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Quantum computing uses the laws of quantum mechanics to perform computation. Information is

stored in qubits and processed using quantum gates arranged as quantum circuits. As quantum

hardware grows in size and complexity, verifying these systems becomes increasingly difficult.

Traditional verification methods do not scale well and quickly become computationally infeasible.

This creates a strong need for more powerful and scalable verification techniques. Formal methods

provide a potential solution to this problem. Techniques such as theorem proving, model checking,

and symbolic reasoning offer mathematically rigorous ways to verify correctness, equivalence, and

implementation. They also help detect design errors early in the development process. This review

examines how formal methods are applied to quantum circuit verification. It focuses on barrier

certificates, abstract interpretation, model checking, theorem proving, and emerging hybrid

approaches. The review discusses both the theoretical foundations and practical applications of these

techniques. Their strengths and limitations are analysed through representative case studies. Finally,

the review highlights open challenges and identifies promising directions for future research. An

extensive set of references is included to support further study and exploration.

Correspondence: papers@team.qeios.com — Qeios will forward to the authors

1. Introduction

Quantum computing has advanced rapidly in recent years [1][2][3][4][5][6]. Progress has been driven by key

contributions from industry and academia. Quantum processors are becoming more realistic, and error-

correction techniques are steadily improving [7][8][9][10][11].

Major technology companies have played a key role in this progress. Google, IBM, and Amazon have

significantly improved their quantum hardware platforms. They have also experimentally demonstrated
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the effectiveness of modern quantum error-correction codes [12][13][14].

Microsoft has taken a different approach by focusing on topological quantum computing. Their work

demonstrates architectures that promise more robust qubits and gate operations [15].

Together, these advances help quantum computing transition beyond the Noisy Intermediate Scale

Quantum (NISQ) era. They point toward quantum architectures capable of reliable and fault-tolerant

computation. The goal of fault-tolerant quantum computing is thus being realized.

As quantum technology advances, it is essential to ensure that quantum computers behave as intended.

Correct execution of quantum algorithms is a critical concern. Quantum circuits are the primary

abstraction for describing quantum algorithms. Thus, their correctness verification is critical and urgent.

Verifying quantum systems is fundamentally difficult [16]. Most quantum processes cannot be efficiently

simulated on classical computers due to its complexity and state space explosion. As a result, many

traditional verification techniques do not scale. Quantum circuits also differ from classical circuits in how

they can be tested. Empirical testing alone is not sufficient to validate quantum behaviour. Such testing

provides limited coverage and weak correctness guarantees. For these reasons, alternative verification

approaches are necessary. These approaches must be systematic and mathematically rigorous [17].

Formal verification provides a rigorous way to validate complex systems. It uses mathematical reasoning

and proofs to ensure design correctness. Unlike traditional testing, formal verification explores the entire

design space. It does not rely on sampled behaviours alone. This makes it possible to detect subtle corner

case bugs that testing may miss. Because of these strong guarantees, formal verification is widely used in

safety and reliability critical domains. These include software systems, hardware design, and VLSI design

verification [18][19][20].

Formal methods are now being applied to quantum circuits [16][17]. These methods are designed to handle

features unique to quantum computation. These include superposition, entanglement, interference and

noise. By addressing these challenges, formal verification provides strong guarantees for quantum circuit

verification.

This work presents a concise review of formal methods for quantum circuit verification. It covers both

the theoretical foundations and practical applications of these techniques. The review examines several

key approaches. These include barrier certificates, abstract interpretation, model checking, theorem

proving, and hybrid methods that combine multiple techniques. It compares their strengths and
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limitations in a systematic manner. Finally, it highlights promising research directions for addressing the

verification challenges posed by increasingly complex quantum systems.

2. Background

This section introduces the background needed to understand qubits and quantum circuits. It also

presents the formal verification techniques in general used in verification.

2.1. Qubits & Quantum Circuits

Quantum circuits are fundamentally different from classical circuits. This difference arises from the

unique properties of quantum information. Classical bits can take only one of two definite values, 0 or 1.

In contrast, quantum bits, or qubits, can exist in superpositions of basis states. Qubit states are described

using complex valued probability amplitudes [21][22].

