
24 January 2026, Preprint v3 · CC-BY 4.0 PREPRINT

Review Article

A Review of Formal Methods in Quantum

Circuit Verification

Arun Govindankutty1

1. North Dakota State University, United States

Quantum computing uses the laws of quantum mechanics to perform computation. Information is

stored in qubits and processed using quantum gates arranged as quantum circuits. As quantum

hardware grows in size and complexity, verifying these systems becomes increasingly difficult.

Traditional verification methods do not scale well and quickly become computationally infeasible.

This creates a strong need for more powerful and scalable verification techniques. Formal methods

provide a potential solution to this problem. Techniques such as theorem proving, model checking,

and symbolic reasoning offer mathematically rigorous ways to verify correctness, equivalence, and

implementation. They also help detect design errors early in the development process. This review

examines how formal methods are applied to quantum circuit verification. It focuses on barrier

certificates, abstract interpretation, model checking, theorem proving approaches. The review

discusses both the theoretical foundations and practical applications of these techniques. Their

strengths and limitations are analysed through representative case studies. Finally, the review

highlights open challenges and identifies promising directions for future research. An extensive set of

references is included to support further study and exploration.

Correspondence: papers@team.qeios.com — Qeios will forward to the authors

1. Introduction

Quantum computing has advanced rapidly in recent years [1][2][3][4][5][6]. Progress has been driven by key

contributions from industry and academia. Quantum processors are becoming more realistic, and error-

correction techniques are steadily improving [7][8][9][10][11].

Major technology companies have played a key role in this progress. Google, IBM, and Amazon have

significantly improved their quantum hardware platforms. They have also experimentally demonstrated

Qeios

qeios.com doi.org/10.32388/H7D715.3 1

mailto:papers@team.qeios.com
https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

the effectiveness of modern quantum error-correction codes [12][13][14].

Microsoft has taken a different approach by focusing on topological quantum computing. Their work

demonstrates architectures that promise more robust qubits and gate operations [15].

Together, these advances help quantum computing transition beyond the Noisy Intermediate Scale

Quantum (NISQ) era. They point toward quantum architectures capable of reliable and fault-tolerant

computation. The goal of fault-tolerant quantum computing is thus being realized.

As quantum technology advances, it is essential to ensure that quantum computers behave as intended.

Correct execution of quantum algorithms is a critical concern. Quantum circuits are the primary

abstraction for describing quantum algorithms. Thus, their correctness verification is critical and urgent.

Verifying quantum systems is fundamentally difficult [16]. Most quantum processes cannot be efficiently

simulated on classical computers due to its complexity and state space explosion. As a result, many

traditional verification techniques do not scale. Quantum circuits also differ from classical circuits in how

they can be tested. Empirical testing alone is not sufficient to validate quantum behaviour. Such testing

provides limited coverage and weak correctness guarantees. For these reasons, alternative verification

approaches are necessary. These approaches must be systematic and mathematically rigorous [17].

Formal verification provides a rigorous way to validate complex systems. It uses mathematical reasoning

and proofs to ensure design correctness. Unlike traditional testing, formal verification explores the entire

design space. It does not rely on sampled behaviours alone. This makes it possible to detect subtle corner

case bugs that testing may miss. Because of these strong guarantees, formal verification is widely used in

safety and reliability critical domains. These include software systems, hardware design, and VLSI design

verification [18][19][20].

Formal methods are now being applied to quantum circuits [16][17]. These methods are designed to handle

features unique to quantum computation. These include superposition, entanglement, interference and

noise. By addressing these challenges, formal verification provides strong guarantees for quantum circuit

verification.

This work presents a concise review of formal methods for quantum circuit verification. It covers both

the theoretical foundations and practical applications of these techniques. The review examines several

key approaches. These include barrier certificates, abstract interpretation, model checking, theorem

proving, and hybrid methods that combine multiple techniques. It compares their strengths and

qeios.com doi.org/10.32388/H7D715.3 2

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

limitations in a systematic manner. Finally, it highlights promising research directions for addressing the

verification challenges posed by increasingly complex quantum systems.

2. Background

This section introduces the background needed to understand qubits and quantum circuits. It also

presents the formal verification techniques in general used in verification.

2.1. Qubits & Quantum Circuits

Quantum circuits are fundamentally different from classical circuits. This difference arises from the

unique properties of quantum information. Classical bits can take only one of two definite values, 0 or 1.

