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In the domain of emotion recognition using body motion, the primary challenge lies in the scarcity of diverse and

generalizable datasets. Automatic emotion recognition uses machine learning and arti�cial intelligence techniques

to recognize a person's emotional state from various data types, such as text, images, sound, and body motion. Body

motion poses unique challenges as many factors, such as age, gender, ethnicity, personality, and illness, affect its

appearance, leading to a lack of diverse and robust datasets speci�cally for emotion recognition. To address this,

employing Synthetic Data Generation (SDG) methods, such as Generative Adversarial Networks (GANs) and

Variational Auto Encoders (VAEs), offers potential solutions, though these methods are often complex. This research

introduces a novel application of the Neural Gas Network (NGN) algorithm for synthesizing body motion data and

optimizing diversity and generation speed. By learning skeletal structure topology, the NGN �ts the neurons or gas

particles on body joints. Generated gas particles, which form the skeletal structure later on, will be used to synthesize

the new body posture. By attaching body postures over frames, the �nal synthetic body motion appears. We

compared our generated dataset against others generated by GANs, VAEs, and another benchmark algorithm, using

benchmark metrics such as Fréchet Inception Distance (FID), Diversity, and a few more. Furthermore, we continued

evaluation using classi�cation metrics such as accuracy, precision, recall, and a few others. Joint-related features or

kinematic parameters were extracted, and the system assessed model performance against unseen data. Our �ndings

demonstrate that the NGN algorithm produces more realistic and emotionally distinct body motion data and does so

with more synthesizing speed than existing methods.

Corresponding author: S. Muhammad Hossein Mousavi, s.muhammad.hossein.mousavi@gmail.com

1. Introduction

De�nition and Importance

Automatic Emotion Recognition (ER)[1][2][3][4]  technology has rapidly evolved over recent decades, becoming a crucial

tool in enhancing Human-Computer Interaction (HCI)[3][5]. This �eld uses advancements in arti�cial intelligence and

machine learning to analyze human expressions, aiming to accurately interpret and respond to human emotions. The ER
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will mostly be conducted using different modalities of facial expressions[6][7], vocal expressions[8], text[9], physiological

signals[2][10], and body motion[11][12]. Emotion recognition is important because of its diverse applications across various

sectors. In healthcare, it assists in monitoring patient well-being and mental health[13]. In the automotive industry,

emotion detection systems improve safety by assessing the driver’s alertness and emotional state[14]. Additionally, in

customer service, it enables more responsive and tailored interactions, enhancing user experience and satisfaction[15].

The integration of emotion recognition technologies into everyday devices and services emphasizes its growing

signi�cance in augmenting human interactions with digital systems, making them more intuitive and empathetic.

Challenges

The �eld of emotion recognition, particularly when using body motion or tracking data, faces signi�cant challenges due

to the scarcity of available diverse datasets[16][17][18]. This rarity stems from various factors, including the complexity and

cost associated with capturing detailed and accurate movement data. Moreover, the use of body motion data in emotion

recognition is further complicated by its inherent variability[19][2], which results in a lack of data diversity and data

scarcity of this modality, especially in emotion recognition. The lack of data diversity means that they don’t cover

different variants of age, gender, ethnicity, and disability, which don’t make fair and unbiased datasets. This

phenomenon is sometimes called a lack of data heterogeneity.

Body Motion

Body motion is the tracking of the position and rotation of various body joints across 3-Dimensional (3-D) space over

time, as captured in sequential frames[20][21]. This data is crucial for understanding the dynamic and expressive nature

of human gestures and movements, which can vary signi�cantly as emotions are expressed physically. Individuals

express emotions through body movements in highly subjective ways, in�uenced by cultural, social, and personal

differences[19], which introduces a layer of complexity in designing universally applicable recognition systems.

Synthetic Data Generation

Generative AI[22] is a subset of AI where the systems learn underlying patterns of data to create new content that mimics

real-world data across various formats. It is the exact opposite of discriminative AI-like classi�cation, which solves from

data to label. That means generative AI solves form labels to multiple desired data. This technology powers diverse

applications, including creating new images, generating text, converting text to images, synthesizing music, producing

videos, crafting digital art, translating text into music, and more. Basically, it produces real-world-like synthetic data,

which its application is formally known as Synthetic Data Generation (SDG)[23][24][25][26]. The SDG emerges as a potent

solution to the above-mentioned challenges, offering a way to create large, diverse, and controlled datasets that can

signi�cantly enhance the training and performance of machine learning models in emotion recognition. This approach

not only addresses the issue of data scarcity but also enables the exploration of nuanced emotional states that may not

be well-represented in available real-world datasets. By using algorithms capable of simulating realistic human
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emotions and movements, researchers can generate data that closely mimic real-life scenarios, thus providing valuable

resources for training more robust and accurate emotion recognition systems. The potential of synthetic data extends

beyond �lling gaps in existing datasets; it also supports the development of more ethical AI systems by reducing the

reliance on personal data and adhering to privacy concerns, making it a cornerstone for future advancements in the

�eld.

Neural Gas Network

The Neural Gas Network (NGN)[27]  is a machine learning algorithm designed to learn topologies in an unsupervised

manner, similar to Self-Organizing Maps. It excels in clustering and visualizing high-dimensional data by iteratively

adapting to a set of input vectors, reducing the dimensions while preserving the topological properties of the input

space. This approach is particularly valuable in complex pattern recognition tasks where the underlying data structures

are non-linear and multidimensional. The NGNs distinguish themselves through their �exibility in forming clusters of

varying densities, making them highly effective for applications that require detailed feature extraction[28],

segmentation[29], and robust pattern recognition[28]  capabilities across diverse datasets. Some of these applications

implemented by Python are available in this1 GitHub repository.

Contribution

In addressing the challenge of synthesizing body motion data for emotion recognition due to data scarcity, this research

utilizes a supervised version of the Neural Gas Network (NGN)[30]  to generate diverse and realistic datasets. The NGN

effectively maps the complex topology of the human skeletal structure by positioning its neurons, or gas particles, on

critical joints of the body. These particles capture the dynamic changes in position and rotation across the 3-D space

over time, creating a faithful representation of human motion. More explanation of the method is in section three.

Evaluations Materials

In order to evaluate the robustness of our approach, some benchmark State of the Art (SoA) algorithms are considered for

generating synthetic body motion datasets, which are Generative Adversarial Networks (GANs)[22], Variational Auto

Encoder (VAEs)[31], Long Short-Term Memory (LSTM)[32], diffusion models[33], and copula models[34]. Also, multiple

joint-related features (kinematic parameters) are extracted and fused for the machine learning evaluation aspect.

