
20 December 2024, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

Model Contribution Rate Theory: An
Empirical Examination

Vincil Bishop1, Steven Simske1

1. Department of Systems Engineering, Colorado State University, United States

The paper presents a systematic methodology for analyzing software developer productivity by

refining contribution rate metrics to distinguish meaningful development efforts from anomalies.

Using the Mean-High Model Contribution Rate (mhMCR) method, the research introduces a

statistical framework that focuses on continuous contributions, mitigating distortions caused by

tool-assisted refactoring, delayed commits, or automated changes. The methodology integrates

clustering techniques, commit time deltas, and contribution sizes to isolate natural, logical work

patterns and supports the accurate imputation of effort for contributions outside these patterns.

Through empirical validation across multiple commercial repositories, the mhMCR method

demonstrates enhanced precision in productivity measurement in identifying sustained developer

activity. The findings provide actionable insights for optimizing team performance and workflow

management in modern software engineering practices.

1. Introduction

In the increasingly complex landscape of collaborative software development, accurately quantifying

developer contributions has become a significant challenge. Modern workflows often integrate AI-

assisted tools, systematic refactoring, and other automated processes that obscure the distinction

between genuine development efforts and machine-driven or extraneous changes. The goal of this

research is to refine the accuracy of model contribution rates—key metrics that represent sustained,

meaningful developer activities—and enhance their use in the Contribution Rate Imputation Method

(CRIM)[1].

This paper focuses on defining and empirically validating a methodology for identifying "model

contributions," which serve as the foundation for reliable productivity metrics. By differentiating

Qeios

qeios.com doi.org/10.32388/H58X4I 1

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


model contributions from non-model or unnatural contributions, such as mass refactoring or

wholesale code duplication, the proposed approach aims to improve imputation methods and provide

a precise, scalable framework for analyzing software team performance. The result is a refined model

that isolates true developer efforts, ensuring that productivity metrics align with real-world

contributions.

This work builds on previous research, including the "Time-Delta Method for Measuring Software

Development Contribution Rates" dissertation, from which it heavily borrows concepts and

methodologies[2].

2. Background and Related Work

Various methodologies have been employed to explore the analysis of developer productivity through

commit time deltas and contribution sizes, leveraging clustering techniques to derive insights from

commit histories and contribution metrics. This synthesis of background and related works will delve

into the relevant studies and methodologies that contribute to understanding developer productivity

through these analytical lenses.

One prominent approach involves the utilization of clustering techniques to analyze commit messages

and their associated metadata. Yang et al.[3]  conducted a study that employed natural language

processing (NLP) to extract key information from commit messages, which was subsequently used for

clustering and classifying commits. Their findings indicated a minimal feature reduction percentage

of 0.83%, yet they achieved a notable F1-score, suggesting that even small improvements in feature

extraction can enhance the clustering process. This study underscores the importance of commit

messages as a rich source of information that can be leveraged to analyze developer productivity.

In a broader context, Liu et al.[4]  highlighted the critical role of clustering techniques in software

component analysis. They pointed out that traditional clustering methods often rely on a single metric

to measure similarity, which may not capture the complexity inherent in software systems. This

limitation suggests that a multifaceted approach, incorporating multiple metrics such as commit time

deltas and contribution sizes, could yield more accurate clustering results. By integrating various

metrics, researchers can better understand the relationships between different components and their

contributions to overall developer productivity.

qeios.com doi.org/10.32388/H58X4I 2

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


Barman et al.[5] further explored clustering techniques specifically tailored for software engineering.

Their research focused on the effectiveness of a Genetic Algorithm-based Software Modularization

Clustering (GASMC) method applied to real-world software module clustering problems. The results

demonstrated that their proposed method significantly improved clustering outcomes, thereby

facilitating a better understanding of how different software modules contribute to overall

productivity. This study emphasizes the potential of advanced clustering techniques to enhance the

analysis of developer contributions.

Jeon et al.[6]  introduced Githru, a visual analytics tool designed to analyze software development

history through Git metadata. Their approach included a clustering step that allowed for the

examination of commit trends over time, providing insights into developer activity patterns. By

visualizing clusters of commits, developers and project managers can identify periods of high

productivity or potential bottlenecks, thereby informing resource allocation and project planning.

The concept of untangling commits to improve the clarity of commit histories has also been explored.

Partachi et al.[7]  presented Flexeme, a technique that utilizes a multi-version Program Dependency

Graph to capture the relationships between different program versions. By annotating data flow edges

with names and lexemes, their approach facilitates the identification of distinct contributions made

by developers. This untangling process is crucial for accurately assessing developer productivity, as it

ensures that each commit reflects a coherent set of changes related to a specific task.

In addition to these studies, methodologies that focus on fine-grained code changes have emerged as

vital tools for analyzing developer productivity. Yi et al.[8]  proposed a dynamic delta refinement

approach to produce smaller semantic history slices, which can help in understanding the significance

of changes in relation to target functionalities. By refining the analysis of commit deltas, developers

can gain insights into the impact of their contributions on the overall software system, thereby

enhancing productivity assessments.

The Delta Maintainability Model (DMM) introduced by Biase et al.[9] offers a framework for measuring

the maintainability of fine-grained code changes. This model allows for the evaluation of individual

commits, providing a detailed understanding of how specific changes affect the maintainability of the

software. By quantifying the maintainability of commits, developers can prioritize their contributions

based on their impact on the software's long-term viability.

qeios.com doi.org/10.32388/H58X4I 3

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


The integration of clustering techniques with machine learning has also shown promise in predicting

developer productivity. Gupta and Kang[10]  explored fuzzy clustering approaches for predicting the

severity of faults in software systems. Their findings suggest that clustering can be effectively utilized

to categorize developer contributions based on their potential impact on software quality, thereby

informing decision-making processes related to resource allocation and project management.

3. Theory

3.1. Model Contribution Rate Theory

If model contributions associated with continuous and typical work sessions can be identified and

quantified, the resulting contribution rate may be considered the model contribution rate. This baseline

rate can then serve as a reference point for comparison against other types of contributions, allowing

for the analysis of deviations or patterns in contribution behavior.

3.2. Contribution Classes

This section describes broad classes observed in contributions that underpin model contribution rate

theory.

3.2.1. Natural Contributions

Natural Contributions refer to code changes that stem from logical, intentional efforts by developers,

whether authored manually or with the assistance of AI tools. These contributions directly reflect the

development process and are pivotal in determining productivity baselines for individuals and teams.