In contrast, quantum bits, or qubits, can exist in superpositions of basis states. Qubit states are described

using complex valued probability amplitudes [21][22].

A single-qubit state is written as

where represents the quantum state. The vectors and form the computational basis. The

coefficients and are complex numbers. The squared magnitudes of these coefficients determine

measurement outcomes. Specifically, and give the probabilities of measuring and . These

probabilities must sum to one, which leads to the normalization condition

The computational basis vectors are defined as

Similarly, the state of an -qubit quantum system, denoted by , is described using complex

probability amplitudes. The state can be written as

Each basis state has an associated amplitude . The probability of measuring the system in state is

given by

|ψ⟩ = α|0⟩ + β|1⟩,

|ψ⟩ |0⟩ |1⟩

α β

|α|
2

|β|
2

|0⟩ |1⟩

+ = 1.|α|
2

|β|
2

|0⟩ = [], |1⟩ = [].
1

0

0

1

n |ψ⟩ 2n

|ψ⟩ = |x⟩.∑
x∈{0,1}n

cx

|x⟩ cx x

= .px | |cx
2

qeios.com doi.org/10.32388/H7D715.3 3

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

All measurement probabilities must sum to one. This normalization condition is expressed as

Qubits can also become entangled. Entanglement creates non-classical correlations that cannot be

reproduced by any classical system. These properties allow quantum algorithms to outperform classical

algorithms for certain tasks. At the same time, they introduce significant challenges for verifying

quantum circuits.

A quantum circuit is represented as a sequence of quantum gates acting on a set of qubits [21]. Each gate

applies a unitary transformation to the qubits. Common single-qubit gates include the Pauli operators (X,

Y, Z), the Hadamard gate, and various phase gates. Multi-qubit gates, such as the CNOT (controlled-NOT)

gate, can create entanglement between qubits.

Verification of quantum circuits is challenging because the state space grows exponentially with the

number of qubits. An -qubit system occupies a Hilbert space of dimension , making classical

simulation not feasible for large circuits.

2.2. Formal Verification Principles

As introduced in Section 1, formal verification involves mathematically proving or disproving that a

system meets a formal specification. Unlike testing, which checks only a finite set of inputs or execution

paths, formal methods reason about the entire state space and all possible evolutions of a system. This

allows them to guarantee correctness, safety, or compliance with specifications for every possible input,

timing, or quantum state and not just the cases tested. In other words, formal methods provide

mathematical certainty, while testing can only show that errors are absent in the scenarios that were

actually checked.

Formal verification approaches can be grouped into three main categories:

1. Deductive verification: Proving correctness properties using mathematical proof systems.

2. Model checking: Verifying finite state systems against temporal logic specifications.

3. Abstract interpretation: Analysing system behaviour using sound semantic approximations.

In quantum systems, formal verification faces unique challenges. These arise from superposition,

entanglement, measurement, and decoherence. Classical methods must be carefully adapted to be

= 1.∑
x∈{0,1}n

| |cx
2

n 2n

qeios.com doi.org/10.32388/H7D715.3 4

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

employed for quantum circuit verification. They need to handle the quantum effects while staying

computationally feasible.

3. Barrier Certificates

This section introduces barrier certificates, a key technique employed in the formal verification of

quantum circuits.

3.1. Foundations

Barrier certificates are an effective method for verifying safety properties of dynamical systems [23]. They

guarantee that system trajectories never reach unsafe or undesirable states. More recently, barrier

certificates have been extended to the verification of quantum circuits [24][25][26][23]. A barrier certificate

captures all possible executions of a system using a single real-valued function. This function separates

safe regions from unsafe regions of the state space.

Formally, a barrier certificate for a quantum system is defined as a function . It must satisfy

three main conditions:

1. Initial state condition: for all initial states .

2. Unsafe state condition: for all unsafe states .

3. Decrement condition: for all and all .

Here, is the state space. The set contains all initial states. The set contains all unsafe

states. The function is a set-valued transition map that defines the system dynamics. In

addition, the function must not increase under the circuit dynamics. These conditions ensure that

trajectories starting from any initial state never enter the unsafe region at any given time step. The

existence of such a barrier certificate guarantees safety over an unbounded time horizon. This approach

avoids explicit state or time enumeration and therefore mitigates the state-space explosion problem.