Furthermore, metrics of Fréchet Inception Distance (FID)[35], Diversity[35], Fidelity[36], Dynamic Time Wrapping (DTW)

[37], Mean Per-Joint Position Error (MPJPE)[38], accuracy[39], precision[39], recall[39], f1 score[39], and Matthews

Correlation Coef�cient (MCC)[39][40]  are employed for evaluating and comparing the quality of the generated body

motions. 
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Research Questions

This research is trying to answer the following Research Questions (RQs). RQ1: How properly does the supervised Neural

Gas Network (NGN) capture and reproduce the complex dynamics of human emotional expressions through body

motion compared to other generative models? RQ2: What are the key factors in�uencing the generalizability and

diversity of body motion data generated by NGN, and how do these factors affect the emotional clarity of the synthesized

outputs? RQ3: How do variations in the training dataset size and composition impact the NGN's ability to generalize body

motion for unseen emotional expressions in terms of kinematic parameters? RQ4: In practical applications, how can

NGN-synthesized body motion data enhance real-time emotion recognition systems? RQ5: Can the Neural Gas Network

effectively differentiate and synthesize body motion data for subtle emotional variations, and what impact does this

have on the model's training ef�ciency and data generation speed?

Paper Structure

The paper is structured as follows: The introduction outlines the importance of emotion recognition using body motion

data, emphasizing challenges like data scarcity and the potential of synthetic data generation with the Neural Gas

Network (NGN). The "Chronicle of Prior Research" section reviews existing literature, highlighting gaps in current

methodologies. The "Proposed Method" explains the application of NGN in synthesizing realistic body motion datasets.

"Evaluation and Results" assesses the effectiveness of this approach through various metrics, ending with a discussion

for answering RQs. Finally, the "Conclusion and Future Works" discusses the �ndings and proposes directions for further

research.

2. Chronicle of Prior Research

This section mentions widely used core algorithms which has applications in SDG and covers SDG research on non-body

motion modalities and body motion modality. 

Benchmark Core Algorithms

First, we mention the main algorithms in the �eld of SDG. Widely used benchmark algorithms that could be used in SDG

applications are divided into unintelligent and intelligent algorithms. Unintelligent (not learning-based) methods are

basic augmentation (rotation, resizing, smoothing, and more), Principal Component Analysis (PCA)[41], and Synthetic

Minority Over-sampling Technique (SMOTE)[42]. PCA is a statistical technique that reduces the dimensionality of data by

�nding the most signi�cant features that capture the maximum variance or information. SMOTE is a method used to

generate synthetic samples from the minority class to balance the class distribution in datasets, improving the

performance of classi�cation algorithms on imbalanced data. Additionally, the most widely used intelligent (learning-

based) algorithms are GANs[22], VAEs[31], LSTM[32], copula models[34], diffusion models[33], transformers[43],

Convolutional Neural Network (CNN)[44]. A GAN is a type of machine learning model that involves two neural networks,

a generator and a discriminator, which compete against each other to generate new, synthetic instances of data that are
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indistinguishable from real data. A VAE is a type of neural network that uses probabilistic encoders and decoders to

model the data distribution and generate new data points by learning a latent space representation of the input data. An

LSTM is a type of recurrent neural network designed to remember information for long periods of time, making it

effective for tasks involving sequential data like time series prediction and natural language processing. Copula models

are statistical tools used to describe the dependency structures between multiple variables, allowing modeling of their

joint distribution by specifying the marginal distributions separately from the copula, which captures the dependencies.

Transformers are a type of neural network architecture that relies on self-attention mechanisms to weigh the in�uence

of different parts of the input data, enabling parallel processing and signi�cant improvements in tasks like language

understanding and translation. A CNN is a type of deep neural network that is particularly effective for processing data

with a grid-like topology, such as images, using convolutional layers that apply �lters to capture spatial hierarchies and

features.

SDG Literature on Other Modalities

This paragraph explains non-body motion SDG research. The following research[45]  explores the application of

Borderline-SMOTE for augmenting Electro Encephalo Graphy (EEG) data to improve emotion recognition using

convolutional neural networks. The research focuses on enhancing data quality and model performance in the domain

of brain-computer interfaces for emotion recognition. Also[46]  uses PCA for synthesizing tabular data similar to the

probabilistic physiological data type. The following research[47] used NGN for SDG of emotional and physiological data

(EEG, Electro Cardio Graphy (ECG), and Galvanic Skin Response (GSR)), increasing synthesis quality and optimizing

runtime speed. Implementation can be found here2. The research[48]  focuses on generating texts with speci�c

sentiment/emotion labels. This method addresses challenges like the poor quality and lack of diversity in generated

texts by implementing a mixture of adversarial networks, potentially improving user interaction systems in educational

and therapeutic settings. For audio modality, the[49]  combines a VAE with a GAN to perform emotional speech

conversion. The VAE component is used to encode emotional nuances from speech, which are then enhanced for clarity

and realism by the GAN component, synthesizing new vocal expressions. The following research[50] employs an LSTM to

extract emotions from text, which then guides a GAN to modify facial expressions in images accordingly. The LSTM

processes the textual input to determine the desired emotional expression, and the GAN alters the facial image to match

this emotion. The[51] presents a method for generating synthetic cardiac signals by employing a copula-based statistical

approach. The authors utilize marginal distributions of key parameters and their linear correlations to de�ne a Gaussian

copula. From this copula, random sets of parameters are generated, which are then used to synthesize cardiac signals.

This study[52]  addresses the task of altering facial expressions in images using conditional diffusion models. The

authors propose incorporating a semantic encoder to guide the diffusion process, enabling the generation of speci�c

emotional expressions while preserving the individual's identity. The research introduced in[53]  integrates transformer

models into a cycle GAN framework to enhance emotional voice conversion. The study investigates the transformer's

ability to capture intra-relations among frames by augmenting the receptive �eld of models, aiming to improve the
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conversion of emotional expressions in speech. Also, for SDG using CNN, authors of[54]  used the CNN algorithm for

synthesizing emotional ECG signals on the DREAMER database3, generating a realistic and diverse dataset, and

answering data scarcity challenges.

