motion. An example of bad parameter

tuning would be considering high numbers of iterations

and matching the number of joins and gas particles, which

ends up being almost identical between input and output

body motions. Also, considering the low number of

iterations and gas particles (less than body joints), it ends

up with deformed body motion.

Employed Data Type

We used the BioVision Hierarchy (BVH) data type4 in our

experiments. The BVH �les are a standard format used to

store motion capture data for humans and other �gures.

These �les encapsulate movement data by de�ning a

hierarchical skeleton structure composed of joints, along

with the animation data specifying the motion of each

joint. Each joint is de�ned by its name, position in 3-D

space, and rotation (typically in degrees), which dictates

how the joint moves relative to its parent joint in the

hierarchy. The structure of a BVH �le is split into two main

sections: the hierarchy section and the motion section. The

hierarchy section de�nes the skeletal structure, detailing

the connections between joints (such as 'Hip', 'Knee',

'Ankle') and their initial positions and channels of rotation

(e.g., 'Xrotation', 'Yrotation', 'Zrotation'). The motion section

contains frame-by-frame animation data, specifying the

rotation of each joint and the position of the root joint at

each point in time5. Figure 1 depicts a BVH sample from the

human body.

Figure 1. Visual representation of a BVH sample structure

of the human body

Methodology Theoretical Implementation

NGN generally consists of two layers (input and

competition). The input layer receives the input features

and connects each feature to every neuron in the next layer.

The competition layer is where neurons compete to be

closest to the input vector. The second layer comprises

neurons that compete to be closer to the input data through

a process that adjusts their weights. It has a couple of steps

in which it computes the distances between the input

vector and all neurons and ranks neurons based on

distance. Then, it updates neuron weights based on their

rank (by a neighborhood function). Finally, it adjusts the

learning rate and neighborhood size over time to stabilize

the network, ending in convergence. There are no hidden

layers as found in more traditional neural networks. The

NGN equational structure is as follows. Gas particles or

neurons:

Neurons are initialized randomly in the input space, where

they will later adapt to the structure of the data. Distance

calculation:

The Euclidean distance between the data vector   and each

neuron    is calculated. This determines how close each

neuron is to the current data vector. Ranking:

Neurons are ranked based on their distance to the data

vector. This ranking in�uences the magnitude of the

update each neuron receives. Neurons with a higher rank

(closer to the data vector) receive larger scores and updates.

Neuron update:

Neurons are updated based on their rank and proximity to

the data vector. Neurons closer to the input data receive

=  Random(input_dim) for i = 1 to Nwi (1)

d (v, ) = ∥ v − ∥wi wi (2)

v

wi

rank(v, i) = 1 (d (v, ) < d (v, ))∑
k=1

N

wk wi (3)

← + ⋅ exp(− ) ⋅ (v − )wi wi ϵt
rank(v, i)

λt
wi (4)
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larger updates, allowing them to converge toward regions of

high data density. Learning Rate (Epsilon)   is a parameter

that controls the magnitude of the updates made to each

neuron. It decreases over time, allowing the network to

stabilize as it converges. Neighborhood Range (Lambda) 

 determines the extent of in�uence that a data vector has

on nearby neurons. It veri�es that not only the closest

neuron is updated but also those in its neighborhood.

After explaining the NGN core implementation, the

following would explain the implementation of NGN in

forming the body motion BVH sample. Neurons are 

 which are joint candidates, including both positions and

rotations. Data vector   is a single frame from the BVH �le,

representing the positions and rotations of all joints.

Learning rate (Epsilon)    controls how much the neurons

adjust toward the current joints in the frame during

training. Neighborhood range (Lambda)    certi�es that

not only the closest neuron to the joint but also those

nearby are updated. (The extent of in�uence). R

  determines how closely a neuron matches the

input. Neurons with a higher rank (closer to the joint)

receive larger updates. Neurons are initialized with random

positions and rotations for each joint in the body. This sets

the starting point for the adaptation process.

The distance between joints of the current frame    and

each neuron   is calculated, incorporating both positional

and rotational differences.

ϵt

λt

wi

x

ϵt

λt

ank(x, i)

= [ , , … , , ]wi pos1i rot1i posJi rotJi

=  Random(input_dim)   for i = 1 to N

(5)

x

wi
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Neurons are adjusted based on how close they are to the

input frame. This process ensures that neurons gradually

converge toward con�gurations that represent realistic

body poses, including both positions and rotations.