Quantum circuits can be viewed as dynamical systems, which makes barrier certificates well-suited for

their verification. An -qubit state resides in and satisfies the normalization condition

. Each quantum gate acts as a unitary linear transformation on the state. Thus, a quantum

circuit can be modelled as a discrete-time system . Here is the continuous state

space, is the set of initial states, is a finite set of unitary transitions, and

 selects which applies at each step [26]. Safety and correctness properties can be expressed as

B : X → R

B(x) ≤ 0 x ∈ X0

B(x) > 0 x ∈ Xu

B() − B(x) ≤ 0x′ x ∈ X ∈ f(x)x′

X ⊆ XX0 ⊆ XXu

f : X ⇒ X

B

n |ψ⟩ C
2n

= 1∑i | |ψi
2

S = (Z, , F, f)Z0 Z ⊂ C
2n

Z0 F = { , …, }U1 U2 Um

f Ui

qeios.com doi.org/10.32388/H7D715.3 5

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

polynomial or semi-algebraic constraints on the amplitudes. These include properties like bounds on

measurement probabilities, and preservation of logical subspaces etcetera. This algebraic structure

naturally aligns with polynomial barrier certificates and sum-of-squares reasoning.

3.2. Scenario-based Approach

A key advancement in barrier certificate synthesis for quantum circuits is the scenario-based

approach [27][28][24]. This method uses sampling to construct barrier certificates over both finite and

infinite time horizons. It explicitly accounts for uncertainties in initial states and system dynamics.

These features make it well suited for noisy quantum systems, where exact knowledge of all parameters

is often impossible.

The scenario-based approach converts the verification problem into a convex optimization problem

using sampled constraints. This makes it possible to efficiently compute a barrier certificate that satisfies

the safety conditions with high probability. The method has several advantages for quantum circuit

verification:

1. Supports the continuous state spaces found in quantum systems.

2. Handles uncertain dynamics caused by quantum noise and device imperfections.

3. Provides probabilistic guarantees of correctness.

4. Works for both finite and infinite time horizons.

3.3. Application

Barrier certificates have been successfully used to verify a variety of quantum circuits. These include

Grover’s search algorithm and other quantum oracles. Researchers have tested different classes of barrier

certificates, such as polynomial, exponential, and rational functions. This helps determine the most

effective type for each application. Table 1 summarizes these barrier certificate types. It highlights their

strengths, limitations, and typical use cases.

qeios.com doi.org/10.32388/H7D715.3 6

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

Barrier Certificate

Type
Strengths Limitations Ideal Use Cases

Polynomial
Efficient synthesis, good

scalability
Limited expressiveness

Linear and mildly nonlinear

systems

Exponential Handles exponential dynamics
Numerical stability

issues

Systems with exponential

convergence

Rational High expressiveness Complex optimization Highly nonlinear systems

Scenario-based
Handles uncertainty, probabilistic

guarantees

Sampling may miss rare

cases
Noisy quantum systems

Table 1. Barrier Certificates and Their Applications

To verify a quantum circuit using barrier certificates, the circuit is first encoded as a discrete-time

complex dynamical system. Polynomial descriptions of the initial and unsafe sets are also defined. Next,

a barrier function template is chosen. This is usually a real-valued polynomial in the real and imaginary

parts of the quantum state. Verification conditions are then imposed to ensure that the initial and unsafe

regions are separated and that the barrier does not increase along any gate induced transition. These

conditions can be solved using Hermitian sum-of-squares optimization to provide exact guarantees [26].

Scenario-based optimization combined with SMT solving can improve scalability [24]. Once the barrier

certificate is synthesized and formally validated, it provides a sound and global correctness proof for the

quantum circuit.

Case studies show that the choice of barrier function greatly affects both the efficiency and effectiveness

of verification(Table 1). For many quantum circuits, polynomial barrier certificates offer a good balance

between expressiveness and computational efficiency. More complex barrier functions may be needed

for circuits with highly non-linear dynamics.

qeios.com doi.org/10.32388/H7D715.3 7

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

4. Abstract Interpretation

This section provides an overview of how abstract interpretation is applied to the formal verification of

quantum circuits. Abstract interpretation is a static analysis technique that verifies program properties

by computing sound over-approximations of program semantics in an abstract domain [29]. In quantum

circuit verification, abstract interpretation is useful because it avoids explicitly enumerating the

exponentially large Hilbert space. Instead of tracking exact quantum states, it reasons over abstract

representations, such as projection subspaces, stabilizers, or interval bounds on amplitudes [30].