Key characteristics of natural contributions include their origin in continuous work sessions that are

not interrupted by unrelated tasks or systematic, non-logic-related operations such as mass

refactoring. Natural contributions are distinct from unnatural contributions, which may arise from

automated processes or wholesale code duplication, neither of which reflects the effort or logical

progression inherent to software development.

Identifying natural contributions involves clustering commit data using metrics such as commit time

delta (CTD) and contribution size. Contributions that occur within a defined CTD range, indicative of

continuous and logical work, are classified as model contributions. This process ensures a focus on

qeios.com doi.org/10.32388/H58X4I 4

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


developer-driven efforts, enabling more accurate measurement of productivity and better insights

into team dynamics.

Such refined categorization aids in excluding anomalies and enhances the precision of contribution

metrics, providing a robust framework for analyzing and benchmarking development performance.

Machine Generated / AI Assisted Code

In this context, AI-assisted contributions, when employed to produce complete, functional code, are

considered natural. The reasoning is that such contributions enhance a developer's productivity by

accelerating logical software development. For instance, if an AI tool generates new logic based on a

developer's direction, the resulting contribution is treated as a valid and productive effort. This

approach supports the notion that AI-driven enhancements are integral to modern development

workflows and should be credited to developers as part of their natural productivity baseline.

This exploration takes the position that AI-assisted code changes should be credited to the developer

as productive contributions, even though the changes are machine-generated. The rationale is that

AI-generated code represents complete and functional logic, significantly boosting developer

productivity. Consequently, these machine-assisted contributions reflect genuine productivity and

can be integrated into the developer’s—and their team’s—productivity baseline.

The objective is to distinguish between productive AI-assisted contributions and anomalous

machine-generated contributions. Anomalies occur when machine-generated changes do not involve

the addition of meaningful logic but instead result from systematic operations, such as automated

refactoring. These refactoring operations produce large textual changes that lack logical progression

and are unrelated to actual software development efforts. By identifying such anomalies, it becomes

possible to separate meaningful contributions—whether human-authored or AI-assisted—from

irrelevant or inflated changes that distort productivity metrics.

By contrast, contributions resulting from automated refactoring tools or systematic changes that do

not add new logic paths to the codebase are classified as unnatural contributions. These include

operations like renaming variables en masse or reformatting code, which, despite generating textual

changes, do not align with the logical progression of a software project.

qeios.com doi.org/10.32388/H58X4I 5

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


3.2.2. Unnatural Contributions

Unnatural contributions in software development refer to code changes that deviate from the typical

patterns of logical and intentional human programming effort. These contributions often emerge

from automated processes, such as tool-assisted refactoring or wholesale copying of code, which,

while technically modifying the codebase, do not reflect the logical progression or creative problem-

solving inherent in traditional development workflows.

Types of Unnatural Contributions

1. Mass Refactoring: Involves tool-generated changes applied systematically across the codebase,

such as renaming variables, reformatting, or restructuring code for consistency. While these

operations improve code maintainability, they lack the logical development effort typically

required to introduce new functionality or resolve complex problems.

2. Copied Code: Occurs when large portions of code are imported wholesale into a repository. These

contributions are particularly challenging to detect, as they can appear as significant additions

without providing insight into the actual effort or problem-solving process behind their creation.

Identifying Unnatural Contributions

Unnatural contributions can be detected through clustering techniques that analyze metrics such as

commit time delta (CTD) and contribution size. For instance:

Low CTD, High Contribution: Contributions with short intervals between commits but large

changes often indicate automated processes like IDE-assisted refactoring.

High CTD, Low Contribution: Delayed commits with minimal changes may reflect copied code or

non-continuous work sessions.

Implications of Unnatural Contributions

Inclusion of unnatural contributions in productivity metrics can distort analyses, overestimating a

developer's effort and contribution rate. For example:

Mass refactoring commits may appear as high-output periods without reflecting genuine

productivity.

qeios.com doi.org/10.32388/H58X4I 6

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


Copied contributions can inflate metrics without representing actual time or logical effort spent on

development.

By identifying and excluding these contributions, productivity assessments can better align with

actual developer effort, ensuring metrics are more representative of logical, creative, and sustained

work sessions. This refined categorization supports more accurate performance evaluations and aids

in understanding team dynamics and workflow patterns.

3.2.3. Quick Remedy Commits

"Quick remedy commits," as presented by Wen, et al., are defined as commits made by developers

shortly after a prior commit, aimed at remedying issues introduced or changes omitted in the previous

commit[11]. These commits serve as a follow-up to:

1. Fix Errors or Omissions: Address errors like broken references or incomplete logic due to an

oversight in the earlier commit. For instance, developers may fail to propagate changes across all

relevant code components, leading to quick remedy commits to fix those issues.

2. Finalize Work: Implement changes left unfinished in the prior commit, such as completing the

addition of test cases or finalizing a refactoring effort.

3. Improve Previous Commit: Refactor or optimize code to improve clarity or performance after

initially committing less optimal changes.

Impact on Characterizing "Normal" Work Sessions

Quick remedy commits may not align with typical patterns of cohesive or planned development. They

often emerge from mistakes, omissions, or adjustments realized in hindsight. When characterizing

"normal" work sessions, these commits can appear out of character because:

They may introduce noise in the data used to analyze development practices, as their reactive

nature deviates from the planned or strategic workflow.

They can artificially inflate metrics like commit frequency or bug-fix rates if not properly

identified and accounted for in the analysis.

They highlight areas where tooling or processes might be insufficient, such as lack of automated

checks that could prevent omission errors.

qeios.com doi.org/10.32388/H58X4I 7

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


For accurate characterization of "normal" sessions, quick remedy commits should be treated

distinctly. Evaluation process should account for their unique nature by identifying and possibly

excluding them from datasets focusing on cohesive and intentional development behaviors.

3.2.4. Model Contributions

Model contributions represent the essence of typical, sustained, and logical development efforts in

software engineering. They are a conceptual category of contributions that reflect the continuous,

intentional work patterns of developers. These contributions align closely with natural development

workflows, capturing the kind of changes that developers make when they are actively engaged in

solving problems, implementing features, or refining software in meaningful ways.