SDG Literature on Body Motion Modality

This paragraph explains body motion SDG research. The[55]  introduces a generative adversarial network GAN-based

technique for augmenting motion capture datasets with synthetic data. They introduce a novel approach to augmenting

motion capture datasets using GANs. This technique enhances the diversity and realism of biomechanical data, which is

crucial for improving motion analysis and other related applications. Another example that uses GAN for motion

synthesis is[56], which introduces a novel framework for synthesizing diverse and high-quality human motions from a

limited set of examples. Also, examples of motion synthesis using Conditional Variational Auto-Encoder (CVAE) are

introduced in[38][57]. The framework in[38] addresses various tasks such as motion prediction, completion, interpolation,

and spatial-temporal recovery by treating inputs as masked motion series. It estimates parametric distributions from

these inputs to generate full motion sequences and incorporates Action-Adaptive Modulation (AAM) to adjust motion

styles based on action labels, enhancing the realism and coherence of the synthesized motions. Additionally[58][59] are

Principle Component Analysis (PCA)-based motion synthesis researches which are in the category of traditional yet

effective techniques. Lots of research has been conducted on different variations of LSTM for motion synthesis as they

can handle sequential data (motion frames) by capturing the temporal dynamics in human motion. Their architecture

allows them to remember information for long periods, making them ideal for predicting future frames in a motion

sequence based on past data. This capability enables the generation of smooth, continuous motions that can adapt over

time. Some of these researches are[60][61]. The following research[62] uses copula models for hand motion synthesis. This

would be used to enhance the accuracy and robustness of the motion recognition system by effectively capturing the

complex, multidimensional relationships in hand movement data. The[63]  presents a novel framework utilizing

denoising-diffusion processes for synthesizing human motion, effectively balancing the trade-offs between motion

diversity and �delity. The framework employs a Transformer-based architecture, enabling the synthesis of long,

coherent, and contextually accurate human motions while accommodating diverse control signals such as text and

music. By pretraining the model as a diffusion model, MoFusion enhances its ability to complete and integrate motions,

thereby improving the generation of detailed and dynamic human activities across various scenarios. The

paper[64]  develops a Transformer-based Variational Autoencoder (VAE) to generate realistic and variable-length 3D

human motions conditioned on speci�c actions without needing a starting pose. This approach, termed ACTOR, utilizes

action-aware latent representations to enhance action recognition and perform motion denoising, demonstrating

signi�cant advancements over prior methods on multiple datasets. Notable research which employed a three-layer CNN

and a one-dimensional convolution autoencoder for motion synthesis is conducted in[65]. They utilize CNN to synthesize

realistic 3D human motion. This methodology processes motion capture data to generate motion sequences that are

visually smooth and authentic, employing a one-dimensional convolution autoencoder to enhance the synthesis and

qeios.com doi.org/10.32388/H3YWEX 6

https://www.qeios.com/
https://doi.org/10.32388/H3YWEX


apply various physical constraints. All mentioned researches have advantages and disadvantages, but none guarantees

the diverse synthesized body motion alongside high runtime speed (low complexity), which our method addresses in

the next section.

3. Proposed Method

NGN on Body Motion

Employing the NGN algorithm for synthesizing body motion in emotion recognition is conducted for the �rst time in

this research. As mentioned in the introduction, the NGN's main purpose is to learn the topology of any input data. Here,

the input data is the human body skeleton structure in which NGN learns its topology by scattering gas particles

(neurons) over body joints. The process begins by learning from existing datasets to understand the typical movement

patterns associated with different emotions. The NGN adapts to these patterns, with each neuron adjusting its position

in the 3-D space to minimize the distance to the nearest data points (joints), which represent speci�c postures. Over

iterations, this creates a �nely tuned network that can interpolate new body motions by generating intermediate

postures, effectively �lling gaps in the data landscape. Once the network has learned the typical postural dynamics, it

generates new sequences of body motion by simulating the transition of these gas particles across frames. This results

in the synthesis of new body motions that maintain the inherent emotional expressions of the original data while

introducing novel variations. These variations come from positioning gas particles around random positions of body

joints due to algorithm parameters and learning processes. So, determining the number of gas particles (neurons) and

parameter variables plays a signi�cant role in the �nal synthesized body motion. An example of bad parameter tuning

would be considering high numbers of iterations and matching the number of joins and gas particles, which ends up

being almost identical between input and output body motions. Also, considering the low number of iterations and gas

particles (less than body joints), it ends up with deformed body motion.

Employed Data Type

We used the BioVision Hierarchy (BVH) data type4 in our experiments. The BVH �les are a standard format used to store

motion capture data for humans and other �gures. These �les encapsulate movement data by de�ning a hierarchical

skeleton structure composed of joints, along with the animation data specifying the motion of each joint. Each joint is

de�ned by its name, position in 3-D space, and rotation (typically in degrees), which dictates how the joint moves

relative to its parent joint in the hierarchy. The structure of a BVH �le is split into two main sections: the hierarchy

section and the motion section. The hierarchy section de�nes the skeletal structure, detailing the connections between

joints (such as 'Hip', 'Knee', 'Ankle') and their initial positions and channels of rotation (e.g., 'Xrotation', 'Yrotation',

'Zrotation'). The motion section contains frame-by-frame animation data, specifying the rotation of each joint and the

position of the root joint at each point in time5. Figure 1 depicts a BVH sample from the human body.
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Figure 1. Visual representation of a BVH sample structure of the human body

Methodology Theoretical Implementation

NGN generally consists of two layers (input and competition). The input layer receives the input features and connects

each feature to every neuron in the next layer. The competition layer is where neurons compete to be closest to the input

vector. The second layer comprises neurons that compete to be closer to the input data through a process that adjusts

their weights. It has a couple of steps in which it computes the distances between the input vector and all neurons and

ranks neurons based on distance. Then, it updates neuron weights based on their rank (by a neighborhood function).

Finally, it adjusts the learning rate and neighborhood size over time to stabilize the network, ending in convergence.

There are no hidden layers as found in more traditional neural networks. The NGN equational structure is as follows. Gas

particles or neurons:

Neurons are initialized randomly in the input space, where they will later adapt to the structure of the data. Distance

calculation:

The Euclidean distance between the data vector    and each neuron    is calculated. This determines how close each

neuron is to the current data vector. Ranking:

Neurons are ranked based on their distance to the data vector. This ranking in�uences the magnitude of the update each

neuron receives. Neurons with a higher rank (closer to the data vector) receive larger scores and updates. Neuron update:

=  Random(input_dim) for i = 1 to Nwi (1)

d (v, ) = ∥ v − ∥wi wi (2)

v wi

rank(v, i) = 1 (d (v, ) < d (v, ))∑
k=1

N

wk wi (3)

← + ⋅ exp(− ) ⋅ (v − )wi wi ϵt
rank(v, i)

λt
wi (4)
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Neurons are updated based on their rank and proximity to the data vector. Neurons closer to the input data receive larger

updates, allowing them to converge toward regions of high data density. Learning Rate (Epsilon)   is a parameter that

controls the magnitude of the updates made to each neuron. It decreases over time, allowing the network to stabilize as

it converges. Neighborhood Range (Lambda)    determines the extent of in�uence that a data vector has on nearby

neurons. It veri�es that not only the closest neuron is updated but also those in its neighborhood.

