
16 October 2025  ·  CC-BY 4.0

Peer Review

Review of: "Geometric Analysis of

Reasoning Trajectories: A Phase Space

Approach to Understanding Valid and

Invalid Multi-Hop Reasoning in LLMs"

Alexandru Tăbușcă1

1. Computer Science for Business Management, Romanian-American University, Romania

This article introduces an innovative framework for analyzing multi-hop reasoning in large language

models (LLMs) through Hamiltonian mechanics and differential geometry. Reasoning processes are

represented as trajectories within embedding spaces, with kinetic energy modeling the progression of

reasoning and potential energy encoding the alignment between reasoning steps and question relevance.

The author formalizes a “reasoning Hamiltonian,” explores canonical transformations, and employs

Frenet-Serret geometry to characterize curvature and torsion of reasoning trajectories. Using BERT

embeddings and the OpenBookQA dataset, the study empirically compares valid and invalid reasoning

chains, analyzing their “energetic” profiles and geometric dynamics.

The central finding is that valid reasoning corresponds to “lower Hamiltonian energies” and “smoother

geometric trajectories,” implying cognitive efficiency and stability. Invalid reasoning tends to exhibit

higher energy variance and irregular geometric patterns. The author concludes that the Hamiltonian

formalism provides a novel mathematical language for understanding reasoning, interpretability, and

potential conservation laws within cognitive or AI systems.

Ethics and Integrity

The article is original and adheres to ethical standards. It relies on publicly available data (OBQA, QASC)

and standard open models (BERT-base). The article's transparency in methods and the reproducibility of

its experiments are commendable. Citations are broad and interdisciplinary, though a few mathematical

derivations would benefit from clearer attribution to classical mechanics sources (e.g., Goldstein 1980;

Arnold 1989). No ethical, data-handling, or integrity issues are apparent.
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Quality

This is a highly technical and conceptually ambitious article, merging physics-inspired formalism with

natural language reasoning analysis. The theoretical framework—defining a Hamiltonian for reasoning

and applying canonical transformations—is mathematically sound and internally coherent. The author

effectively bridges multiple domains: theoretical physics, AI interpretability, and cognitive modeling.

The empirical section complements theory with statistical rigor: t-tests, MANOVA, and PCA-based

geometric visualization are used appropriately to compare reasoning trajectories. However, the empirical

evidence remains preliminary—the dataset (OpenBookQA) is limited in scale and complexity, and results,

while suggestive, do not yet confirm the universality of the framework.

I consider that a major strength lies in the mathematical transparency and the integration of symbolic

reasoning with geometric interpretation, while a key limitation is the lack of ablation or comparative

baselines (e.g., with simpler metrics such as cosine similarity or entropy of reasoning chains). The

connection between physical conservation laws and cognitive processes is elegant but still metaphorical.

Novelty

The work demonstrates exceptional originality. Modeling reasoning chains via Hamiltonian dynamics

and associating reasoning “energy” with logical validity represents a strikingly fresh conceptual leap (at

least to my knowledge, this is the first article of this length and complexity focused on exactly this topic).

The introduction of phase-space reasoning analysis, canonical transformations in embedding space, and

the use of Frenet-Serret curvature to describe cognitive flexibility are unprecedented in AI interpretability

literature.

This originality is twofold:

- Theoretical novelty: introducing conservation laws and symmetries into reasoning dynamics (via

Noether-like analogies).

- Methodological novelty: quantifying reasoning trajectories geometrically and statistically.

The author situates this framework in a lineage of physics-inspired AI models but expands it

significantly. It positions reasoning not as discrete symbolic steps but as continuous trajectories

constrained by dynamic invariants—a paradigm potentially transformative for understanding LLM

cognition.

Impact
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If further validated, this framework could redefine how reasoning quality, coherence, and interpretability

are measured. It could lead to new diagnostic tools for evaluating reasoning in AI systems—especially in

explainability and bias detection. The interdisciplinary impact extends to computational cognitive

science, philosophy of AI, and physics-inspired computation.

However, the practical impact is currently limited by the lack of demonstrable improvements in model

performance or reasoning generation. The work is primarily diagnostic and theoretical. Future efforts

should test whether manipulating Hamiltonian parameters (or enforcing conservation constraints) can

improve reasoning stability or steer model outputs.

Still, as a conceptual contribution, the article offers paradigm-level innovation, connecting the geometric

formalism of physics to the abstract reasoning processes of LLMs—a potentially foundational step toward

the physics of cognition.

Language and Organization

The text is quite dense but articulate. The mathematical sections are rigorous and carefully written,

though they will really challenge readers without backgrounds in classical mechanics or differential

geometry. The structure (Introduction - Theoretical Foundations - Framework - Methodology - Results

- Discussion) is clear and logical, and the figures (especially Figures 2-18) greatly enhance understanding.

Minor language refinements could further improve flow:

- Simplify extended mathematical explanations by moving detailed derivations to an appendix.

- Clarify the physical-cognitive analogies (e.g., distinguishing metaphorical from literal uses of “energy,”

“momentum,” or “symmetry”).

- Enhance accessibility by summarizing mathematical results qualitatively for interdisciplinary readers.

Overall, the writing reflects a great level of scholarly maturity, precision, and interdisciplinary fluency.

Recommendations for Improvement

- Broaden empirical evaluation—apply the Hamiltonian framework to multiple reasoning benchmarks

(e.g., HotpotQA, StrategyQA) to test robustness.

- Introduce baselines—compare Hamiltonian energy metrics to simpler alternatives (entropy, cosine

coherence) to validate unique explanatory power.
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- Clarify metaphoric scope—explicitly define which physical analogies (Hamiltonian, Noether

symmetries) are metaphorical versus directly computable.

- Visualization refinement—enhance figures with clearer legends and consistent color schemes

distinguishing valid/invalid trajectories.

- Extend discussion—reflect more deeply on philosophical implications: does reasoning obey

conservation laws, or are these emergent regularities?

- Potential for real-time application—speculate on how the framework could be embedded into

reasoning-monitoring modules for LLMs.

Addressing these points would elevate the current work from conceptual innovation to empirical

significance.
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