After training, the closest neurons to joints are used to

generate new frames, with small variations introduced by

adding Gaussian noise. This creates new motion data that is

similar but not identical to the original.

Finally, combined generated frames create an output

motion capture for the input body motion.

Figure 2 depicts the visual performance of the NGN

algorithm for �lling the topology of the skeleton structure

in two rows in different selected frames and with different

numbers of gas particles. Also, Figure 3 illustrates

generated body motion results from GAN and NGN

compared with the original on a speci�c frame.

Figure 2. NGN performance with different gas particles on

different iterations. Top, 24 gas particles, and bottom 100.

d (x, ) =wi (∥ − +∥ − )∑
j=1

J

posj posji ∥2 rotj rotji ∥2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⎷


 (6)

← + ⋅ exp(− ) ⋅ (x − )wi wi ϵt
rank(x, i)

λt
wi (7)

 new_frame  = + N (0, )wclosest  σ2 (8)

 Full Motion Sequence  = ∑
t=1

T

 new_frame t (9)
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Figure 3. Comparing GAN and NGN-generated body motion with the original sample

(depressed sample)

Looking at Figure 2, in the �rst row, the slow convergence

of gas particles is vivid compared with the second row,

which has 100 gas particles. It is visible that with 100 gas

particles, the partial convergence starts around iteration 50,

but it is not the same case with 24 gas particles. Also, at the

end of the iteration, more gas particles are available to form

the �nal body motion with 100 gas particles, which could

increase diversity and open our hand for joint selection. By

looking closely at Figure 3 and the GAN-generated sample,

knee joints are closer to each other, which is more

correlated with neutral emotion rather than depression, as

the original emotion is depression. Furthermore, open

hands are correlated with proud and happy emotions, not

depression. The NGN-generated sample is more similar to

the original sample but with some variation, which is what

we are looking for.

4. Evaluation and Results 

SoA Algorithms on Body Motion Synthesis

This section starts with discussing how unintelligent and

intelligent SDG methods generate BVH body motion �les.

Non-learning base and learning base algorithms generate

body motion modality differently. For instance, in basic

augmentation, rotation will be applied to body joints to

create new motion sequences by changing the angle of

joints, resizing will adjust the scale of motion to simulate

different body sizes, and smoothing can help in reducing

noise in motion data, making it more �uid and realistic.

PCA can be used in SDG by identifying the principal

components of body motion data in BVH �les. This

reduction helps in isolating the most signi�cant motion

patterns, which can then be exaggerated or combined to

generate new, plausible motion sequences. By manipulating

these principal components, new variations of the original

motion data that maintain the core characteristics but

differ in speci�c aspects can be synthesized. SMOTE will be

utilized to address class imbalance in motion recognition

datasets by generating synthetic examples of

underrepresented body motions. By interpolating between

similar instances in the minority class, SMOTE will create

new, synthetic BVH �les that help balance the dataset,

improving the robustness and performance of emotion

recognition models trained on this data.

GANs will generate new and diverse body motions by

training two models: a generator that creates motions and a

discriminator that evaluates them. The generator will learn

to produce BVH �les that mimic authentic human motions,

convincing the discriminator that these generated motions

are real, thus enriching the dataset with varied and realistic

body movements. VAEs will model the distribution of

existing body motions in the dataset and generate new data

points by sampling from this learned distribution. This

process involves encoding motion data into a latent space

and then decoding from this space to create new BVH �les,

effectively generating new motion sequences that are

variations of the learned data. LSTMs will capture the

temporal dynamics and dependencies in body motion data,

allowing the generation of sequential motion data that
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follows logical and temporally coherent progressions. This

makes it particularly effective for creating longer sequences

of body motion that are realistic and maintain consistency

in movement patterns. Copula models will effectively

capture and recreate the complex dependencies between

different joints and motions in body motion data. By

modeling the joint distribution of these variables separately

from their margins using copulas, new synthetic motion

data that respects the inherent dependencies observed in

real data will be generated, ensuring that the synthetic

motions are both plausible and varied. Diffusion models

will transform a simple noise distribution into a complex

distribution of body motions through a gradual denoising

process. This approach will allow for the generation of

high-quality, realistic body motions by iteratively re�ning

random noise based on learned data characteristics,

producing new BVH �les that exhibit natural human

movement patterns. Transformers will use their self-

attention mechanisms to analyze and generate body

motion data by considering the entire sequence of

movements at once. This allows them to understand and

replicate complex interactions between different body parts

over time, generating new sequences that maintain logical

and contextually appropriate motions and enhancing the

realism and diversity of synthetic BVH data. CNNs will

process body motion data by applying convolutional �lters

that detect spatial hierarchies and dependencies in motion

patterns. This capability will enable them to generate new

motion data by capturing and emphasizing characteristic

features in body movements, creating synthetic BVH �les

that are realistic and applicable for training robust emotion

recognition models.