Quantum circuits consist of structured, sequential unitary transformations. This make them well suited

to abstract interpretations. This allows abstract transformers to be defined compositionally for each

quantum gate. Verification using abstract interpretation typically involves defining an abstract domain

and a mapping to the original state space, implementing abstract gate semantics that conservatively

approximate unitary evolution, and checking safety or correctness properties directly on the abstract

states. This approach guarantees soundness while achieving polynomial time scalability [30].

4.1. Semantic Framework

Abstract interpretation provides a theoretical framework for approximating the semantics of

computational systems. It enables static analysis of program properties [30][31][32][33][34][35]. Recent work

has extended this approach to variational quantum circuits (VQCs) [36][37]. VQCs form the basis of many

quantum machine learning algorithms. Similar to classical deep neural networks, VQCs are vulnerable to

adversarial inputs. Small deviations or perturbations in the input can cause incorrect outputs or

predictions.

Assolini et al. [36] propose a semantic framework based on abstract interpretation for verifying VQCs.

Their approach explicitly handles quantum specific properties, such as state normalization.

Normalization introduces dependencies between variables, which complicates traditional verification

methods. This framework provides a formal way to define the verification problem for VQCs. It also offers

tools to analyse the computational complexity of the verification process.

4.2. Interval-based Reachability

Interval-based reachability analysis is a key technique in the abstract interpretation of quantum circuits.

It computes over approximations of the reachable states at each layer of the quantum circuit [36][38][39]

qeios.com doi.org/10.32388/H7D715.3 8

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

[40]. This method propagates interval bounds through the layers of circuit. In doing so, it provides formal

guarantees about circuit behaviour. However, quantum effects such as superposition and entanglement

create dependencies between variables. These dependencies make interval analysis more challenging.

To address these challenges, researchers have developed enhanced abstraction techniques. These

techniques explicitly track dependencies between variables. However, this added precision comes with

higher computational cost [41]. Finding the right balance between precision and efficiency remains an

active research problem in quantum abstract interpretation.

4.3. Verification of Robustness Properties

Abstract interpretation is quite effective for verifying robustness properties of VQCs. It can be used to

study how adverse perturbations affect circuit behaviour. These techniques analyse how small changes

in the input state influence the final measurement probabilities. In doing so, they provide formal

robustness certificates. These certificates are similar to those used for classical neural networks [42][43][44]

[45][46]. The verification process typically follows four main steps:

1. Defining a perturbation model for the input states.

2. Propagating these perturbations through the quantum circuit using abstract domains.

3. Computing bounds on the output measurement probabilities.

4. Checking that classification decisions remain stable within the allowed perturbation range.

This methodology has been tested on standard verification benchmarks. The results show its potential

for certifying the reliability of quantum machine learning models. This makes it specifically important

for safety critical applications.

5. Other Formal Methods

This section highlights additional formal methods used in the verification of quantum circuits.

5.1. Model Checking

Model checking is a formal verification technique that systematically explores all possible states of a

system. In quantum circuit verification, it checks whether a circuit satisfies specified temporal logic

properties. Model checking is valuable because it provides complete, counterexample-driven verification

for finite or symbolically representable quantum systems [47][48]. Quantum circuits can be modelled as

qeios.com doi.org/10.32388/H7D715.3 9

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

finite-state transition systems or quantum Markov chains. This is done by discretizing their evolution or

focusing on basis states and measurement outcomes. This structure allows the use of temporal logics,

including probabilistic extensions, to specify correctness, safety, or termination properties. This

approach has been the subject of extensive research [49][50][51][52][53][54][55][56][57].

For quantum circuits, model checking usually follows three main steps:

1. Encoding the quantum circuit as a finite-state model.

2. Expressing the desired properties using suitable temporal logics.

3. Checking these properties against the encoded model.

Early work in this area verified quantum circuits by mapping them to quantum Markov chains. These

models were then analysed using model checking [48]. Other approaches extended probabilistic model

checking. They account for the inherent randomness of quantum measurements and decoherence [58].