After explaining the NGN core implementation, the following would explain the implementation of NGN in forming the

body motion BVH sample. Neurons are    which are joint candidates, including both positions and rotations. Data

vector   is a single frame from the BVH �le, representing the positions and rotations of all joints. Learning rate (Epsilon) 

 controls how much the neurons adjust toward the current joints in the frame during training. Neighborhood range

(Lambda)    certi�es that not only the closest neuron to the joint but also those nearby are updated. (The extent of

in�uence). R   determines how closely a neuron matches the input. Neurons with a higher rank (closer to the

joint) receive larger updates. Neurons are initialized with random positions and rotations for each joint in the body. This

sets the starting point for the adaptation process.

The distance between joints of the current frame   and each neuron   is calculated, incorporating both positional and

rotational differences.

Neurons are adjusted based on how close they are to the input frame. This process ensures that neurons gradually

converge toward con�gurations that represent realistic body poses, including both positions and rotations.

After training, the closest neurons to joints are used to generate new frames, with small variations introduced by adding

Gaussian noise. This creates new motion data that is similar but not identical to the original.

Finally, combined generated frames create an output motion capture for the input body motion.

Figure 2 depicts the visual performance of the NGN algorithm for �lling the topology of the skeleton structure in two

rows in different selected frames and with different numbers of gas particles. Also, Figure 3 illustrates generated body

motion results from GAN and NGN compared with the original on a speci�c frame.

ϵt

λt

wi

x

ϵt

λt

ank(x, i)

= [ , , … , , ] =  Random(input_dim)   for i = 1 to Nwi pos1i rot1i posJi rotJi (5)

x wi

d (x, ) =wi (∥ − +∥ − )∑
j=1

J

posj posji ∥2 rotj rotji ∥2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⎷


 (6)

← + ⋅ exp(− ) ⋅ (x − )wi wi ϵt
rank(x, i)

λt
wi (7)

 new_frame  = + N (0, )wclosest  σ2 (8)

 Full Motion Sequence  = ∑
t=1

T

 new_frame t (9)
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Figure 2. NGN performance with different gas particles on different iterations. Top, 24 gas particles, and bottom 100.

Figure 3. Comparing GAN and NGN-generated body motion with the original sample

(depressed sample)

Looking at Figure 2, in the �rst row, the slow convergence of gas particles is vivid compared with the second row, which

has 100 gas particles. It is visible that with 100 gas particles, the partial convergence starts around iteration 50, but it is

not the same case with 24 gas particles. Also, at the end of the iteration, more gas particles are available to form the �nal

body motion with 100 gas particles, which could increase diversity and open our hand for joint selection. By looking

closely at Figure 3 and the GAN-generated sample, knee joints are closer to each other, which is more correlated with

neutral emotion rather than depression, as the original emotion is depression. Furthermore, open hands are correlated
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with proud and happy emotions, not depression. The NGN-generated sample is more similar to the original sample but

with some variation, which is what we are looking for.

4. Evaluation and Results 

SoA Algorithms on Body Motion Synthesis

This section starts with discussing how unintelligent and intelligent SDG methods generate BVH body motion �les.

Non-learning base and learning base algorithms generate body motion modality differently. For instance, in basic

augmentation, rotation will be applied to body joints to create new motion sequences by changing the angle of joints,

resizing will adjust the scale of motion to simulate different body sizes, and smoothing can help in reducing noise in

motion data, making it more �uid and realistic. PCA can be used in SDG by identifying the principal components of body

motion data in BVH �les. This reduction helps in isolating the most signi�cant motion patterns, which can then be

exaggerated or combined to generate new, plausible motion sequences. By manipulating these principal components,

new variations of the original motion data that maintain the core characteristics but differ in speci�c aspects can be

synthesized. SMOTE will be utilized to address class imbalance in motion recognition datasets by generating synthetic

examples of underrepresented body motions. By interpolating between similar instances in the minority class, SMOTE

will create new, synthetic BVH �les that help balance the dataset, improving the robustness and performance of emotion

recognition models trained on this data.

GANs will generate new and diverse body motions by training two models: a generator that creates motions and a

discriminator that evaluates them. The generator will learn to produce BVH �les that mimic authentic human motions,

convincing the discriminator that these generated motions are real, thus enriching the dataset with varied and realistic

body movements. VAEs will model the distribution of existing body motions in the dataset and generate new data points

by sampling from this learned distribution. This process involves encoding motion data into a latent space and then

decoding from this space to create new BVH �les, effectively generating new motion sequences that are variations of the

learned data. LSTMs will capture the temporal dynamics and dependencies in body motion data, allowing the generation

of sequential motion data that follows logical and temporally coherent progressions. This makes it particularly effective

for creating longer sequences of body motion that are realistic and maintain consistency in movement patterns. Copula

models will effectively capture and recreate the complex dependencies between different joints and motions in body

motion data. By modeling the joint distribution of these variables separately from their margins using copulas, new

synthetic motion data that respects the inherent dependencies observed in real data will be generated, ensuring that the

synthetic motions are both plausible and varied. Diffusion models will transform a simple noise distribution into a

complex distribution of body motions through a gradual denoising process. This approach will allow for the generation

of high-quality, realistic body motions by iteratively re�ning random noise based on learned data characteristics,

producing new BVH �les that exhibit natural human movement patterns. Transformers will use their self-attention

mechanisms to analyze and generate body motion data by considering the entire sequence of movements at once. This

allows them to understand and replicate complex interactions between different body parts over time, generating new
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sequences that maintain logical and contextually appropriate motions and enhancing the realism and diversity of

synthetic BVH data. CNNs will process body motion data by applying convolutional �lters that detect spatial hierarchies

and dependencies in motion patterns. This capability will enable them to generate new motion data by capturing and

emphasizing characteristic features in body movements, creating synthetic BVH �les that are realistic and applicable for

training robust emotion recognition models.