NGN Algorithm on Body Motion Synthesis

The NGN is trained on normalized motion data for each

class to adapt the positions of its neurons to represent the

data distribution effectively. When generating new samples,

the process involves randomly selecting a neuron from this

trained network and adding Gaussian noise to create

variability. This method ensures that each generated

sample is a novel instance, in�uenced by the overall

characteristics of the class data rather than being directly

derived from any speci�c existing sample. The generation

of three new samples per class is achieved by repeating this

process independently, using the diversity within the

network's neurons to produce varied and representative

synthetic motion data.

In the con�guration for the Neural Gas Network (NGN) used

for generating synthetic motion data, several parameters

guide the training and generation process. The network is

set up with 50 neurons, which allows for capturing a broad

range of patterns within the motion data across 50

iterations, facilitating detailed learning over a moderate

number of steps. The learning rate parameters,

epsilon_initial and epsilon_�nal, start at 0.3 and decay to

0.05, controlling the adaptation speed of the neurons to the

data, with a gradual slowdown in adjustments as learning

progresses. Similarly, lambda_initial and lambda_�nal set

the in�uence range from 10 to 0.1, decreasing the

neighborhood effect over time and allowing �ner local

adjustments in the later stages of training. The system is

con�gured to generate �ve new samples per class,

introducing variations through Gaussian noise with a

standard deviation of 3.0, which smoothes the generated

data to simulate realistic motion sequences by softening

abrupt changes and enhancing the natural �ow of

movements.

The Dataset

We used a body motion dataset introduced in[66]  called

“100Style”. The "100Style" dataset contains over 4 million

motion capture frames, detailing 100 diverse locomotion

styles for real-time animation style modeling. Captured at

60 frames per second within a 4.5m x 4.5m space, the

dataset employs Xsens technology to record full-body

motion data across 28 joints from a single 182 cm tall actor,

excluding �nger transformations. The comprehensive

dataset includes various movements such as idling,

walking, and running, each rigorously categorized into

multiple gait types like backward and forwards, runs and

walks, sidestepping, and transitions. Additionally, detailed

data processing techniques such as mirroring for

symmetric styles and extensive feature extraction

(trajectory positions, joint positions, velocities, and

rotations) enhance the dataset's utility for developing

systems that dynamically modulate motion styles based on

user input. The dataset is available at this link6. As this

paper is about synthesizing emotional body motion data,

just four style folders of angry, depressed, neutral, and

proud, which included emotional body movement, are

selected. In total, 32 samples are selected, including all

actions. The selected body motion �les are in different

sizes, but the average number of frames is 3000. The

selected data is considered balanced, not biased, regarding

sample distribution across classes, as each class contains

eight samples. This balance helps in training models more

effectively, as it reduces the likelihood of the model

over�tting to overrepresented classes or under�tting to

underrepresented ones. Balanced datasets provide an equal

opportunity for learning each class's characteristics,

leading to potentially better generalization and

performance on unseen data. Figure 4 illustrates the

trajectories of body motions for different emotional states

of 32 selected original and 40 synthetic samples generated

by the proposed method captured in a two-dimensional

plot of X and Z positions. This visualization provides a

compelling insight into how emotional states can in�uence

the walking movement behavior of individuals. The �gure

shows that synthetic samples resembled the original
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baseline samples but with diverse variations, keeping the

baseline walking pattern.

Figure 4. Walking trajectories of 32 original samples (left)

and 40 NGN-generated synthetic samples of all emotions

Data Processing and Features

In order to evaluate the performance of our proposed

method and comparison, we manually process the data. The

system reads the raw data for each class and then parses

them to their structural elements. The parsing involves

reading and interpreting the data structure that describes

the hierarchical skeleton of the body, including joint names,

their relationships, and the motion data frames, which

detail the rotation and possibly translation of each joint

over time. The process typically splits into handling the

hierarchical skeleton de�nitions in the HIERARCHY section

and sequentially applying the motion data from the

MOTION section to animate the skeleton. After parsing, we

interpolated data frames to have a unique number of frames

for input and output body motions. Also, a smoothing

Gaussian function is considered to lower the joint jittering

ratio as postprocessing for the body motion synthesizing

section. Standardization is the next step, as standardizing

data is crucial in machine learning to con�rm each feature

contributes equally, preventing bias towards features with

larger scales. Processed samples are now ready for feature

extraction. 