A single-qubit state is written as

where    represents the quantum state. The vectors    and    form the computational basis. The

coefficients    and    are complex numbers. The squared magnitudes of these coefficients determine

measurement outcomes. Specifically,   and   give the probabilities of measuring   and  . These

probabilities must sum to one, which leads to the normalization condition

The computational basis vectors are defined as

Qubits can also become entangled. Entanglement creates non-classical correlations that cannot be

reproduced by any classical system. These properties allow quantum algorithms to outperform classical

algorithms for certain tasks. At the same time, they introduce significant challenges for verifying

quantum circuits.

A quantum circuit is represented as a sequence of quantum gates acting on a set of qubits [21]. Each gate

applies a unitary transformation to the qubits. Common single-qubit gates include the Pauli operators (X,
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Y, Z), the Hadamard gate, and various phase gates. Multi-qubit gates, such as the CNOT (controlled-NOT)

gate, can create entanglement between qubits.

Verification of quantum circuits is challenging because the state space grows exponentially with the

number of qubits. An  -qubit system occupies a Hilbert space of dimension  , making classical

simulation not feasible for large circuits.

2.2. Formal Verification Principles

As introduced in Section  1, formal verification involves mathematically proving or disproving that a

system meets a formal specification. Unlike testing, which checks only some behaviours, formal

methods consider all possible behaviours. This provides stronger and more comprehensive guarantees of

correctness.

Formal verification approaches can be grouped into three main categories:

1. Deductive verification: Proving correctness properties using mathematical proof systems.

2. Model checking: Verifying finite state systems against temporal logic specifications.

3. Abstract interpretation: Analysing system behaviour using sound semantic approximations.

In quantum systems, formal verification faces unique challenges. These arise from superposition,

entanglement, measurement, and decoherence. Classical methods must be carefully adapted to be

employed for quantum circuit verification. They need to handle the quantum effects while staying

computationally feasible.

3. Barrier Certificates

This section introduces barrier certificates, a key technique employed in the formal verification of

quantum circuits.

3.1. Foundations

Barrier certificates are a powerful tool for verifying the safety of dynamical systems. They ensure that no

system trajectory can reach an unsafe or undesirable state. Recently, barrier certificates have been

adapted for quantum circuit verification [23][24][25][26].

Formally, a barrier certificate for a quantum system is a function  . It must satisfy three main

conditions:

n 2n

B : X → R
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1. Initial state condition:   for all initial states  .

2. Unsafe state condition:   for all unsafe states  .

3. Decrement condition:   for all   and all  .

Here,   is the state space. The set   contains all initial states. The set   contains all unsafe

states. The function    is a set-valued transition map that defines the system dynamics. These

conditions ensure that trajectories starting from any initial state never enter the unsafe region at any

given time step.

3.2. Scenario-based Approach

A key advancement in barrier certificate synthesis for quantum circuits is the scenario-based

approach  [23][27][28]. This method uses sampling to construct barrier certificates over both finite and

infinite time horizons. It explicitly accounts for uncertainties in initial states and system dynamics.

These features make it well suited for noisy quantum systems, where exact knowledge of all parameters

is often impossible.

3.3. Scenario-Based Approach

A notable advancement in barrier certificate synthesis for quantum circuits is the scenario-based

approach [23][27][28]. This method employs sampling to construct barrier certificates over both finite and

infinite time horizons, while explicitly accounting for uncertainties in initial states and system

dynamics. Such capabilities make it particularly suitable for noisy quantum systems, where exact

characterization of all parameters is often infeasible.

The scenario-based approach converts the verification problem into a convex optimization problem

using sampled constraints. This makes it possible to efficiently compute a barrier certificate that satisfies

the safety conditions with high probability. The method has several advantages for quantum circuit

verification:

1. Supports the continuous state spaces found in quantum systems.

2. Handles uncertain dynamics caused by quantum noise and device imperfections.

3. Provides probabilistic guarantees of correctness.

4. Works for both finite and infinite time horizons.

B(x) ≤ 0 x ∈ X0

B(x) > 0 x ∈ Xu

B( ) − B(x) ≤ 0x′ x ∈ X ∈ f(x)x′

X ⊆ XX0 ⊆ XXu

f : X ⇒ X
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3.4. Application

Barrier certificates have been successfully used to verify a variety of quantum circuits. These include

Grover’s search algorithm and other quantum oracles. Researchers have tested different classes of barrier

certificates, such as polynomial, exponential, and rational functions. This helps determine the most

effective type for each application. Table 1 summarizes these barrier certificate types. It highlights their

strengths, limitations, and typical use cases.