NGN Algorithm on Body Motion Synthesis

The NGN is trained on normalized motion data for each class to adapt the positions of its neurons to represent the data

distribution effectively. When generating new samples, the process involves randomly selecting a neuron from this

trained network and adding Gaussian noise to create variability. This method ensures that each generated sample is a

novel instance, in�uenced by the overall characteristics of the class data rather than being directly derived from any

speci�c existing sample. The generation of three new samples per class is achieved by repeating this process

independently, using the diversity within the network's neurons to produce varied and representative synthetic motion

data.

In the con�guration for the Neural Gas Network (NGN) used for generating synthetic motion data, several parameters

guide the training and generation process. The network is set up with 50 neurons, which allows for capturing a broad

range of patterns within the motion data across 50 iterations, facilitating detailed learning over a moderate number of

steps. The learning rate parameters, epsilon_initial and epsilon_�nal, start at 0.3 and decay to 0.05, controlling the

adaptation speed of the neurons to the data, with a gradual slowdown in adjustments as learning progresses. Similarly,

lambda_initial and lambda_�nal set the in�uence range from 10 to 0.1, decreasing the neighborhood effect over time and

allowing �ner local adjustments in the later stages of training. The system is con�gured to generate �ve new samples

per class, introducing variations through Gaussian noise with a standard deviation of 3.0, which smoothes the generated

data to simulate realistic motion sequences by softening abrupt changes and enhancing the natural �ow of movements.

The Dataset

We used a body motion dataset introduced in[66] called “100Style”. The "100Style" dataset contains over 4 million motion

capture frames, detailing 100 diverse locomotion styles for real-time animation style modeling. Captured at 60 frames

per second within a 4.5m x 4.5m space, the dataset employs Xsens technology to record full-body motion data across 28

joints from a single 182 cm tall actor, excluding �nger transformations. The comprehensive dataset includes various

movements such as idling, walking, and running, each rigorously categorized into multiple gait types like backward and

forwards, runs and walks, sidestepping, and transitions. Additionally, detailed data processing techniques such as

mirroring for symmetric styles and extensive feature extraction (trajectory positions, joint positions, velocities, and

rotations) enhance the dataset's utility for developing systems that dynamically modulate motion styles based on user

input. The dataset is available at this link6. As this paper is about synthesizing emotional body motion data, just four

style folders of angry, depressed, neutral, and proud, which included emotional body movement, are selected. In total, 32

samples are selected, including all actions. The selected body motion �les are in different sizes, but the average number
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of frames is 3000. The selected data is considered balanced, not biased, regarding sample distribution across classes, as

each class contains eight samples. This balance helps in training models more effectively, as it reduces the likelihood of

the model over�tting to overrepresented classes or under�tting to underrepresented ones. Balanced datasets provide an

equal opportunity for learning each class's characteristics, leading to potentially better generalization and performance

on unseen data. Figure 4 illustrates the trajectories of body motions for different emotional states of 32 selected original

and 40 synthetic samples generated by the proposed method captured in a two-dimensional plot of X and Z positions.

This visualization provides a compelling insight into how emotional states can in�uence the walking movement

behavior of individuals. The �gure shows that synthetic samples resembled the original baseline samples but with

diverse variations, keeping the baseline walking pattern.

Figure 4. Walking trajectories of 32 original samples (left) and 40 NGN-generated synthetic samples of all emotions

Data Processing and Features

In order to evaluate the performance of our proposed method and comparison, we manually process the data. The

system reads the raw data for each class and then parses them to their structural elements. The parsing involves reading

and interpreting the data structure that describes the hierarchical skeleton of the body, including joint names, their

relationships, and the motion data frames, which detail the rotation and possibly translation of each joint over time. The

process typically splits into handling the hierarchical skeleton de�nitions in the HIERARCHY section and sequentially

applying the motion data from the MOTION section to animate the skeleton. After parsing, we interpolated data frames

to have a unique number of frames for input and output body motions. Also, a smoothing Gaussian function is

considered to lower the joint jittering ratio as postprocessing for the body motion synthesizing section. Standardization

is the next step, as standardizing data is crucial in machine learning to con�rm each feature contributes equally,

preventing bias towards features with larger scales. Processed samples are now ready for feature extraction. 
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Multiple joint-related features (kinematic parameters) are extracted and fused for the evaluation. Kinematic

parameters[67] or joint-related features are various metrics, features, and quantities used to describe body joints in the 3-

D space. These parameters are crucial in understanding how a body or its parts move through space over frames.

Kinematic parameters are speci�cally designed to analyze body motions across frames or sequences, typically resulting

in greater accuracy compared to statistical features. Additionally, having a higher count of relevant features positively

in�uences training, giving kinematic parameters an edge in this context. We extracted ten kinematic parameters,

namely, velocity, acceleration, jerk, angular velocity, range of motion, spatial path, and harmonics magnitude. 

Velocity measures the speed at which a joint moves in 3-D space. In emotion recognition, higher velocities are associated

with more dynamic or intense emotions like anger, whereas slower velocities could indicate depression or a neutral state.

Acceleration quanti�es the rate of change of velocity. Sudden changes in acceleration have correlated with sudden

emotional bursts, such as the rapid onset of anger or a proud exclamation. Conversely, minimal acceleration is more

common in depressed or neutral states. Jerk measures the rate of change of acceleration, providing insight into the

�uidity or abruptness of movement. High jerk values are seen in angry motions, which are typically quick and abrupt,

while lower jerk could relate to smoother movements seen in states of pride or neutrality. Angular velocity describes the

speed of rotation around joints. Rapid angular velocity is linked to emotions that involve pronounced body rotations,

such as pride or anger, while slower angular velocities are indicative of depression or neutral states. Range of motion

refers to the extent of movement at a joint. A wide range of motion is associated with pride, which often involves

expansive gestures, or anger, which includes large, emphatic movements. A limited range of motion is visible in

depressed individuals. The spatial path is the trajectory a joint follows through space and can also provide emotional

cues. Complex or erratic paths are associated with anger, while straightforward, minimal deviation paths are more

typical of depression or neutrality. Harmonics magnitude measures the intensity of the oscillatory components of

movement. High harmonics are present in the expressive movements associated with pride or anger, whereas low

harmonics suggest subdued emotions like depression.