Multiple joint-related features (kinematic parameters) are

extracted and fused for the evaluation. Kinematic

parameters[67] or joint-related features are various metrics,

features, and quantities used to describe body joints in the

3-D space. These parameters are crucial in understanding

how a body or its parts move through space over frames.

Kinematic parameters are speci�cally designed to analyze

body motions across frames or sequences, typically

resulting in greater accuracy compared to statistical

features. Additionally, having a higher count of relevant

features positively in�uences training, giving kinematic

parameters an edge in this context. We extracted ten

kinematic parameters, namely, velocity, acceleration, jerk,

angular velocity, range of motion, spatial path, and

harmonics magnitude. 

Velocity measures the speed at which a joint moves in 3-D

space. In emotion recognition, higher velocities are

associated with more dynamic or intense emotions like

anger, whereas slower velocities could indicate depression

or a neutral state. Acceleration quanti�es the rate of change

of velocity. Sudden changes in acceleration have correlated

with sudden emotional bursts, such as the rapid onset of

anger or a proud exclamation. Conversely, minimal

acceleration is more common in depressed or neutral states.

Jerk measures the rate of change of acceleration, providing

insight into the �uidity or abruptness of movement. High

jerk values are seen in angry motions, which are typically

quick and abrupt, while lower jerk could relate to smoother

movements seen in states of pride or neutrality. Angular

velocity describes the speed of rotation around joints. Rapid

angular velocity is linked to emotions that involve

pronounced body rotations, such as pride or anger, while

slower angular velocities are indicative of depression or

neutral states. Range of motion refers to the extent of

movement at a joint. A wide range of motion is associated

with pride, which often involves expansive gestures, or

anger, which includes large, emphatic movements. A

limited range of motion is visible in depressed individuals.

The spatial path is the trajectory a joint follows through

space and can also provide emotional cues. Complex or

erratic paths are associated with anger, while

straightforward, minimal deviation paths are more typical

of depression or neutrality. Harmonics magnitude measures

the intensity of the oscillatory components of movement.

High harmonics are present in the expressive movements

associated with pride or anger, whereas low harmonics

suggest subdued emotions like depression.

The kernel density plots in Figure 5 illustrate the

distribution of various kinematic features—velocity means,

acceleration means, jerk mean, angular velocity means,

range of motion, and spatial path mean—across different

emotional states: angry, depressed, neutral, and proud for

the mix of baseline and synthetic samples. These

distributions show that the proud emotion typically

exhibits slightly higher velocities, suggesting more

vigorous movement, whereas the angry emotion is

characterized by higher acceleration and jerk, indicating

more rapid and abrupt movements. In contrast, depressed

and neutral emotions tend to show lower values in these

parameters, re�ecting slower and smoother movements.

This suggests that emotional states signi�cantly in�uence

the dynamics of body movements, with each emotion

manifesting distinct physical characteristics in terms of

speed and motion �uidity. The correlation heatmap

depicted in Figure 6 provides insight into the relationships

between various kinematic features (baseline and

synthetic). Notably, acceleration_mean and spatial_path

exhibit a strong positive correlation (0.90), indicating that

increases in acceleration are closely associated with longer

spatial paths. Similarly, velocity_mean and

acceleration_mean are also highly correlated (0.90),
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suggesting that higher velocities tend to occur alongside

higher accelerations. Conversely, angular_velocity_mean

shows a signi�cant negative correlation with

range_of_motion (-0.68), implying that higher angular

velocities may correspond to more restricted movements.

Figure 6 effectively highlights the interdependencies

between motion-related features, enhancing our

understanding of how different aspects of movement are

related in body motion analysis.

Figure 5. Kernel density plots showing the distribution of

kinematic features (velocity, acceleration, jerk, angular

velocity, range of motion, and spatial path) across four

emotional states: angry, depressed, neutral, and proud

(baseline and synthetic)
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Figure 6. Correlation heatmap of kinematic features illustrating positive and negative relationships

(baseline and synthetic)

Metrics and Classi�er

Some of the most well-known metrics in the body motion

era are considered for the evaluation process as follows.

Fréchet Inception Distance (FID)[35] measures the quality of

synthetic data by comparing the distribution of generated

body motion sequences to real body motion sequences.