In spite of having superior theoretical power, model checking faces serious scalability issues in quantum

systems. The state space grows exponentially with the increase of number of qubits. This makes

exhaustive exploration of state space impractical. To address this state explosion problem, symbolic

model checking techniques have been developed. These methods use binary decision diagrams (BDDs)

and related compression strategies [59][60][61][62][63][64][65]. They have achieved varying levels of success in

improving scalability.

5.2. Theorem Proving

Theorem proving is a deductive method for verifying quantum circuits. In this approach, correctness

properties are established through formal logical proofs checked by a proof assistant. It builds rigorous

mathematical proofs of correctness, providing the strongest possible guarantees because every proof

step is mechanically verified within a sound logical framework [66].

Quantum circuits have rich algebraic and mathematical structures, such as unitary operators, linearity,

and reversibility. These properties make them well suited for formal reasoning in higher-order logic or

dependent type theory. Theorem-proving methods typically formalize the semantics of quantum gates

and circuits within a proof assistant. They then prove equivalence, invariants, or correctness theorems

with respect to a specification. This approach has been implemented in proof assistants like Coq,

Isabelle/HOL, and Lean. These tools are often enhanced with specialized libraries for quantum

computation [67][68][69][70][71].

qeios.com doi.org/10.32388/H7D715.3 10

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

Rotational abstractions for verification of quantum Fourier transform circuits [72], and Superposition-

Based Abstractions for Quantum Data Encoding Verification [73] elucidate a symbolic deductive

abstraction approach to quantum circuit verification using SMT solvers. The Giallar tool, uses SMT

solvers to verify quantum circuit compiler passes. It ensures that quantum semantics are preserved at

each pass [74]. Theorem proving provides very high assurance of correctness. However, it requires

significant expertise and manual effort. This makes it less suitable for rapid iteration in quantum circuit

design workflows.

5.3. Runtime Verification

Runtime verification monitors the execution of a quantum circuit to check whether it satisfies specified

properties. Although it does not provide full formal guarantees, it can detect property violations during

testing or actual operation. This makes runtime verification practical for near term quantum

applications [75][76][77][78][79][74][80][81]. The runtime verification process typically involves three main

steps:

1. Instrumenting the quantum circuit with extra measurement operations.

2. Defining assertion like properties for specific circuit states.

3. Performing statistical testing of these properties during execution.

Runtime verification is particularly useful for validating specific executions on quantum hardware. It

serves as a complement to formal methods that analyse entire quantum circuit designs.

6. Applications

This section presents case studies that demonstrate the practical application of quantum circuit

verification.

6.1. Quantum Error Correction

Quantum error correction (QEC) is a key area where formal verification methods are employed. Fault

tolerant quantum computation depends on the correct operation of QEC circuits [82][83][84]. Formal

methods have been used to verify different aspects of QEC implementations [85][86][87][88][89], including:

1. The correctness of stabilizer measurements.

2. Fault tolerance thresholds.

qeios.com doi.org/10.32388/H7D715.3 11

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

3. The implementation of logical operations.

For example, barrier certificates effectively ensure that errors stay within correctable regions of the state

space. Model checking is used to verify the sequential behaviour of QEC protocols under various fault

models.

6.2. Compiler Verification

Quantum circuits are usually written in high-level programming languages and then compiled into

hardware-specific instructions. This makes verifying the correctness of the compilation process both

critical and essential [35][75][90][77][79][91][92][93]. The Giallar tool [74] uses SMT solvers to check that each

compiler pass preserves the semantic integrity of the quantum circuit. This verification process usually

involves three main steps:

1. Translating quantum circuits into logical formulae.

2. Checking equivalence between the original and compiled circuits.

3. Verifying that the optimization rules applied during compilation are correct.

Compiler verification is especially important for quantum applications where stakes are high. Even small

compilation errors in such settings could lead to catastrophic failures.

Domain Verification Methods Challenges Tools

Quantum Error

Correction
Barrier certificates, Model checking Complexity of feedback control

QECVerifier,

QuaVer

Quantum Compilers Theorem proving, SMT solvers
Semantic preservation across

layers
Giallar, Quartz

Quantum Algorithms
Abstract interpretation, Barrier

certificates

Handling exponential state

spaces
QVVerify, CertiQ

Quantum Hardware
Model checking, Runtime

verification

Modeling physical

imperfections

HQVer,

PulseVerifier

Table 2. Applications of Formal Verification in Quantum Computing

qeios.com doi.org/10.32388/H7D715.3 12

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

6.3. Quantum Algorithms

Formal methods have been used to verify the correctness of various quantum algorithms [94][95]. These

include Grover’s search algorithm [96], quantum phase estimation [97][98], and quantum approximate

optimization algorithms (QAOA) [99] among others.