The kernel density plots in Figure 5 illustrate the distribution of various kinematic features—velocity means,

acceleration means, jerk mean, angular velocity means, range of motion, and spatial path mean—across different

emotional states: angry, depressed, neutral, and proud for the mix of baseline and synthetic samples. These distributions

show that the proud emotion typically exhibits slightly higher velocities, suggesting more vigorous movement, whereas

the angry emotion is characterized by higher acceleration and jerk, indicating more rapid and abrupt movements. In

contrast, depressed and neutral emotions tend to show lower values in these parameters, re�ecting slower and smoother

movements. This suggests that emotional states signi�cantly in�uence the dynamics of body movements, with each

emotion manifesting distinct physical characteristics in terms of speed and motion �uidity. The correlation heatmap

depicted in Figure 6 provides insight into the relationships between various kinematic features (baseline and synthetic).

Notably, acceleration_mean and spatial_path exhibit a strong positive correlation (0.90), indicating that increases in

acceleration are closely associated with longer spatial paths. Similarly, velocity_mean and acceleration_mean are also

highly correlated (0.90), suggesting that higher velocities tend to occur alongside higher accelerations. Conversely,

angular_velocity_mean shows a signi�cant negative correlation with range_of_motion (-0.68), implying that higher
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angular velocities may correspond to more restricted movements. Figure 6 effectively highlights the interdependencies

between motion-related features, enhancing our understanding of how different aspects of movement are related in

body motion analysis.

Figure 5. Kernel density plots showing the distribution of kinematic features (velocity, acceleration, jerk, angular velocity,

range of motion, and spatial path) across four emotional states: angry, depressed, neutral, and proud (baseline and synthetic)

Figure 6. Correlation heatmap of kinematic features illustrating positive and negative relationships

(baseline and synthetic)
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Metrics and Classi�er

Some of the most well-known metrics in the body motion era are considered for the evaluation process as follows.

Fréchet Inception Distance (FID)[35] measures the quality of synthetic data by comparing the distribution of generated

body motion sequences to real body motion sequences. This is done by extracting feature vectors from both real and

generated sequences using a deep learning model and then calculating the distance between these distributions. A lower

FID score indicates closer similarity between the synthetic and real data distributions, suggesting a more accurate

representation by the generative model. Diversity[35]  is a metric that evaluates the variance within the generated data.

Essentially, it measures how different the generated motion sequences are from each other, ensuring that the model

produces a wide range of motions rather than repeating similar patterns. High diversity indicates that the model can

generate various realistic body motions, re�ecting the natural variability observed in human movements. Fidelity[36] is

the accuracy with which the generated data mimics real body motions associated with speci�c emotions. It measures

how representative the synthetic samples are of the actual data samples they are meant to emulate. High �delity means

that the generated motions are indistinguishable from real motions regarding how well they convey the intended

emotions. Dynamic Time Warping (DTW)[37]  is a method used to assess the similarity between two time-series

sequences, such as synthetic and real body motion data. It adjusts the sequences against each other in a non-linear

manner to align them optimally over time. This metric is useful for evaluating the temporal accuracy of synthetic

motion sequences compared to real motion, ensuring that the timing and pacing of movements are realistically

simulated. A lower DTW score indicates a better match between the synthetic and real sequences, highlighting the

effectiveness of the synthetic data in replicating true human motion dynamics. Mean Per-Joint Position Error (MPJPE)

[38]  is a metric used to evaluate the accuracy of predicted or generated body motion data by measuring the average

distance error between corresponding joint positions in the generated and the real motion data. This error is typically

calculated for each joint at every frame and then averaged over all joints and frames to get the mean error. A lower

MPJPE value indicates that the synthetic body motion closely matches the real human motion in terms of spatial

accuracy, making it a critical measure for assessing the precision of motion capture technologies or generative models in

synthesizing realistic human movements. Accuracy[39] measures the proportion of total predictions that are correct. It is

a straightforward metric that tells you how often the model correctly identi�es or classi�es the emotion based on the

generated body motion data. High accuracy indicates that the synthetic data performs well in scenarios similar to the

training data but doesn't account for class imbalance. Precision[39]  is the ratio of correctly predicted positive

observations to the total predicted positives. It highlights the model's ability to not label a sample that is negative as

positive, making it crucial for cases where the cost of a false positive is high. Recall (or sensitivity)[39]  measures the

ability of a model to �nd all the relevant cases (true positives) within a dataset. High recall means that the model

captures a large proportion of positive examples, which is especially important in emotion recognition, where missing

an emotional cue could be critical. The F1 score[39] is the harmonic mean of precision and recall. It is used when you need

to balance precision and recall, an especially common scenario in uneven class distributions, or when false positives and

false negatives have different costs. Matthews Correlation Coef�cient (MCC)[39] is a correlation coef�cient between the
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observed and predicted binary classi�cations. It provides a balanced measure that can be used even if the classes are of

very different sizes. The MCC is generally regarded as one of the best metrics for binary classi�cation tasks as it takes

into account true and false positives and negatives.

In our research, we've found the random forest classi�er[67]  to be highly effective. This method is particularly suitable

due to its robust handling of complex and high-dimensional data, which is typical of motion capture systems. The

random forest, by building multiple decision trees and averaging their predictions, reduces the risk of over�tting and

enhances the overall accuracy of the model. Due to its structure, it is easier to explain as we use feature importance to

�nd the most important features.

Experiments and Results

Out of 32 samples in the original data, eight samples were selected and completely separated for the synthesis process

(two samples per class). Out of those eight samples, 10 samples for each class are generated using NGN, which creates a

total of 40 synthetic samples. Testing the model is based on three combinations: baseline (22 samples), just synthetic (40

samples), and a mix of synthetic and baseline (64 samples). Also, the same number of samples are generated by other

algorithms. The NGN parameters for body motion synthesis are mentioned above, but other algorithm parameters are

listed as follows. GANs use a learning rate of 0.002, a beta1 value for the Adam optimizer set at 0.5, with a batch size of 16,

and run for 200 epochs. VAEs use a learning rate of 0.001, a batch size of 16, with latent space dimensions set at 20 for

200 epochs. The diffusion model is con�gured with a learning rate of 0.001, 100 diffusion steps, a linear noise schedule,

and a batch size of 16. The Gaussian copula model has 10 bins and runs for 100 epochs. LSTMs feature a learning rate of

0.001, consisting of three layers with 64 hidden units, and use a batch size of 16. Furthermore, all train and test

combinations are based on 70 % training data and 30 % testing over 20 runs of Monte Carlo cross-validation.

Figure 7 depicts the NGN average error for all generated body motions of all emotional classes. These values belong to

generating 10 samples from each class, bringing 40 new samples in total. The average error represents the average

distance between the input samples (joint data) and their closest neurons in the network. This value indicates how well

the NGN is capturing the structure of the input data, with lower values indicating a better �t.