Barrier Certificate

Type
Strengths Limitations Ideal Use Cases

Polynomial
Efficient synthesis, good

scalability
Limited expressiveness

Linear and mildly nonlinear

systems

Exponential Handles exponential dynamics
Numerical stability

issues

Systems with exponential

convergence

Rational High expressiveness Complex optimization Highly nonlinear systems

Scenario-based
Handles uncertainty, probabilistic

guarantees

Sampling may miss rare

cases
Noisy quantum systems

Table 1. Barrier Certificates and Their Applications

Case studies show that the choice of barrier function greatly affects both the efficiency and effectiveness

of verification(Table 1). For many quantum circuits, polynomial barrier certificates offer a good balance

between expressiveness and computational efficiency. More complex barrier functions may be needed

for circuits with highly non-linear dynamics.

4. Abstract Interpretation

This section provides an overview of how abstract interpretation is applied to the formal verification of

quantum circuits.
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4.1. Semantic Framework

Abstract interpretation provides a theoretical framework for approximating the semantics of

computational systems. It enables static analysis of program properties [29][30][31][32][33][34]. Recent work

has extended this approach to variational quantum circuits (VQCs) [35][36]. VQCs form the basis of many

quantum machine learning algorithms. Similar to classical deep neural networks, VQCs are vulnerable to

adversarial inputs. Small deviations or perturbations in the input can cause incorrect outputs or

predictions.

assolini2025formal  [35]  propose a semantic framework based on abstract interpretation for verifying

VQCs. Their approach explicitly handles quantum specific properties, such as state normalization.

Normalization introduces dependencies between variables, which complicates traditional verification

methods. This framework provides a formal way to define the verification problem for VQCs. It also offers

tools to analyse the computational complexity of the verification process.

4.2. Interval-based Reachability

Interval-based reachability analysis is a key technique in the abstract interpretation of quantum circuits.

It computes over approximations of the reachable states at each layer of the quantum circuit  [35][37][38]

[39]. This method propagates interval bounds through the layers of circuit. In doing so, it provides formal

guarantees about circuit behaviour. However, quantum effects such as superposition and entanglement

create dependencies between variables. These dependencies make interval analysis more challenging.

To address these challenges, researchers have developed enhanced abstraction techniques. These

techniques explicitly track dependencies between variables. However, this added precision comes with

higher computational cost  [40]. Finding the right balance between precision and efficiency remains an

active research problem in quantum abstract interpretation.

4.3. Verification of Robustness Properties

Abstract interpretation is quite effective for verifying robustness properties of VQCs. It can be used to

study how adverse perturbations affect circuit behaviour. These techniques analyse how small changes

in the input state influence the final measurement probabilities. In doing so, they provide formal

robustness certificates. These certificates are similar to those used for classical neural networks [41][42][43]

[44][45][46]. The verification process typically follows four main steps:

qeios.com doi.org/10.32388/H7D715.2 7

https://www.qeios.com/
https://doi.org/10.32388/H7D715.2


1. Defining a perturbation model for the input states.

2. Propagating these perturbations through the quantum circuit using abstract domains.

3. Computing bounds on the output measurement probabilities.

4. Checking that classification decisions remain stable within the allowed perturbation range.

This methodology has been tested on standard verification benchmarks. The results show its potential

for certifying the reliability of quantum machine learning models. This makes it specifically important

for safety critical applications.

5. Other Formal Methods

This section highlights additional formal methods used in the verification of quantum circuits.

5.1. Model Checking

Model checking is a formal verification technique that systematically explores all possible system

states [47]. In quantum circuit verification, it is used to check whether a circuit satisfies given temporal

logic properties. This area has attracted significant research attention  [48][49][50][51][52][53][54][55][56]. For

quantum circuits, model checking usually follows three main steps:

1. Encoding the quantum circuit as a finite-state model.

2. Expressing the desired properties using suitable temporal logics.

3. Checking these properties against the encoded model.

Early work in this area verified quantum circuits by mapping them to quantum Markov chains. These

models were then analysed using model checking  [57]. Other approaches extended probabilistic model

checking. They account for the inherent randomness of quantum measurements and decoherence [58].