The theoretical significance of model contributions lies in their role as a benchmark for productivity

measurement within the Model Contribution Rate Theory. By focusing on these contributions, the

theory establishes a baseline that isolates genuine development efforts from anomalies or extraneous

operations, such as automated refactoring or large-scale, non-contextual changes. This baseline

provides a reference point to understand and evaluate the quality and intensity of development

activity across teams or individuals.

Model contributions are central to understanding the dynamics of Model Contribution Rate Theory.

They offer a framework for differentiating authentic efforts from distortions caused by unnatural

contributions. By identifying these contributions, the theory not only ensures a more accurate

assessment of productivity but also supports deeper insights into team performance and workflow

optimization, aligning metrics with real-world developer impact.

3.2.5. Anti-Model Contributions

Converse to model contributions are Anti-Model Contributions (AMCs). These contributions refer to

commits that deviate from continuous, logical work patterns typically seen in productive coding

sessions. These contributions often occur in scenarios where the Commit Time Delta (CTD)—the time

elapsed between consecutive commits—does not correspond to uninterrupted or sustained

development[2]. Such deviations can skew metrics, leading to an over- or underestimation of actual

developer effort.

AMCs typically exhibit characteristics like:

qeios.com doi.org/10.32388/H58X4I 8

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


1. Low CTD but High Contribution: These may indicate rapid, tool-assisted operations, such as

mass refactoring, rather than deliberate and logical development.

2. High CTD but Low Contribution: Often suggestive of delayed commits or negligible updates,

possibly reflecting minimal effort during the interval.

The presence of AMCs can distort Contribution Rate (CR) measurements, particularly when evaluating

developer productivity. For example, mass refactoring might register as a large contribution but does

not represent creative or logical software development. Similarly, delayed commits may exaggerate

the perceived duration of development efforts.

3.3. Contribution Rate Imputation

The Contribution Rate Imputation Method (CRIM) focuses on imputing effort during unobserved work

periods using historical commit data, combining metrics like contribution size (e.g., Levenshtein

distance) with a model contribution rate derived from observed patterns. It enables estimation of time

spent on contributions, particularly where direct tracking is unavailable, and accommodates

variability in effort due to task complexity and context[1]. A primary motivation for refining model

contribution rate methods is to improve the accuracy of contribution rate imputation.

3.3.1. Unlikely Resolved Effort

The concept of Unlikely Resolved Effort (URE) provides a quality assurance mechanism for evaluating

the plausibility of contribution rates derived from commit data. It operates on the assumption that a

contributor is unlikely to sustain more than a practical threshold of resolved effort—such as working

eight hours a day continuously on a single contribution. Contributions exceeding this threshold signal

potential inaccuracies in the estimated contribution rate or inconsistencies in the imputation method.

In practice, the URE Theory evaluates the Resolved Effort Hours (REH), derived from an imputed

contribution rate and metrics such as commit size or time delta (CTD). If the REH exceeds plausible

limits (e.g., eight hours per day), the contribution rate is flagged as overestimated, and the associated

contribution is classified as exhibiting URE.

For practitioners observing the data, the rate of URE within a dataset serves as a proxy for assessing

the reliability of contribution rate models. A higher incidence of URE suggests that the model’s

imputation or clustering process may lack precision, potentially distorting the productivity metrics.

qeios.com doi.org/10.32388/H58X4I 9

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


This theory aids in model validation by introducing a sanity check, allowing practitioners to compare

competing contribution rate models (e.g., Mean Contribution Rate (MCR) vs. High Mean Contribution

Rate (HMCR)). Models yielding fewer URE instances are interpreted as offering greater accuracy in

aligning imputed metrics with realistic developer effort.

URE also facilitates iterative refinement of imputation techniques by providing feedback on whether

adjustments to CTD thresholds, clustering methods, or statistical measures improve the quality of

contribution estimates. This ensures productivity assessments are both credible and actionable in

real-world development contexts.

4. Mean-High Model Contribution Rate Method

4.1. Procedural Framework

The procedural framework of the Mean-High Model Contribution Rate (mhMCR) method is designed

to systematically identify and quantify meaningful contributions in software development. This

framework combines statistical techniques with logical inference to ensure the separation of natural

and productive contributions from anomalous or irrelevant ones.

Step 1: Initial Filtering of Commits

The process begins with isolating commits that fall within the Model Commit Time Delta Range

(MCTDR). This range is predefined based on empirical data that identifies patterns associated with

natural and continuous work sessions. The commits in this range, known as Model Contribution

Candidates (MCC), serve as the initial dataset for further analysis. The MCTDR acts as a sieve, filtering

out contributions that are either too rapid (indicative of automated tools) or too delayed (suggesting

interruptions or irregular workflows).

Step 2: Statistical Outlier Removal

Next, the Interquartile Range (IQR) method is applied to the MCC dataset. By calculating the first (Q1)

and third quartiles (Q3) and the interquartile range (IQR = Q3 - Q1), contributions that fall outside the

bounds of    are identified as outliers. These outliers, which

may represent either exceptionally low or high contributions, are excluded from further analysis to

Q1 − 1.5  ×  IQR and Q3 + 1.5  ×  IQR

qeios.com doi.org/10.32388/H58X4I 10

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


maintain the integrity of the dataset. The recalculated IQR ensures a refined focus on typical

development patterns.

Step 3: Classification of Contributions

The remaining commits are classified based on their placement within the revised quartile ranges:

Q4 (High Contribution Range): Contributions in this quartile are labeled as Model Contributions

(MC), representing normal productivity and sustained, logical development efforts.

Q1, Q2, and Q3: These contributions, termed Disqualified Model Contribution Candidates (dMCCs),

do not meet the criteria for MCs and are excluded from the calculation of the model contribution

rate. These contributions are also labeled as anti-model contributions for the purpose of

contribution rate imputation.

Step 4: Calculation of Model Contribution Rate (MCR)

The model contribution rate is calculated by taking the mean of the contribution rates of the MCs

identified in Q4. This focus on the highest quartile emphasizes peak productivity while excluding

contributions that could distort the measurement due to their anomalous nature. The resulting MCR

provides a robust benchmark for evaluating individual or team productivity.

Conceptual Rationale

The use of the highest quartile (Q4) aligns with the hypothesis that sustained, normal work sessions

are indicative of meaningful developer contributions. By excluding dMCCs and outliers, the framework

ensures that the calculated MCR reflects only the most representative efforts. This approach mitigates

the impact of noise introduced by unnatural contributions, such as mass refactoring or delayed

commits, enhancing the reliability of productivity metrics.