This is done by extracting feature vectors from both real

and generated sequences using a deep learning model and

then calculating the distance between these distributions. A

lower FID score indicates closer similarity between the

synthetic and real data distributions, suggesting a more

accurate representation by the generative model.

Diversity[35]  is a metric that evaluates the variance within

the generated data. Essentially, it measures how different

the generated motion sequences are from each other,

ensuring that the model produces a wide range of motions

rather than repeating similar patterns. High diversity

indicates that the model can generate various realistic body

motions, re�ecting the natural variability observed in

human movements. Fidelity[36]  is the accuracy with which

the generated data mimics real body motions associated

with speci�c emotions. It measures how representative the

synthetic samples are of the actual data samples they are

meant to emulate. High �delity means that the generated

motions are indistinguishable from real motions regarding

how well they convey the intended emotions. Dynamic

Time Warping (DTW)[37]  is a method used to assess the

similarity between two time-series sequences, such as

synthetic and real body motion data. It adjusts the

sequences against each other in a non-linear manner to

align them optimally over time. This metric is useful for

evaluating the temporal accuracy of synthetic motion

sequences compared to real motion, ensuring that the

timing and pacing of movements are realistically simulated.

A lower DTW score indicates a better match between the

synthetic and real sequences, highlighting the effectiveness

of the synthetic data in replicating true human motion

dynamics. Mean Per-Joint Position Error (MPJPE)[38]  is a

metric used to evaluate the accuracy of predicted or

generated body motion data by measuring the average

distance error between corresponding joint positions in the

generated and the real motion data. This error is typically

calculated for each joint at every frame and then averaged

over all joints and frames to get the mean error. A lower

MPJPE value indicates that the synthetic body motion

closely matches the real human motion in terms of spatial

accuracy, making it a critical measure for assessing the

precision of motion capture technologies or generative

models in synthesizing realistic human movements.

Accuracy[39]  measures the proportion of total predictions

that are correct. It is a straightforward metric that tells you

how often the model correctly identi�es or classi�es the

emotion based on the generated body motion data. High

accuracy indicates that the synthetic data performs well in
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scenarios similar to the training data but doesn't account

for class imbalance. Precision[39]  is the ratio of correctly

predicted positive observations to the total predicted

positives. It highlights the model's ability to not label a

sample that is negative as positive, making it crucial for

cases where the cost of a false positive is high. Recall (or

sensitivity)[39] measures the ability of a model to �nd all the

relevant cases (true positives) within a dataset. High recall

means that the model captures a large proportion of

positive examples, which is especially important in

emotion recognition, where missing an emotional cue

could be critical. The F1 score[39]  is the harmonic mean of

precision and recall. It is used when you need to balance

precision and recall, an especially common scenario in

uneven class distributions, or when false positives and false

negatives have different costs. Matthews Correlation

Coef�cient (MCC)[39]  is a correlation coef�cient between

the observed and predicted binary classi�cations. It

provides a balanced measure that can be used even if the

classes are of very different sizes. The MCC is generally

regarded as one of the best metrics for binary classi�cation

tasks as it takes into account true and false positives and

negatives.

In our research, we've found the random forest

classi�er[67]  to be highly effective. This method is

particularly suitable due to its robust handling of complex

and high-dimensional data, which is typical of motion

capture systems. The random forest, by building multiple

decision trees and averaging their predictions, reduces the

risk of over�tting and enhances the overall accuracy of the

model. Due to its structure, it is easier to explain as we use

feature importance to �nd the most important features.

Experiments and Results

Out of 32 samples in the original data, eight samples were

selected and completely separated for the synthesis process

(two samples per class). Out of those eight samples, 10

samples for each class are generated using NGN, which

creates a total of 40 synthetic samples. Testing the model is

based on three combinations: baseline (22 samples), just

synthetic (40 samples), and a mix of synthetic and baseline

(64 samples). Also, the same number of samples are

generated by other algorithms. The NGN parameters for

body motion synthesis are mentioned above, but other

algorithm parameters are listed as follows. GANs use a

learning rate of 0.002, a beta1 value for the Adam optimizer

set at 0.5, with a batch size of 16, and run for 200 epochs.

VAEs use a learning rate of 0.001, a batch size of 16, with

latent space dimensions set at 20 for 200 epochs. The

diffusion model is con�gured with a learning rate of 0.001,

100 diffusion steps, a linear noise schedule, and a batch size

of 16. The Gaussian copula model has 10 bins and runs for

100 epochs. LSTMs feature a learning rate of 0.001,

consisting of three layers with 64 hidden units, and use a

batch size of 16. Furthermore, all train and test

combinations are based on 70 % training data and 30 %

testing over 20 runs of Monte Carlo cross-validation.