In spite of having superior theoretical power, model checking faces serious scalability issues in quantum

systems. The state space grows exponentially with the increase of number of qubits. This makes

exhaustive exploration of state space impractical. To address this state explosion problem, symbolic

model checking techniques have been developed. These methods use binary decision diagrams (BDDs)

and related compression strategies [59][60][61][62][63][64][65]. They have achieved varying levels of success in

improving scalability.
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5.2. Theorem Proving

Theorem proving is a deductive method for verifying quantum circuits. It uses formal logical systems to

build rigorous mathematical proofs of correctness. This approach has been implemented in several proof

assistants, including Coq, Isabelle/HOL, and Lean. These tools are often extended with specialized

libraries for quantum computation [66][67][68][69][70].

The authors of  [71][72]  have developed deductive approaches to quantum circuit verification using SMT

solvers. The Giallar tool, uses SMT solvers to verify quantum circuit compiler passes. It ensures that

quantum semantics are preserved at each pass  [73]. Theorem proving provides very high assurance of

correctness. However, it requires significant expertise and manual effort. This makes it less suitable for

rapid iteration in quantum circuit design workflows.

5.3. Runtime Verification

Runtime verification monitors the execution of a quantum circuit to check whether it satisfies specified

properties. Although it does not provide full formal guarantees, it can detect property violations during

testing or actual operation. This makes runtime verification practical for near term quantum

applications  [74][75][76][77][78][36][79][73][80][81]. The runtime verification process typically involves three

main steps:

1. Instrumenting the quantum circuit with extra measurement operations.

2. Defining assertion like properties for specific circuit states.

3. Performing statistical testing of these properties during execution.

Runtime verification is particularly useful for validating specific executions on quantum hardware. It

serves as a complement to formal methods that analyse entire quantum circuit designs.

6. Applications

This section presents case studies that demonstrate the practical application of quantum circuit

verification. Table 2 captures different techniques, where they are used, major challenges and key tools of

formal methods in quantum circuit verification.
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6.1. Quantum Error Correction

Quantum error correction (QEC) is a key area where formal verification methods are employed. Fault

tolerant quantum computation depends on the correct operation of QEC circuits  [82][83][84]. Formal

methods have been used to verify different aspects of QEC implementations  [85][86][87][88][89][90],

including:

1. The correctness of stabilizer measurements.

2. Fault tolerance thresholds.

3. The implementation of logical operations.

For example, barrier certificates effectively ensure that errors stay within correctable regions of the state

space. Model checking is used to verify the sequential behaviour of QEC protocols under various fault

models.

6.2. Compiler Verification

Quantum circuits are usually written in high-level programming languages and then compiled into

hardware-specific instructions. This makes verifying the correctness of the compilation process both

critical and essential [34][75][77][79][91][92][93][94]. The Giallar tool [73] uses SMT solvers to check that each

compiler pass preserves the semantic integrity of the quantum circuit. This verification process usually

involves three main steps:

1. Translating quantum circuits into logical formulae.

2. Checking equivalence between the original and compiled circuits.

3. Verifying that the optimization rules applied during compilation are correct.

Compiler verification is especially important for quantum applications where stakes are high. Even small

compilation errors in such settings could lead to catastrophic failures.
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Domain Verification Methods Challenges Tools

Quantum Error

Correction
Barrier certificates, Model checking Complexity of feedback control

QECVerifier,

QuaVer

Quantum Compilers Theorem proving, SMT solvers
Semantic preservation across

layers
Giallar, Quartz

Quantum Algorithms
Abstract interpretation, Barrier

certificates

Handling exponential state

spaces
QVVerify, CertiQ

Quantum Hardware
Model checking, Runtime

verification

Modeling physical

imperfections

HQVer,

PulseVerifier

Table 2. Applications of Formal Verification in Quantum Computing

6.3. Quantum Algorithms

Formal methods have been used to verify the correctness of various quantum algorithms [95][96]. These

include Grover’s search algorithm  [97], quantum phase estimation  [98][99], and quantum approximate

optimization algorithms (QAOA) [100] among others.

Each algorithm presents its own verification challenges:

1. Grover’s algorithm: Verification requires proving convergence and establishing bounds on the

success probability.

2. Quantum phase estimation: Verification involves ensuring precision guarantees under different

noise models.

3. QAOA: Verification focuses on approximation ratios and convergence properties.

These verifications often use a combination of formal techniques. For example, barrier certificates can be

used to establish safety properties, while theorem proving ensures functional correctness. The benefits

of each method can thus be exploited depending on the application.
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7. Challenges and Limitations

This section presents a critical assessment of the challenges and limitations in current quantum circuit

verification methods.