Practical Implications

This procedural framework is designed for scalability and adaptability in diverse software

development environments. By leveraging commit time deltas and contribution sizes, it provides a

data-driven methodology for organizations seeking to measure and improve developer performance.

The mhMCR method can also serve as a foundation for advanced analytics, enabling deeper insights

into team dynamics, workflow optimization, and the effects of AI-assisted development.

qeios.com doi.org/10.32388/H58X4I 11

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


This systematic process ensures that the MCR is not only statistically based but also aligned with the

realities of modern software engineering, where distinguishing between natural and anomalous

contributions is critical for accurate performance evaluation.

4.2. Mathematical Foundation

This section formalizes the methodology for distinguishing and analyzing contributions in software

development using measurable constructs.

The methodology leverages quartile-based filtering and interquartile range (IQR) calculations to

minimize the influence of outliers and ensure consistency in contribution analysis.

This mathematical foundation provides structured tools for analyzing contributions, focusing on

measurable parameters to classify and rate commits within defined intervals.

4.2.1. Commit Time Delta (CTD) and Model CTD Range (MCTDR)

The Commit Time Delta (CTD) represents the time interval between consecutive commits by the same

developer. Given a sequence of commits   with timestamps  :

The Model CTD Range (MCTDR) is defined as [L,U], where L and U are empirically derived bounds

indicating intervals associated with uninterrupted work sessions:

4.2.2. Contribution Size and Quartile Segmentation

Each commit    has an associated contribution size  , which quantifies the magnitude of changes

(e.g., lines added or modified). The statistical distribution of   is segmented into quartiles:

Where  and   represent the first and third quartiles, respectively. Contributions are identified as

outliers and disqualified if:

, , … ,C1 C2 Cn , , … ,t1 t2 tn

= − ,    for i = 1, 2, … ,n − 1CTDi ti+1 ti

L ≤ ≤ UCTDi

Ci Si

Si

IQR =   −  Q3 Q1

Q1 Q3

<   − 1.5  ×  IQR or  >   + 1.5  ×  IQRS1 Q1 S1 Q3

qeios.com doi.org/10.32388/H58X4I 12

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


4.2.3. Mean-High Model Contribution Rate (mhMCR)

The computation of the Mean-High Model Contribution Rate (mhMCR) focuses on contributions

classified within the highest quartile of sizes. This process involves the following steps:

1. Determine Quartiles: For all contribution rates    within the Model CTD Range

(MCTDR), sort the contributions in ascending order and compute the quartiles    and 

:

: Commits in the top 25% by contribution rate, determined as the values above the third

quartile  .

2. Identify Contributions in ​ : Contributions   classified as  ​meet the condition

This subset   consists of all contributions in the upper quartile of sizes.

3. Calculate mhMCR: The mean of the contribution rates in   is computed as:

5. Experiment Design

To evaluate model contributions within the context of salaried, professional development workflows,

three commercial software repositories were selected. These repositories were chosen because they

prominently feature patterns aligning with the research methodology, specifically model

contributions indicative of continuous, logical development sessions. By using these datasets, the

study isolates contributions made under consistent working conditions, minimizing the influence of

extraneous variables often found in volunteer or open-source projects.

The empirical analysis compares two methodologies: the Mean Model Contribution Rate (Mean MCR)

and the High Mean Model Contribution Rate (High Mean MCR). These methods serve to identify model

contributions and derive resulting contribution rates, with the objective of determining the relative

accuracy and validity of each approach. The evaluation focuses on the rates of Unlikely Resolved Effort

(URE) associated with each method, providing a quantitative measure of their efficacy. Lower URE

rates signify a more precise alignment between the contribution rate model and realistic developer

effort.

, , … ,C1 C2 Cn

, ,Q1 Q2 Q3

Q4

Q4

Q3

Q4 C Q4

C >  Q3

CQ4

CQ4

mhMCR =  
Total CR of CQ4

Count of CQ4

qeios.com doi.org/10.32388/H58X4I 13

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


This methodological framework tests the hypothesis that High Mean MCR offers superior

performance over Mean MCR.

5.1. Dataset Details

5.1.1. Commercial Dataset 1

Commit Time Delta (CTD): The dataset exhibits a highly variable distribution of CTD values, ranging

from a minimum of approximately one second to over two years (19,152.76 hours). The median value

of 47.66 hours suggests that typical commits occur within a two-day window. However, the dataset's

mean of 477.09 hours and standard deviation of 1,574.99 hours highlight significant outliers or

periods of extended inactivity. The interquartile range (IQR) indicates a tighter clustering of CTD

values between approximately 3.24 and 395.39 hours, capturing more consistent development

rhythms.

Levenshtein Word Distance: Contribution sizes span a wide range, from 0 to a maximum of 13,889

words, indicating considerable variation in the scope and scale of code modifications. The median size

of 10 units suggests that most contributions are relatively modest, while the mean value of 157.46

units, coupled with a standard deviation of 721.23 units, points to occasional large contributions that

skew the average. The IQR (2 to 49 units) reflects a concentration of contributions involving smaller,

incremental changes typical of iterative development practices.

Contribution Rate (WPM): The contribution rate is characterized by significant variability, ranging

from 0 to 1,314.65 units per hour. The median contribution rate of 0.00491 units per hour implies a

predominance of low-productivity periods in terms of output per unit time. This is reinforced by the

relatively low IQR values (0.000354 to 0.066016 units per hour), suggesting that most contributions

are made during periods of limited activity. The high standard deviation of 73.40 units per hour

indicates the presence of sporadic high-output events, likely corresponding to bursts of intensive

work or automated changes.

qeios.com doi.org/10.32388/H58X4I 14

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


  CTD Hours Levenshtein Word Distance Contribution Rate (WPM)

count 557 557 557

mean 477.088709 157.456014 8.279693

min 0.000278 0 0

25% 3.243889 2 0.000354

50% 47.664444 10 0.00491

75% 395.388056 49 0.066016

max 19152.76472 13889 1314.6536

Table 1. Commercial Dataset 1 Statistics

5.1.2. Commercial Dataset 2

Commit Time Delta (CTD): The dataset reflects a diverse range of CTD values, starting from

approximately one second (0.000278 hours) and extending to nearly 1.2 years (10,461.74 hours). A

median CTD of 130.52 hours indicates typical commit intervals around five days, while the mean of

416.93 hours and a high standard deviation of 1169.94 hours point to the presence of substantial

variability, including periods of sustained activity and inactivity. The interquartile range (21.51 to

401.14 hours) encapsulates a more consistent rhythm of development activities, likely representative

of standard workflows.