Each algorithm presents its own verification challenges:

1. Grover’s algorithm: Verification requires proving convergence and establishing bounds on the

success probability.

2. Quantum phase estimation: Verification involves ensuring precision guarantees under different

noise models.

3. QAOA: Verification focuses on approximation ratios and convergence properties.

These verifications often use a combination of formal techniques. For example, barrier certificates can be

used to establish safety properties, while theorem proving ensures functional correctness. The benefits

of each method can thus be exploited depending on the application.

The choice of verification method generally depends on the type of problem. Barrier certificates or

abstract interpretation are suitable for systems with large or continuous state spaces. Model checking

works well when exhaustive exploration of discrete transitions is feasible. Theorem proving or SMT-

based methods are used when semantic correctness or equivalence must be guaranteed across

transformations. Runtime verification is useful for detecting errors during actual execution on hardware.

Hybrid approaches can combine these techniques to balance scalability, automation, and formal

guarantees. This allows the verification method to be adapted to the structure and requirements of the

quantum system.

As shown in Table 2, verification methods are chosen based on the characteristics and challenges of each

quantum computing domain. For quantum error correction, barrier certificates and model checking are

particularly suitable. They rigorously guarantee the stability and correctness of feedback controlled

stabilizer circuits across all possible error trajectories. Barrier certificates handle continuous state-space

dynamics, while model checking systematically explores discrete syndrome transitions. This

combination makes them ideal for the safety critical nature of error correction.

In quantum compilers, theorem proving and SMT solvers focus on semantic preservation across multiple

compilation layers. The algebraic and logical structure of quantum gates allows formal deduction. It helps

qeios.com doi.org/10.32388/H7D715.3 13

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

to verify that transformations and optimizations preserve program semantics. This ensures correctness

for all possible input states.

Quantum algorithms, which often operate on exponentially large state spaces, benefit from abstract

interpretation and barrier certificates. Abstract interpretation approximates sets of quantum states to

efficiently check invariants. Barrier certificates provide mathematically rigorous safety guarantees

without enumerating all states. Both approaches enable scalable verification.

For quantum hardware, model checking and runtime verification are effective. They capture both the

discrete and continuous aspects of physical imperfections. Model checking systematically explores

control sequences and configurations. Runtime verification monitors live signals to detect deviations

from expected behaviour.

7. Challenges and Limitations

This section presents a critical assessment of the challenges and limitations in current quantum circuit

verification methods.

7.1. Scalability

A major challenge in quantum circuit verification is the exponential growth of the state space as the

number of qubits increases linearly. Even though classical hardware continues to improve, the inherent

complexity of representing exact quantum states limits the scalability of all verification methods.

Current approaches try to address this challenge using:

1. Abstraction and approximation techniques that trade completeness for scalability.

2. Modular verification, which breaks large circuits into smaller components.

3. Symbolic methods that represent sets of quantum states compactly.

Despite these strategies, verifying circuits with many qubits remains difficult. This underscores the need

for further research into scalable verification techniques and methodologies.

7.2. Quantum-specific Capabilities

Quantum phenomena such as entanglement, superposition, and measurement create verification

challenges that do not have classical equivalent. These effects produce complex correlations between

qubits that are hard to abstract or approximate without losing important information. Measurement is

qeios.com doi.org/10.32388/H7D715.3 14

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

especially difficult because it collapses the quantum state and is inherently non-unitary, making

continuous verification more complicated. Approaches to address these challenges include:

1. Creating specialized abstract domains to capture quantum correlations.

2. Designing verification techniques that are aware of measurements.

3. Using relational logics to represent and reason about entanglement.

7.3. Tool Support

Many tools have been developed for quantum circuit verification. The ecosystem is still less mature than

that for classical software verification. Most tools require significant expertise to use. They are often

tailored to specific verification methods or quantum programming languages. Improving tool support

will require:

1. Standardizing interfaces between verification tools and quantum programming frameworks.

2. Creating user friendly interfaces for specifying verification properties.

3. Establishing elaborate benchmark suites to evaluate and compare verification tools.

4. Automating the choice of the most suitable verification method for a given circuit.

8. Future Directions

Here, several potential frontiers and directions for future research in quantum circuit verification are

outlined, as identified by the reviewer.