7.1. Scalability

A major challenge in quantum circuit verification is the exponential growth of the state space as the

number of qubits increases linearly. Even though classical hardware continues to improve, the inherent

complexity of representing exact quantum states limits the scalability of all verification methods.

Current approaches try to address this challenge using:

1. Abstraction and approximation techniques that trade completeness for scalability.

2. Modular verification, which breaks large circuits into smaller components.

3. Symbolic methods that represent sets of quantum states compactly.

Despite these strategies, verifying circuits with many qubits remains difficult. This underscores the need

for further research into scalable verification techniques and methodologies.

7.2. Quantum-specific Capabilities

Quantum phenomena such as entanglement, superposition, and measurement create verification

challenges that do not have classical equivalent. These effects produce complex correlations between

qubits that are hard to abstract or approximate without losing important information. Measurement is

especially difficult because it collapses the quantum state and is inherently non-unitary, making

continuous verification more complicated. Approaches to address these challenges include:

1. Creating specialized abstract domains to capture quantum correlations.

2. Designing verification techniques that are aware of measurements.

3. Using relational logics to represent and reason about entanglement.

7.3. Tool Support

Many tools have been developed for quantum circuit verification. The ecosystem is still less mature than

that for classical software verification. Most tools require significant expertise to use. They are often

tailored to specific verification methods or quantum programming languages. Improving tool support

will require:
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1. Standardizing interfaces between verification tools and quantum programming frameworks.

2. Creating user friendly interfaces for specifying verification properties.

3. Establishing elaborate benchmark suites to evaluate and compare verification tools.

4. Automating the choice of the most suitable verification method for a given circuit.

8. Future Directions

Here, several potential frontiers and directions for future research in quantum circuit verification are

outlined, as identified by the reviewer.

8.1. Hybrid Verification Methods

Future verification frameworks are likely to combine multiple techniques into hybrid approaches. These

approaches can leverage the strengths of each method. For example, abstract interpretation can quickly

identify potential problem areas. These areas can then be examined in detail using more precise

methods, such as theorem proving or model checking. Promising hybrid combinations include:

1. Using barrier certificates together with abstract interpretation for safety verification.

2. Combining theorem proving with model checking to verify both functional and temporal

properties.

3. Augmenting runtime verification with formal methods to provide practical assurance.

8.2. Machine Learning Assisted Verification

Machine learning offers promising ways to enhance formal verification of quantum circuits. Potential

applications include:

1. Learning barrier certificates directly from simulation data.

2. Predicting which circuit components are hard to verify, to focus verification efforts.

3. Guiding abstract interpretation using learned heuristics.

4. Speeding up model checking with learned representations of the state space.

These approaches could greatly improve the scalability and automation of quantum circuit verification

while maintaining formal guarantees.
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8.3. Verifying Fault-Tolerant Quantum Computing

As quantum computing moves toward fault-tolerant operation, new verification challenges and

opportunities emerge. Future research directions include:

1. Verifying quantum error correction protocols under realistic noise models.

2. Developing verification techniques for distributed quantum systems.

3. Establishing certification frameworks for quantum hardware components.

4. Creating standards for quantum software verification.

Advances in these areas will be essential for building reliable and trustworthy quantum computing

systems for critical applications.

9. Conclusion

Formal methods for quantum circuit verification have made significant progress in recent years. They

have evolved from theoretical frameworks to practical tools that can be applied to real quantum circuits.

This review studies the current landscape of these methods, including barrier certificates, abstract

interpretation, model checking, and theorem proving. Each method offers unique advantages and is

suited to different verification scenarios.

Barrier certificates provide a strong method for safety verification. When combined with scenario-based

approaches, they can handle uncertainties in initial states and system dynamics. Abstract interpretation

gives a semantic framework for analysing variational quantum circuits and verifying their robustness.

Model checking allows exhaustive verification of temporal properties. Theorem proving offers the

highest level of assurance through rigorous mathematical proofs.

In spite of these advances, major challenges remain. Scaling verification to larger quantum systems and

handling quantum specific features like entanglement, superposition and measurement are still difficult.

Future research should focus on developing hybrid approaches that combine multiple verification

techniques. It should also explore using machine learning to improve scalability and address the

verification needs of fault-tolerant quantum computing.

As quantum computing moves closer to practical applications, formal verification methods will be

increasingly important for ensuring the reliability and correctness of quantum software and hardware.
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Developing robust verification tools and methods will be key to building trust in quantum computing

systems and unlocking their full potential for solving challenging and complex computational problems.
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