Levenshtein Word Distance: Contributions display significant variability, ranging from no changes (0

units) to an extensive modification of 264,747 units. The median contribution size of 25 units

highlights a pattern of smaller, iterative updates as the most frequent behavior. However, the mean

value of 5,709.87 units and the standard deviation of 37,155.31 units suggest occasional very large

contributions that skew the average, potentially reflecting major refactorings or automated changes.

The interquartile range (6 to 102 units) is more indicative of regular, logical contributions, aligning

with typical software development efforts.

qeios.com doi.org/10.32388/H58X4I 15

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


Contribution Rate (WPM): Contribution rates span from 0 to an extraordinary 354,151.34 units per

hour, underscoring extreme variability in productivity measures. With a median rate of 0.00503 units

per hour, most contributions occur at relatively low productivity levels. The mean contribution rate of

556.04 units per hour, combined with a standard deviation of 12,868.59 units per hour, points to the

influence of sporadic high-output contributions. The interquartile range (0.000757 to 0.042216 units

per hour) suggests that typical contributions reflect steady but modest activity, aligning with

consistent development workflows rather than extreme outliers.

  CTD Hours Levenshtein Word Distance Contribution Rate (WPM)

count 1301 1301 1301

mean 416.929353 5709.869331 556.037653

min 0.000278 0 0

std 1169.940952 37155.31025 12868.58602

25% 21.505556 6 0.000757

50% 130.520833 25 0.005032

75% 401.141111 102 0.042216

max 10461.74472 264747 354151.34

Table 2. Commercial Dataset 2 Statistics

5.1.3. Commercial Dataset 3

Commit Time Delta (CTD): The dataset shows a wide variability in commit intervals, ranging from

approximately 15 seconds (0.004 hours) to nine months (6,480.29 hours). The median CTD of 182.98

hours indicates that typical development sessions involve commits roughly every 7.6 days. The

interquartile range (IQR), spanning from 46.20 to 604.30 hours, reflects a broad distribution of more

consistent commit patterns. A mean CTD of 555.06 hours, coupled with a standard deviation of 934.58

hours, highlights significant outliers or periods of inactivity that skew the average.

qeios.com doi.org/10.32388/H58X4I 16

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


Levenshtein Word Distance: Contribution sizes vary from 0 (indicating whitespace only change) to a

maximum of 6,376 words, with a median of 38 words, suggesting that most contributions involve

modest changes to the codebase. The mean contribution size of 218.01 units and the high standard

deviation of 637.61 units suggest the presence of occasional large contributions. The IQR of 6 to 137

units confirms that the majority of contributions are relatively incremental and align with iterative

development practices.

Contribution Rate (WPM): Contribution rates range from 0 to 2,075.45 units per hour, reflecting

significant variation in developer output. The median contribution rate is 0.00334 units per hour,

indicating that most contributions occur during periods of low activity. The mean rate of 6.02 units

per hour, combined with a high standard deviation of 97.95 units, points to sporadic bursts of high

productivity, possibly corresponding to intensive work sessions or automated code generation. The

IQR, spanning from 0.000507 to 0.026783 units per hour, suggests that the bulk of contributions are

made during periods of moderate activity, typical of steady development workflows.

  CTD Hours Levenshtein Word Distance Contribution Rate (WPM)

count 901 901 901

mean 555.05633 218.014428 6.023211

min 0.004167 0 0

25% 46.201667 6 0.000507

50% 182.980833 38 0.00334

75% 604.301111 137 0.026783

max 6480.291389 6376 2075.4546

Table 3. Commercial Dataset 3 Statistics

5.2. Experiment Steps

This section outlines the experimental methodology used to evaluate contribution rate calculations

and imputations in software development data. The process is systematic, leveraging programmatic

qeios.com doi.org/10.32388/H58X4I 17

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


steps derived from the Python-based data analysis workflows. This sequence ensures a reproducible

approach to evaluating contribution rates and their impact on developer productivity metrics.

5.2.1. Data Preparation

1. Load datasets of commit metadata, including commit time deltas (CTD) and contribution sizes.

2. Filter out records with missing or invalid data to ensure consistency across the analysis.

3. Convert raw data into a standardized format, ensuring uniformity in time units (e.g., hours) and

contribution size metrics.

5.2.2. Define Contribution Classes

1. Model Contributions: Contributions falling within a predefined CTD range that represents

uninterrupted work sessions. These contributions serve as candidates for further analysis.

2. Anti-Model Contributions: Contributions outside the CTD range, representing interrupted or

irregular work patterns.

5.2.3. Contribution Rate Calculation

1. Compute Raw Contribution Rate: Divide each contribution's size by its associated CTD. For each

commit:

2. Adjust Contribution Rates: Remove outliers by applying interquartile range (IQR) filtering to

isolate typical contribution rates. Contributions outside    are

flagged and excluded.

5.2.4. Imputation of Contribution Rates

1. Assign imputed contribution rates to Anti-Model Contributions (AMCs) using the median

contribution rate of Model Contributions (MCs) within the dataset.

2. Calculate imputed resolved effort hours for each AMC:

Contribution Rate =   Contribution Size
CTD

[Q1 − 1.5 × IQR,Q3 + 1.5 × IQR]

Resolved Effort Hours (RHE) = Imputed Rate ×  CTD

qeios.com doi.org/10.32388/H58X4I 18

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


5.2.5. Evaluate Unlikely Resolved Effort (URE)

1. Compare each contribution’s resolved effort hours (REH) to a practical threshold (e.g., 8

hours/day).

2. Flag contributions exceeding the threshold as exhibiting URE.

3. Record and quantify URE occurrences for each dataset.

5.2.6. Method Comparison

1. Mean Model Contribution Rate (Mean MCR): Calculate the mean contribution rate across all MCs

and use it for imputation.

2. High Mean Model Contribution Rate (High Mean MCR): Compute the mean of the top quartile of

contribution rates and use this for imputation.

3. Compare the URE rates resulting from each method, noting instances of over- or under-

estimated contributions.