8.1. Hybrid Verification Methods

Future verification frameworks are likely to combine multiple techniques into hybrid approaches. These

approaches can leverage the strengths of each method. For example, abstract interpretation can quickly

identify potential problem areas. These areas can then be examined in detail using more precise

methods, such as theorem proving or model checking. Promising hybrid combinations include:

1. Using barrier certificates together with abstract interpretation for safety verification.

2. Combining theorem proving with model checking to verify both functional and temporal

properties.

3. Augmenting runtime verification with formal methods to provide practical assurance.

qeios.com doi.org/10.32388/H7D715.3 15

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

8.2. Machine Learning Assisted Verification

Machine learning offers promising ways to enhance formal verification of quantum circuits. Potential

applications include:

1. Learning barrier certificates directly from simulation data.

2. Predicting which circuit components are hard to verify, to focus verification efforts.

3. Guiding abstract interpretation using learned heuristics.

4. Speeding up model checking with learned representations of the state space.

These approaches could greatly improve the scalability and automation of quantum circuit verification

while maintaining formal guarantees.

8.3. Verifying Fault-Tolerant Quantum Computing

As quantum computing moves toward fault-tolerant operation, new verification challenges and

opportunities emerge. Future research directions include:

1. Verifying quantum error correction protocols under realistic noise models.

2. Developing verification techniques for distributed quantum systems.

3. Establishing certification frameworks for quantum hardware components.

4. Creating standards for quantum software verification.

Advances in these areas will be essential for building reliable and trustworthy quantum computing

systems for critical applications.

9. Conclusion

Formal methods for quantum circuit verification have made significant progress in recent years. They

have evolved from theoretical frameworks to practical tools that can be applied to real quantum circuits.

This review studies the current landscape of these methods, including barrier certificates, abstract

interpretation, model checking, and theorem proving. Each method offers unique advantages and is

suited to different verification scenarios.

Barrier certificates provide a strong method for safety verification. When combined with scenario-based

approaches, they can handle uncertainties in initial states and system dynamics. Abstract interpretation

gives a semantic framework for analysing variational quantum circuits and verifying their robustness.

qeios.com doi.org/10.32388/H7D715.3 16

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

Model checking allows exhaustive verification of temporal properties. Theorem proving offers the

highest level of assurance through rigorous mathematical proofs.

In spite of these advances, major challenges remain. Scaling verification to larger quantum systems and

handling quantum specific features like entanglement, superposition and measurement are still difficult.

Future research should focus on developing hybrid approaches that combine multiple verification

techniques. It should also explore using machine learning to improve scalability and address the

verification needs of fault-tolerant quantum computing.

As quantum computing moves closer to practical applications, formal verification methods will be

increasingly important for ensuring the reliability and correctness of quantum software and hardware.

Developing robust verification tools and methods will be key to building trust in quantum computing

systems and unlocking their full potential for solving challenging and complex computational problems.

References

1. ^Hassija V, Chamola V, Goyal A, Kanhere SS, Guizani N (2020). "Forthcoming Applications of Quantum Com

puting: Peeking into the Future." IET Quantum Commun. 1(2):35–41. doi:10.1049/iet-qtc.2020.0026.

2. ^Jose P, et al. (2024). "Enhanced QSVM with Elitist Non-Dominated Sorting Genetic Optimisation Algorithm

for Breast Cancer Diagnosis." IET Quantum Commun. doi:10.1049/qtc2.12113.

3. ^Arun G, Mishra V (2014). "A Review on Quantum Computing and Communication." In: 2014 2nd Internatio

nal Conference on Emerging Technology Trends in Electronics, Communication and Networking, pp. 1–5. d

oi:10.1109/ET2ECN.2014.7044953.

4. ^Brooks M (2019). "Beyond Quantum Supremacy: The Hunt for Useful Quantum Computers." Nature. 574(7

776):19–21. doi:10.1038/d41586-019-02936-3.

5. ^Chen S (2019). "Quantum Computing Scientists: Give Them Lemons, They’ll Make Lemonade." APS News.

https://www.aps.org/apsnews/2019/05/quantum-computing-lemons-lemonade.