Figure 7. NGN average error for all generated body motions of all emotional classes – 40 new samples, 10 samples per class

(generation runtime: 2 minutes and 42 seconds – core i7 CPU - generation 12) 
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Table 1 provides a detailed comparison of various generative models used for augmenting body motion data, focusing on

a set of key performance metrics across different scenarios: using only synthetic data (Syn), only base data, and a

combination of both (Syn+Base). Models always show improved performance metrics when synthetic and baseline data

are combined. For instance, NGN achieves the highest accuracy (97%), precision (98%), and MCC (97%) in our

experiment. The combination of synthetic and base data provides a richer dataset, enhancing the models' ability to learn

nuanced patterns of emotion-speci�c movements, which in turn improves generalization and classi�cation accuracy.

The addition of synthetic data allows for a broader range of training examples, helping models to better capture the

variability in human emotions expressed through body motion. This results in higher precision and recall, which is

essential for reducing false positives and negatives in emotion recognition. 

The diffusion model exhibits the lowest standard deviation in the Synthetic scenario (0.039), indicating highly consistent

performance across different data splits. This reliability is crucial in practical applications where unpredictable

performance can degrade user experience or system effectiveness. High diversity scores, such as NGN (1142 in Syn+Base)

and GAN (1149 in Syn+Base), show that these models are effective at generating a wide range of motion patterns,

enhancing the robustness of the emotion recognition system. Higher diversity veri�es the model can handle various

motion styles and intensities, which are common in real-world scenarios. 

Models like NGN, GAN, and diffusion model show improved �delity scores in Syn+Base scenarios, pointing out that the

synthetic data they generate is more representative of true data distributions. This closeness to real data helps in

training more accurate models, reducing the risk of over�tting to atypical, noisy, or limited training data. 

The NGN model demonstrates outstanding ef�ciency with the shortest runtime of 2 minutes and 42 seconds and the

lowest iteration, having just 22 units, which is one of our model advantages. It has to be mentioned that copula models

are very optimized in that manner but not that accurate in terms of machine cleanout metrics. Also, LSTM performed

the worst on most metrics. Furthermore, lower scores in FID, DTW, and MPJPE for models like the NGN, GAN, and

Diffusion Model demonstrate that it is particularly effective at synthesizing data that is close to what is observed in real

human movements. This capability is crucial for training systems that need to recognize subtle variations in emotional

expressions conveyed through body motion.
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Base NGN GAN VAE Diffusion Model Copula Model LSTM

- Syn Syn+Base Syn Syn+Base Syn Syn+Base Syn Syn+Base Syn Syn+Base Syn Syn+Base

Accuracy ↑ 80 % 95 % 97 % 94 % 96 % 90 % 92 % 93 % 95 % 82 % 85 % 84 % 88 %

Std ↑  0.130 0.044 0.046 0.096 0.091 0.064 0.087 0.039 0.041 0.254 0.157 0.111 0.107

Precision ↑ 86 % 96 % 98 % 95 % 97 % 92 % 94 % 95 % 95 % 83 % 86 % 85 % 86 %

Recall ↑  80 % 95 % 97 % 95 % 97 % 91 % 93 % 94 % 96 % 82 % 86 % 85 % 87 %

F1-Score ↑ 79 % 95 % 97 % 95 % 96 % 91 % 93 % 94 % 95 % 82 % 85 % 84 % 87 %

MCC ↑ 76 % 94 % 97 % 95 % 95 % 91 % 94 % 93 % 94 % 84 % 85 % 84 % 87 %

Diversity ↑ 1162 1130 1142 1139 1149 1121 1129 1131 1138 1054 1088 1065 1095

Fidelity ↑ -0.030 -0.014 -0.011 -0.013 -0.010 -0.021 -0.019 -0.014 -0.012 -0.087 -0.080 -0.081 -0.077

FID ↓ - - 3679 - 3680 - 3681 - 3679 - 3697 - 3691

DTW ↓  - - 9872 - 9812 - 9878 - 9873 - 9910 - 9900

MPJPE ↓ - - 3179 - 3169 - 3185 - 3180 - 3191 - 3187

Gen Conv ↓ - Itr 22  - 
Itr

150
- Itr 98 - Itr 110 - Itr 71 - Itr 183 -

Gen Run ↓ -

2 Min

42

Sec

-
25

Min
-

15

Min
-

11

Min
-

3 Min

28 Sec
-

43

Min
- 

Table 1. Evaluation results for all algorithms using all metrics – new abbreviations are: Base for Baseline, Syn for Synthetic,

Gen for Generation, Conv for Convergence, Run for Runtime, Itr for Iterations, Min for Minutes, and Sec for Seconds.

In Figure 8, the violin plots for data reveal a range of variabilities across key performance metrics. In the �rst row, the

moderate to wide distributions in accuracy and precision indicate inconsistencies in the baseline model's performance,

particularly in handling false positives and achieving consistent, correct classi�cations. The narrower spread in recall

shows relative stability in identifying all relevant cases, but there's room for improvement. The F1-Score and MCC, which

provide balanced and holistic views of model performance, also show moderate variability, indicating the model's

challenges in harmonizing precision and recall and maintaining consistency across all aspects of classi�cation. This

analysis highlights the need to re�ne the baseline model or its training data to enhance its reliability and effectiveness in

real-world scenarios. 
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The violin plots for the NGN model using synthetic data demonstrate narrower distributions across most metrics

compared to the baseline, indicating improved consistency and performance. Precision shows a notably wider spread,

suggesting variability in the model's ability to avoid false positives consistently. However, the general tightening in

distributions for accuracy, recall, F1-Score, and MCC implies that the NGN model is effectively utilizing synthetic data to

enhance its overall predictive accuracy and reliability. This enhanced performance underscores the role of synthetic data

in providing a more regularized and homogeneous training environment, which helps the NGN model better learn and

generalize complex emotion-related patterns in body motion data.

The violin plots for the combination of synthetic and baseline data display the most favorable characteristics across all

metrics, with notably tight distributions and higher medians. This indicates exceptionally consistent and high

performance, with the least variability seen among the three scenarios. The combined data approach clearly enhances

the model’s ability to effectively balance precision and recall, as evidenced by the narrow spread in F1-Score and MCC.

This superior performance is attributed to the comprehensive nature of the mixed dataset, which provides a rich variety

of examples and scenarios, allowing the NGN model to achieve robust generalization capabilities. The integration of

synthetic and baseline data not only stabilizes the model’s output but also maximizes its accuracy and reliability in real-

world emotion recognition tasks.