5.2.7. Result Compilation and Analysis

1. Aggregate results for all datasets, summarizing contribution rate distributions, imputed resolved

effort hours, and URE instances.

2. Present findings in tabular and graphical formats to facilitate comparison between Mean MCR

and High Mean MCR methods.

6. Experiment Results

In this section, we provide a structured analysis of each dataset, focusing on metrics that reveal

patterns in contribution behavior. Each dataset is accompanied by the following components:

1. Chart: "Candidate Model Contributions"

This chart visualizes the full distribution of contribution rates, measured in words per minute

(WPM), across the temporal scale of commit time deltas (CTD). It displays all contributions

within the dataset, illustrating how productivity rates vary with different intervals between

commits. This chart serves as the foundation for identifying patterns, anomalies, and trends in

developer contributions across the full dataset. 

qeios.com doi.org/10.32388/H58X4I 19

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


2. Chart: "IQ4 Model Contributions"

This chart is an excerpt of the "CTD Hours by Contribution Rate (WPM)" chart, specifically

zooming in on contributions selected as "model contribution rates." These contributions are

those classified within the highest quartile (IQR4) of contribution sizes, representing the most

productive and consistent work sessions. By isolating this subset, the chart highlights the

characteristics of contributions deemed representative of sustained and logical development

activity. 

3. Table: "CRIM Metric Details"

This table provides a detailed summary of the dataset's key metrics, including:

Mean Contribution Rates (mMCR and mhMCR): Summarizes both the overall average

(mMCR) and high-mean productivity rates (mhMCR), emphasizing differences in modeling

approaches.

Commit Counts by Categories: Breakdowns of commits into categories such as "Quick

Remedy Commits," "Model Contribution Commits," and "Disqualified Model Contribution

Candidates" (dMCCs).

URE and Imputation Statistics: Data on "Unlikely Resolved Effort" (URE) commits and

imputed contributions, offering insights into the modeling methods' precision.

The mhMCR over mMCR Improvement Percent reflects the relative enhancement of the High Mean

Model Contribution Rate (mhMCR) method over the Mean Model Contribution Rate (mMCR). This

metric is significant in the context of the experiment as it quantifies the extent to which the mhMCR

methodology better isolates and emphasizes the most productive contributions, compared to the

overall mean approach.

qeios.com doi.org/10.32388/H58X4I 20

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


6.1. Commercial Dataset 1

Figure 1. Commercial Dataset 1 Model Contribution Rate Candidates

Figure 2. Commercial Dataset 1 IQ4 Model Contribution Rate Candidates

qeios.com doi.org/10.32388/H58X4I 21

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


Metric Value

Mean Model Contribution Rate (wpm) 0.097

Mean-High Model Contribution Rate (wpm) 0.252

Count of Commits without a CTD value 1528

Count of Quick Remedy Commits 136

Count of Model Contribution Commits 11

Count of Disqualified Model Contribution Commits 32

Count of Unbound Commits 421

Count of Imputed Commits 1981

Count of Non-Imputed Commits 147

Count of mhMCR Based URE Commits 196

Count of mMCR Based URE Commits 234

mhMCR over mMCR Improvement Percent 16.24

Table 4. Commercial Dataset 1 CRIM Metrics

qeios.com doi.org/10.32388/H58X4I 22

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


6.2. Commercial Dataset 2

Figure 3 Commercial Dataset 2 Model Contribution Rate Candidates

Figure 4. Commercial Dataset 2 IQ4 Model Contribution Rate Candidates

qeios.com doi.org/10.32388/H58X4I 23

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


Metric Value

Mean Model Contribution Rate (wpm) 0.244

Mean-High Model Contribution Rate (wpm) 0.587

Count of Commits without a CTD value 340

Count of Quick Remedy Commits 182

Count of Model Contribution Commits 10

Count of Disqualified Model Contribution Commits 27

Count of Unbound Commits 1119

Count of Imputed Commits 1486

Count of Non-Imputed Commits 192

Count of mhMCR Based URE Commits 377

Count of mMCR Based URE Commits 540

mhMCR over mMCR Improvement Percent 30.19

Table 5. Commercial Dataset 2 CRIM Metrics

qeios.com doi.org/10.32388/H58X4I 24

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


6.3. Commercial Dataset 3

Figure 5. Commercial Dataset 3 Model Contribution Rate Candidates

Figure 6. Commercial Dataset 3 IQ4 Model Contribution Rate Candidates

qeios.com doi.org/10.32388/H58X4I 25

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


Metric Value

Mean Model Contribution Rate (wpm) 0.287

Mean-High Model Contribution Rate (wpm) 0.784

Count of Commits without a CTD value 301

Count of Quick Remedy Commits 93

Count of Model Contribution Commits 8

Count of Disqualified Model Contribution Commits 21

Count of Unbound Commits 808

Count of Imputed Commits 1130

Count of Non-Imputed Commits 101

Count of mhMCR Based URE Commits 227

Count of mMCR Based URE Commits 333

mhMCR over mMCR Improvement Percent 31.83

Table 6. Commercial Dataset 3 CRIM Metrics

7. Analysis

The mhMCR over mMCR Improvement Percent measures the relative enhancement of the High Mean

Model Contribution Rate (mhMCR) method compared to the Mean Model Contribution Rate (mMCR)

approach. By focusing on the highest quartile of contribution rates, mhMCR emphasizes peak

productivity, enabling a more refined analysis of sustained development efforts. This section analyzes

the significance of this metric across the datasets and evaluates their contribution patterns.

7.1. Dataset 1: Gradual but Distinct Improvements

Improvement Percent: 16.24%

qeios.com doi.org/10.32388/H58X4I 26

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


Dataset 1 contains the widest range of commit time deltas (0.000278 to 19,152.76 hours) and a

median CTD of 47.66 hours. The variability indicates a mix of frequent commits and prolonged

inactivity, likely reflecting both short-term fixes and long-term project planning phases.

The mhMCR value (0.252), although modest, demonstrates a significant improvement over mMCR

(0.097). This suggests that the highest quartile isolates meaningful contributions better than the

overall average in a dataset with high temporal dispersion.

Observations reveal a concentration of productive commits near the median CTD and contribution

size, with low median contribution rates (0.00491 units/hour). This highlights the necessity of

excluding lower quartile contributions for precise productivity assessment.