Figure 7 depicts the NGN average error for all generated

body motions of all emotional classes. These values belong

to generating 10 samples from each class, bringing 40 new

samples in total. The average error represents the average

distance between the input samples (joint data) and their

closest neurons in the network. This value indicates how

well the NGN is capturing the structure of the input data,

with lower values indicating a better �t.

Figure 7. NGN average error for all generated body motions

of all emotional classes – 40 new samples, 10 samples per

class (generation runtime: 2 minutes and 42 seconds –

core i7 CPU - generation 12) 

Table 1 provides a detailed comparison of various

generative models used for augmenting body motion data,

focusing on a set of key performance metrics across

different scenarios: using only synthetic data (Syn), only

base data, and a combination of both (Syn+Base). Models

always show improved performance metrics when

synthetic and baseline data are combined. For instance,

NGN achieves the highest accuracy (97%), precision (98%),

and MCC (97%) in our experiment. The combination of

synthetic and base data provides a richer dataset,

enhancing the models' ability to learn nuanced patterns of

emotion-speci�c movements, which in turn improves

generalization and classi�cation accuracy. The addition of

synthetic data allows for a broader range of training

examples, helping models to better capture the variability

in human emotions expressed through body motion. This

results in higher precision and recall, which is essential for

reducing false positives and negatives in emotion

recognition. 

The diffusion model exhibits the lowest standard deviation

in the Synthetic scenario (0.039), indicating highly

consistent performance across different data splits. This

reliability is crucial in practical applications where

unpredictable performance can degrade user experience or

system effectiveness. High diversity scores, such as NGN

(1142 in Syn+Base) and GAN (1149 in Syn+Base), show that

these models are effective at generating a wide range of

motion patterns, enhancing the robustness of the emotion

recognition system. Higher diversity veri�es the model can

handle various motion styles and intensities, which are

common in real-world scenarios. 

Models like NGN, GAN, and diffusion model show improved

�delity scores in Syn+Base scenarios, pointing out that the
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synthetic data they generate is more representative of true

data distributions. This closeness to real data helps in

training more accurate models, reducing the risk of

over�tting to atypical, noisy, or limited training data. 

The NGN model demonstrates outstanding ef�ciency with

the shortest runtime of 2 minutes and 42 seconds and the

lowest iteration, having just 22 units, which is one of our

model advantages. It has to be mentioned that copula

models are very optimized in that manner but not that

accurate in terms of machine cleanout metrics. Also, LSTM

performed the worst on most metrics. Furthermore, lower

scores in FID, DTW, and MPJPE for models like the NGN,

GAN, and Diffusion Model demonstrate that it is

particularly effective at synthesizing data that is close to

what is observed in real human movements. This capability

is crucial for training systems that need to recognize subtle

variations in emotional expressions conveyed through body

motion.
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Base NGN GAN VAE Diffusion Model Copula Model LSTM

- Syn Syn+Base Syn Syn+Base Syn Syn+Base Syn Syn+Base Syn Syn+Base Syn Syn+Base

Accuracy ↑ 80 % 95 % 97 % 94 % 96 % 90 % 92 % 93 % 95 % 82 % 85 % 84 % 88 %

Std ↑  0.130 0.044 0.046 0.096 0.091 0.064 0.087 0.039 0.041 0.254 0.157 0.111 0.107

Precision ↑ 86 % 96 % 98 % 95 % 97 % 92 % 94 % 95 % 95 % 83 % 86 % 85 % 86 %

Recall ↑  80 % 95 % 97 % 95 % 97 % 91 % 93 % 94 % 96 % 82 % 86 % 85 % 87 %

F1-Score ↑ 79 % 95 % 97 % 95 % 96 % 91 % 93 % 94 % 95 % 82 % 85 % 84 % 87 %

MCC ↑ 76 % 94 % 97 % 95 % 95 % 91 % 94 % 93 % 94 % 84 % 85 % 84 % 87 %

Diversity ↑ 1162 1130 1142 1139 1149 1121 1129 1131 1138 1054 1088 1065 1095

Fidelity ↑ -0.030 -0.014 -0.011 -0.013 -0.010 -0.021 -0.019 -0.014 -0.012 -0.087 -0.080 -0.081 -0.077