Figure 8. Violin plot for the baseline and NGN algorithm results on machine learning metrics over 20 runs – random forest

classi�er (train 70 %, test 30 %)
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Figure 9 depicts the feature importance[68][69] bar plot of all emotions in the experiment (baseline and synthetic). This

�gure showcases the relative signi�cance of various kinematic parameters for predicting emotional states. For the angry

emotion, velocity stands out as the most signi�cant predictor, suggesting rapid movements are characteristic of anger.

In contrast, for depression, the most crucial feature is acceleration, indicating that changes in movement speed are a key

indicator of depression. Neutral emotions show higher importance placed on jerk, re�ecting subtle variations in speed

that differentiate it from more expressive states. Finally, for proud, acceleration again appears as a signi�cant feature,

followed closely by range of motion, highlighting that both the intensity and expansiveness of movements are central to

expressing pride. Implementation of the experiments can be found here7.

Figure 9. Feature importance bar plot for all emotions (baseline and synthetic)

Discussion

In the discussion, we try to answer all RQs raised in the introduction section. Regarding RQ1: The NGN-generated

synthetic body motions have shown superior capability in capturing and reproducing the complex dynamics of human

emotional expressions through body motion, especially when compared to baseline and other generative models like

GAN, VAE, and LSTM. The metrics such as high accuracy (97%), precision (98%), and low standard deviation (0.046) in

the Syn+Base setup demonstrate NGN’s effectiveness in accurately modeling emotional expressions with consistency.

These results are superior to those achieved with baseline or synthetic data alone, suggesting that NGN excels in

integrating diverse data types to improve learning outcomes. Regarding RQ 2: Key factors in�uencing the

generalizability and diversity of body motion data generated by NGN include the quality and variety of the training data,

the model’s architectural parameters, and the training regimen. The integration of synthetic and baseline data enhances

both diversity (as indicated by high diversity scores) and �delity, showcasing that these factors critically support the

model in producing varied yet accurate representations of emotional expressions. This enriched data environment helps

NGN data to maintain emotional clarity in the outputs, which is crucial for accurate emotion recognition. Regarding RQ

3: Variations in the training dataset size and composition signi�cantly impact NGN’s ability to generalize body motion

for unseen emotional expressions. The combined data approach (Syn+Base) shows improved performance metrics

across all fronts, indicating that a larger and more diverse dataset enhances the model’s ability to generalize beyond the

training data. This shows that both the breadth (size) and depth (composition) of the dataset are pivotal in training NGN
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to effectively handle new, unseen emotional expressions. Regarding RQ 4: NGN-synthesized body motion data can

signi�cantly enhance real-time emotion recognition systems by providing highly accurate and diverse training datasets

that improve the model’s responsiveness and adaptability. The high precision and accuracy observed in NGN outputs,

especially in mixed data scenarios, suggest that NGN can offer real-time systems a robust basis for recognizing a wide

range of human emotions, thereby enhancing the system’s applicability and reliability in practical settings. Regarding

RQ 5: The NGN is effective in differentiating and synthesizing body motion data for subtle emotional variations, as

demonstrated by its high performance in precision and recall. This ability positively impacts the model's training

ef�ciency by enabling quicker convergence on accurate models (evidenced by low iteration counts in some scenarios)

and speeds up data generation (as seen with the fastest runtime among models). These capabilities make NGN

particularly suitable for applications requiring a subtle understanding of human emotions through body motion,

improving both the training process and the operational ef�ciency of deployed systems.

5. Conclusion 

This research has demonstrated the profound capabilities of the Neural Gas Network (NGN) in synthesizing body motion

data for emotion recognition, addressing signi�cant challenges such as data scarcity and lack of heterogeneity. Through

comparative analysis, NGN has proven superior in capturing and reproducing the complex dynamics of human

emotional expressions through body motion when evaluated against other state-of-the-art generative models like

GANs, VAEs, LSTM, diffusion models, and copula models. The integration of synthetic and baseline data has notably

enhanced the NGN’s performance, showcasing high precision and robust generalization across diverse emotional states.

The key factors in�uencing the generalizability and diversity of the NGN-generated data include the quality of the

synthetic data, the algorithm’s inherent capacity to adapt to the complex topology of human skeletal movements, and

the effective blending of synthetic and real datasets. These elements have critically improved the emotional clarity of the

outputs, making the synthesized body motion data not only more diverse but also more representative of real-world

variations. The use of NGN in practical applications promises signi�cant enhancements in real-time emotion

recognition systems. By generating high-�delity, diverse body motion datasets, NGN enables these systems to operate

with greater accuracy and less bias, which is crucial for applications ranging from healthcare to customer service. The

ability of NGN to differentiate subtle emotional variations has also been highlighted, marking it as a potent tool for

re�ning emotion detection algorithms and improving their responsiveness to nuanced human behaviors. Future

research should explore the scalability of NGN applications in emotion recognition across larger and more varied

datasets, potentially incorporating more complex emotional states and physical gestures. Further development could

also focus on optimizing NGN's computational ef�ciency to enhance its applicability in real-time systems where

processing speed is critical. Additionally, investigating the ethical implications of synthetic data generation and its

impact on privacy and data protection will be crucial as these technologies become more pervasive in everyday

applications.
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This study uses the 100STYLE dataset, which contains human motion capture data representing 100 different

locomotion styles. The dataset is publicly available via Zenodo and is distributed under the Creative Commons

Attribution 4.0 International License (CC BY 4.0), allowing for reuse with proper attribution. The dataset documentation

and associated paper do not explicitly mention whether informed consent was obtained from participants, whether real

humans or synthetic data were used for capture, or whether any institutional ethics approval was granted. However, as

the dataset contains only anonymized skeletal motion data and no personally identi�able information, and is openly

shared for academic use, the study was determined not to require additional ethics approval according to institutional

guidelines. The author declares no competing interests.

Footnotes

1 https://github.com/SeyedMuhammadHosseinMousavi/Neural-Gas-Network-Toolbox

2 https://github.com/SeyedMuhammadHosseinMousavi/Synthetic-Data-Generation-by-Supervised-Neural-Gas-

Network

3 https://zenodo.org/records/546113

4 https://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html

5 https://mathematica.stackexchange.com/questions/60292/how-to-build-a-bvh-a-motion-capture-�le-format-player-

in-mathematica

6 https://www.ianxmason.com/100style/

7 https://github.com/SeyedMuhammadHosseinMousavi/Synthetic-Data-Generation-of-Body-Motion-Data-by-Neural-

Gas-Network-for-Emotion-Recognition
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