7.2. Dataset 2: Largest Improvement and Broadest Range

Improvement Percent: 30.19%

Dataset 2 exhibits a broader range of contribution sizes (0-264,747 units) and rates (0-354,151.34

units/hour). The median contribution rate (0.00503 units/hour) and CTD (130.52 hours) are higher

than Dataset 1, indicating more substantial contributions and longer average intervals between

commits.

The mhMCR (0.587) is over double the mMCR (0.244), reflecting the effectiveness of the mhMCR

method in a dataset characterized by high variability and significant outliers.

The dataset's larger improvement percent demonstrates the benefit of emphasizing high-quartile

contributions in environments where wide disparities in contribution sizes and rates can obscure

overall performance metrics.

7.3. Dataset 3: Focused Contributions with Consistent Improvement

Improvement Percent: 31.83%

Dataset 3 features a narrower range of contribution sizes (0-6,376 units) compared to Dataset 2 but

higher median values for both CTD (182.98 hours) and contribution size (38 units). The smaller

spread suggests more cohesive work sessions and less variability in commit patterns.

The mhMCR (0.784) outperforms the mMCR (0.287) by the largest margin. This improvement

highlights the ability of mhMCR to isolate productive contributions, even in datasets where overall

contribution sizes are less variable.

qeios.com doi.org/10.32388/H58X4I 27

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


The median contribution rate (0.00334 units/hour) is slightly lower than Dataset 1, but the

improvement percent underscores that focusing on high-performing commits consistently yields a

more accurate productivity benchmark.

7.4. Cross-Dataset Observations

1. Correlation with Variability: The datasets with higher variability in CTD and contribution size

benefit most from the mhMCR method. Dataset 2's improvement percent is indicative of this

trend, as it exhibits the largest disparities.

2. Productivity Isolation: Across all datasets, the mhMCR method successfully isolates

contributions indicative of sustained and meaningful work. This is evidenced by the significant

reduction in Unlikely Resolved Effort (URE) instances when using mhMCR over mMCR.

3. Consistency of Improvement: Despite differing dataset characteristics, the improvement

percentages remain substantial (16.24%–31.83%), underscoring the robustness of the mhMCR

methodology.

7.5. Implications of Findings

The mhMCR over mMCR Improvement Percent validates the hypothesis that emphasizing peak

contributions through the mhMCR method offers a more precise productivity measure. This

improvement is particularly evident in datasets with high variability or pronounced outliers. By

filtering for the top quartile, the mhMCR method mitigates noise from low-value contributions,

aligning productivity metrics with realistic and impactful developer efforts.

This analysis demonstrates the value of mhMCR in software engineering datasets, providing a

foundation for further applications, such as team performance assessments and workflow

optimization. The significant enhancement across diverse datasets reinforces its utility as a robust

metric in empirical software development research.

8. Conclusions

8.1. Summary of Findings

This study builds upon the "Time Delta Method for Measuring Software Development Contribution

Rates" dissertation[2]  to expand and formalize the Model Contribution Rate (MCR) theory, which

qeios.com doi.org/10.32388/H58X4I 28

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


isolates natural contributions indicative of sustained, logical developer activity. The research

introduces and empirically validates the Mean-High Model Contribution Rate (mhMCR) method, a

significant refinement of contribution rate imputation that emphasizes peak productivity. Key

findings include:

1. Validation of Model Contribution Rate Theory:

The study formalized the theory by distinguishing model contributions—indicative of continuous

and productive work—from anomalies or anti-model contributions caused by automation or

delays.

Empirical tests demonstrated that focusing on contributions within the Model Commit Time Delta

Range (MCTDR) significantly improved the precision of productivity metrics.

2. Superiority of the mhMCR Method:

The mhMCR method, which calculates the mean of the highest quartile of model contributions,

outperformed the simpler mean model contribution rate (mMCR) in all tested scenarios.

Empirical results showed that mhMCR reduces Unlikely Resolved Effort (URE) occurrences by

better filtering irrelevant or inflated contributions. This establishes mhMCR as a candidate

approach for productivity analysis in software engineering workflows.

By integrating the mhMCR method into the Contribution Rate Imputation Method (CRIM), this study

provides a precise, practical framework for evaluating software development contributions, enabling

more accurate measurement and imputation of developer effort.

8.2. Opportunities for Future Research

Building on the insights and methodologies presented in this study, several avenues for future

exploration arise, directly informed by themes and challenges identified within the research:

1. Understanding AI-Assisted Contributions: As discussed, AI-assisted development is

increasingly significant, but its impact on productivity remains underexplored. Future research

could analyze AI-assisted contributions in depth, assessing how different AI tools and

frameworks influence contribution patterns and productivity metrics over time.

2. Domain-Specific Applications: While the study has validated mhMCR in commercial software

repositories, further validation across domains such as open-source or volunteer-driven projects

qeios.com doi.org/10.32388/H58X4I 29

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


could explore its generalizability and highlight differences in contribution patterns across

contexts.

3. Longitudinal and Temporal Analysis: Observing how contribution rates evolve over time—

particularly with the adoption of new tools or methodologies—could provide valuable insights

into trends in developer productivity and team performance sustainability.

4. Toolchain Automation and Process Improvements: Future research could focus on developing

practical toolsets that utilize the mhMCR framework to automate aspects of workflow

optimization, such as identifying technical debt, streamlining code reviews, or improving

resource allocation. As noted in the analysis, integrating these tools into existing pipelines offers

significant potential to enhance team productivity.

5. Refinement of Model Assumptions: Expanding the theoretical underpinnings of the mhMCR

model by exploring alternative clustering techniques or imputation methods could improve the

robustness of productivity metrics in environments with high variability or noise.

8.3. Final Remarks

This research advances the field of software engineering by presenting a refined, empirically validated

framework for contribution rate analysis. The mhMCR methodology not only provides a model for

measuring developer productivity but also establishes a benchmark for precision in effort imputation.

These contributions equip practitioners and researchers with tools to better understand and optimize

team performance, bridging the gap between theoretical insights and practical applications in modern

development ecosystems.

qeios.com doi.org/10.32388/H58X4I 30

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


Appendix

Terminology

Term Definition

Actual Hours (AH)
Work hours derived directly from CTD as a proxy for time spent on a

contribution.

Anti-Model Contribution

(AMC)

Commits deviating from normal work patterns and require contribution

rate imputation to accurately measure temporal effort.