FID ↓ - - 3679 - 3680 - 3681 - 3679 - 3697 - 3691

DTW ↓  - - 9872 - 9812 - 9878 - 9873 - 9910 - 9900

MPJPE ↓ - - 3179 - 3169 - 3185 - 3180 - 3191 - 3187

Gen Conv ↓ - Itr 22  - 
Itr

150
- Itr 98 - Itr 110 - Itr 71 - Itr 183 -

Gen Run ↓ -
2 Min

42 Sec
-

25

Min
-

15

Min
-

11

Min
-

3 Min

28 Sec
-

43

Min
- 

Table 1. Evaluation results for all algorithms using all metrics – new abbreviations are: Base for Baseline, Syn for Synthetic, Gen

for Generation, Conv for Convergence, Run for Runtime, Itr for Iterations, Min for Minutes, and Sec for Seconds.

In Figure 8, the violin plots for data reveal a range of

variabilities across key performance metrics. In the �rst

row, the moderate to wide distributions in accuracy and

precision indicate inconsistencies in the baseline model's

performance, particularly in handling false positives and

achieving consistent, correct classi�cations. The narrower

spread in recall shows relative stability in identifying all

relevant cases, but there's room for improvement. The F1-

Score and MCC, which provide balanced and holistic views

of model performance, also show moderate variability,

indicating the model's challenges in harmonizing precision

and recall and maintaining consistency across all aspects of

classi�cation. This analysis highlights the need to re�ne

the baseline model or its training data to enhance its

reliability and effectiveness in real-world scenarios. 

The violin plots for the NGN model using synthetic data

demonstrate narrower distributions across most metrics

compared to the baseline, indicating improved consistency

and performance. Precision shows a notably wider spread,

suggesting variability in the model's ability to avoid false

positives consistently. However, the general tightening in

distributions for accuracy, recall, F1-Score, and MCC implies

that the NGN model is effectively utilizing synthetic data to

enhance its overall predictive accuracy and reliability. This

enhanced performance underscores the role of synthetic

data in providing a more regularized and homogeneous

training environment, which helps the NGN model better

learn and generalize complex emotion-related patterns in

body motion data.

The violin plots for the combination of synthetic and

baseline data display the most favorable characteristics

across all metrics, with notably tight distributions and

higher medians. This indicates exceptionally consistent and

high performance, with the least variability seen among the

three scenarios. The combined data approach clearly

enhances the model’s ability to effectively balance precision

and recall, as evidenced by the narrow spread in F1-Score

and MCC. This superior performance is attributed to the

comprehensive nature of the mixed dataset, which provides

a rich variety of examples and scenarios, allowing the NGN

model to achieve robust generalization capabilities. The

integration of synthetic and baseline data not only

stabilizes the model’s output but also maximizes its

accuracy and reliability in real-world emotion recognition

tasks.
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Figure 8. Violin plot for the baseline and NGN algorithm

results on machine learning metrics over 20 runs –

random forest classi�er (train 70 %, test 30 %)

Figure 9 depicts the feature importance[68][69] bar plot of all

emotions in the experiment (baseline and synthetic). This

�gure showcases the relative signi�cance of various

kinematic parameters for predicting emotional states. For

the angry emotion, velocity stands out as the most

signi�cant predictor, suggesting rapid movements are

characteristic of anger. In contrast, for depression, the most

crucial feature is acceleration, indicating that changes in

movement speed are a key indicator of depression. Neutral

emotions show higher importance placed on jerk, re�ecting

subtle variations in speed that differentiate it from more

expressive states. Finally, for proud, acceleration again

appears as a signi�cant feature, followed closely by range of

motion, highlighting that both the intensity and

expansiveness of movements are central to expressing

pride. Implementation of the experiments can be found

here7.

Figure 9. Feature importance bar plot for all emotions

(baseline and synthetic)

Discussion

In the discussion, we try to answer all RQs raised in the

introduction section. Regarding RQ1: The NGN-generated

synthetic body motions have shown superior capability in

capturing and reproducing the complex dynamics of

human emotional expressions through body motion,

especially when compared to baseline and other generative

models like GAN, VAE, and LSTM. The metrics such as high

accuracy (97%), precision (98%), and low standard deviation

(0.046) in the Syn+Base setup demonstrate NGN’s

effectiveness in accurately modeling emotional expressions

with consistency. These results are superior to those

achieved with baseline or synthetic data alone, suggesting

that NGN excels in integrating diverse data types to

improve learning outcomes. Regarding RQ 2: Key factors

in�uencing the generalizability and diversity of body

motion data generated by NGN include the quality and

variety of the training data, the model’s architectural

parameters, and the training regimen. The integration of

synthetic and baseline data enhances both diversity (as

indicated by high diversity scores) and �delity, showcasing

that these factors critically support the model in producing

varied yet accurate representations of emotional

expressions. This enriched data environment helps NGN

data to maintain emotional clarity in the outputs, which is

crucial for accurate emotion recognition. Regarding RQ 3:

Variations in the training dataset size and composition

signi�cantly impact NGN’s ability to generalize body

motion for unseen emotional expressions. The combined

data approach (Syn+Base) shows improved performance

metrics across all fronts, indicating that a larger and more

diverse dataset enhances the model’s ability to generalize

beyond the training data. This shows that both the breadth

(size) and depth (composition) of the dataset are pivotal in

training NGN to effectively handle new, unseen emotional

expressions. Regarding RQ 4: NGN-synthesized body

motion data can signi�cantly enhance real-time emotion

recognition systems by providing highly accurate and

diverse training datasets that improve the model’s

responsiveness and adaptability. The high precision and

accuracy observed in NGN outputs, especially in mixed data

scenarios, suggest that NGN can offer real-time systems a

robust basis for recognizing a wide range of human

emotions, thereby enhancing the system’s applicability and

reliability in practical settings. Regarding RQ 5: The NGN is

effective in differentiating and synthesizing body motion

data for subtle emotional variations, as demonstrated by its

high performance in precision and recall. This ability

positively impacts the model's training ef�ciency by

enabling quicker convergence on accurate models

(evidenced by low iteration counts in some scenarios) and

speeds up data generation (as seen with the fastest runtime

among models). These capabilities make NGN particularly

suitable for applications requiring a subtle understanding of

human emotions through body motion, improving both the

training process and the operational ef�ciency of deployed

systems.

5. Conclusion 

This research has demonstrated the profound capabilities of

the Neural Gas Network (NGN) in synthesizing body
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motion data for emotion recognition, addressing

signi�cant challenges such as data scarcity and lack of

heterogeneity. Through comparative analysis, NGN has

proven superior in capturing and reproducing the complex

dynamics of human emotional expressions through body

motion when evaluated against other state-of-the-art

generative models like GANs, VAEs, LSTM, diffusion

models, and copula models. The integration of synthetic

and baseline data has notably enhanced the NGN’s

performance, showcasing high precision and robust

generalization across diverse emotional states. The key

factors in�uencing the generalizability and diversity of the

NGN-generated data include the quality of the synthetic

data, the algorithm’s inherent capacity to adapt to the

complex topology of human skeletal movements, and the

effective blending of synthetic and real datasets. These

elements have critically improved the emotional clarity of

the outputs, making the synthesized body motion data not

only more diverse but also more representative of real-

world variations. The use of NGN in practical applications

promises signi�cant enhancements in real-time emotion

recognition systems. By generating high-�delity, diverse

body motion datasets, NGN enables these systems to

operate with greater accuracy and less bias, which is crucial

for applications ranging from healthcare to customer

service. The ability of NGN to differentiate subtle emotional

variations has also been highlighted, marking it as a potent

tool for re�ning emotion detection algorithms and

improving their responsiveness to nuanced human

behaviors. Future research should explore the scalability of

NGN applications in emotion recognition across larger and

more varied datasets, potentially incorporating more

complex emotional states and physical gestures. Further

development could also focus on optimizing NGN's

computational ef�ciency to enhance its applicability in

real-time systems where processing speed is critical.

Additionally, investigating the ethical implications of

synthetic data generation and its impact on privacy and

data protection will be crucial as these technologies become

more pervasive in everyday applications.
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Footnotes

1

https://github.com/SeyedMuhammadHosseinMousavi/Neural

Gas-Network-Toolbox

2

https://github.com/SeyedMuhammadHosseinMousavi/Synthe

Data-Generation-by-Supervised-Neural-Gas-Network

3 https://zenodo.org/records/546113

4 https://research.cs.wisc.edu/graphics/Courses/cs-838-

1999/Jeff/BVH.html

5

https://mathematica.stackexchange.com/questions/60292/how

to-build-a-bvh-a-motion-capture-�le-format-player-in-

mathematica

6 https://www.ianxmason.com/100style/

7

https://github.com/SeyedMuhammadHosseinMousavi/Synthe

Data-Generation-of-Body-Motion-Data-by-Neural-Gas-

Network-for-Emotion-Recognition
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