Commit Time Delta

(CTD)

The time interval between consecutive commits by the same author, used

to infer work session patterns.

Contribution Rate

Imputation Method

(CRIM)

A technique to estimate and assign contribution rates for AMC commits

by imputing values based MCR.

CRIM Estimated Hours

(EH)

Work hours inferred using imputed contribution rates for AMC or UbC

commits.

Disqualified Model

Contribution Candidate

(dMCC)

Contributions falling within the MCTD but that are disqualified as model

contributions (MC) for failing some criteria (e.g. falling outside the IQR4

of contribution rates in the MCTD)

Imputed Commit (IC)
A commit where the contribution rate was imputed, and subsequent REH

was also calculated.

Knowledge Worker

Fatigue

A duration where the accuracy or precision of knowledge worker output

degrades due to fatigue.

Mean Model

Contribution Rate

(mMCR)

The average contribution rate calculated across all contributions within

the Model CTD Range.

Mean-High Model

Contribution Rate

The mean of the highest contribution rates within the Model CTD Range,

emphasizing peak productivity periods.

qeios.com doi.org/10.32388/H58X4I 31

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


Term Definition

(mhMCR)

Model Contribution (MC)
Contributions within the Model CTD Range, representing natural and

consistent developer activity.

Model Contribution

Candidate (MCC)

A potential MC, falling within the MCTDR but requiring further validation

against MC.

Model Contribution Rate

(MCR)

The baseline rate of contributions during consistent and productive work

sessions, serving as a benchmark for analysis. This rate can be calculated

by different methods (e.g. mMCR or mhMCR)

Model CTD Range

(MCTDR)

A range of CTD values suggesting continuous and productive work

sessions, falling between quick, high-intensity commits and extended

ant-model intervals.

Natural Contribution

(NC)

Code changes representing logical, developer-driven progression of a

codebase.

Non-Imputed Commit

(nIC)

A commit where the contribution rate was not imputed, and the actual

CTD value was assigned as REH.

Quick-Remedy Commit

(QRC)

A commit with very low CTD but comparatively high contribution

measure (CR), typically reflecting rapid, isolated fixes rather than

continuous development.

Resolved Effort Hours

(REH)

The computed hours for a contribution, based on contribution rates and

corresponding metrics.

Unbound Commit (UbC)

A commit with a high CTD and comparatively low contribution measure

(CR), indicating a possible interruption or delayed submission of

changes.

Unlikely Resolved Effort

(URE)

REH exceeding plausible limits (e.g., more than 8 hours/day), suggesting

an overestimation of contribution effort.

Unnatural Contribution

(UnC)

Contributions arising from automated, systematic refactoring or copied

code that do not reflect logical developer-driven progression of a

qeios.com doi.org/10.32388/H58X4I 32

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


Term Definition

codebase.

Notes

Vincil Bishop III: Not related to work at Amazon, Inc.

Acknowledgements

The deepest gratitude is expressed to the Systems Engineering Department at Colorado State

University, Fort Collins, for their invaluable support in making this research possible.

During the preparation of this work, artificial intelligence was used in the research and writing processes.

After using these services, the output was reviewed and edited as needed and full responsibility is taken for its

content.

References

1. a, bV. Bishop, S. Simske. "Contribution Rate Imputation Theory: A Conceptual Model." [Online]. Availabl

e: https://arxiv.org/abs/2410.09285.

2. a, b, cV. Bishop, S. Simske, M. Vans, M. Yashwant, I. Ray. "Time-delta method for measuring software de

velopment contribution rates." Mountain Scholar: Digital Collections of Colorado, 2024. [Online]. Avail

able: https://hdl.handle.net/10217/239202.

3. ^Y. Yang, E. Ronchieri, M. Canaparo. "Natural Language Processing Application on Commit Messages: A

Case Study on HEP Software," 2022. doi:10.20944/preprints202209.0309.v1.

4. ^D. Liu, C.-H. Lung, S. A. Ajila. "Adaptive Clustering Techniques for Software Components and Architect

ure," 2015. doi:10.1109/compsac.2015.256.

5. ^S. Barman, H. L. Gope, M. M. M. Islam, M. Hasan, U. Salma. "Clustering Techniques for Software Engin

eering." Indonesian Journal of Electrical Engineering and Computer Science. 4 (2): 465, 2016. doi:10.115

91/ijeecs.v4.i2.pp465-472.

6. ^H.-A. Jeon, Y. H. Kim, H. Song, B. Kim, J. Seo. "Githru: Visual Analytics for Understanding Software Dev

elopment History Through Git Metadata Analysis." IEEE Transactions on Visualization and Computer Gr

aphics. 27 (2): 656-666, 2021. doi:10.1109/tvcg.2020.3030414.

qeios.com doi.org/10.32388/H58X4I 33

https://www.qeios.com/
https://doi.org/10.32388/H58X4I


7. ^P.-P. Partachi, S. K. Dash, M. Allamanis, E. T. Barr. "Flexeme: Untangling Commits Using Lexical Flow

s," 2020. doi:10.1145/3368089.3409693.

8. ^L. Yi, C. Zhu, M. Gligoric, J. Rubin, M. Chechik. "Precise Semantic History Slicing Through Dynamic Delt

a Refinement." Automated Software Engineering. 26 (4): 757-793, 2019. doi:10.1007/s10515-019-0026

0-8.

9. ^M. d. Biase, A. Rastogi, M. Bruntink, A. v. Deursen. "The Delta Maintainability Model: Measuring Maint

ainability of Fine-Grained Code Changes," pp. 113-122, 2019. doi:10.1109/techdebt.2019.00030.

10. ^K. R. D. Gupta, S. S. Kang. "Fuzzy Clustering Based Approach for Prediction of Level of Severity of Faults

in Software Systems." International Journal of Computer and Electrical Engineering. pp. 845-849, 2011.

doi:10.7763/ijcee.2011.v3.430.

11. ^F. Wen, C. Nagy, M. Lanza, G. Bavota. "Quick remedy commits and their impact on mining software rep

ositories." Empirical Software Engineering: An International Journal. 27 (1): 14-14, 2022. doi:10.1007/s

10664-021-10051-z.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: Amazon, Inc.

qeios.com doi.org/10.32388/H58X4I 34

https://www.qeios.com/
https://doi.org/10.32388/H58X4I