6. ^Preskill J (2018). "Quantum Computing in the NISQ Era and Beyond." Quantum. 2:79. doi:10.22331/q-2018-

08-06-79.

7. ^Porter J (2021). "Google Wants to Build a Useful Quantum Computer by 2029." The Verge. https://www.the

verge.com/2021/5/19/22443453/google-quantum-computer-2029-decade-commercial-useful-qubits-quan

tum-transistor.

qeios.com doi.org/10.32388/H7D715.3 17

https://doi.org/10.1049/iet-qtc.2020.0026
https://doi.org/10.1049/qtc2.12113
https://doi.org/10.1109/ET2ECN.2014.7044953
https://doi.org/10.1038/d41586-019-02936-3
https://www.aps.org/apsnews/2019/05/quantum-computing-lemons-lemonade
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://www.theverge.com/2021/5/19/22443453/google-quantum-computer-2029-decade-commercial-useful-qubits-quantum-transistor
https://www.theverge.com/2021/5/19/22443453/google-quantum-computer-2029-decade-commercial-useful-qubits-quantum-transistor
https://www.theverge.com/2021/5/19/22443453/google-quantum-computer-2029-decade-commercial-useful-qubits-quantum-transistor
https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

8. ^Gambetta J (2022). "Expanding the IBM Quantum Roadmap to Anticipate the Future of Quantum-Centric

Supercomputing." IBM Research. https://research.ibm.com/blog/ibm-quantum-roadmap-2025.

9. ^Krewell K, Research T (2022). "The Next Generation Of IBM Quantum Computers." Forbes. https://www.fo

rbes.com/sites/tiriasresearch/2022/06/22/the-next-generation-of-ibm-quantum-computers/.

10. ^Jay G, Ismael F, Karl W (2021). "IBM’s Roadmap for Building an Open Quantum Software Ecosystem." IBM

Research. https://research.ibm.com/blog/quantum-development-roadmap.

11. ^Hsu J (2018). "CES 2018: Intel’s 49-Qubit Chip Shoots for Quantum Supremacy." IEEE Spectrum. https://spe

ctrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy.

12. ^Acharya R, et al. (2025). "Quantum Error Correction Below the Surface Code Threshold." Nature. 638(805

2):920–926. doi:10.1038/s41586-024-08449-y.

13. ^Bravyi S, Cross AW, Gambetta JM, Maslov D, Rall P, Yoder TJ (2024). "High-Threshold and Low-Overhead F

ault-Tolerant Quantum Memory." Nature. 627(8005):778–782. doi:10.1038/s41586-024-07107-7.

14. ^Putterman H, et al. (2025). "Hardware-Efficient Quantum Error Correction Via Concatenated Bosonic Qubi

ts." Nature. 638(8052):927–934. doi:10.1038/s41586-025-08642-7.

15. ^Aghaee M, et al. (2025). "Interferometric Single-Shot Parity Measurement in InAs–Al Hybrid Devices." Nat

ure. 638(8051):651–655. doi:10.1038/s41586-024-08445-2.

16. a, bQuist A-J, Mei J, Coopmans T, Laarman A (2025). "Advancing Quantum Computing with Formal Method

s." In: Formal Methods. Cham: Springer Nature Switzerland, pp. 420–446.

17. a, bChareton C, et al. (2022). "Formal Methods for Quantum Programs: A Survey." arXiv preprint arXiv:2109.

06493.

18. ^Hasan O, Tahar S (2015). "Formal Verification Methods." In: Encyclopedia of Information Science and Tech

nology, Third Edition. IGI Global, pp. 7162–7170.

19. ^Gupta A (1992). "Formal Hardware Verification Methods: A Survey." Formal Methods Syst Des. 1:151–238.

20. ^Schubert T, Seligman MVA KKE (2015). Formal Verification. Elsevier.

21. a, bNielsen MA, Chuang IL (2011). Quantum Computation and Quantum Information: 10th Anniversary Edit

ion. 10th ed. USA: Cambridge University Press.

22. ^Bernhardt C (2020). Quantum Computing for Everyone. MIT Press.

23. a, bPrajna S, Jadbabaie A, Pappas GJ (2007). "A Framework for Worst-Case and Stochastic Safety Verificatio

n Using Barrier Certificates." IEEE Trans Autom Control. 52(8):1415–1428.

qeios.com doi.org/10.32388/H7D715.3 18

https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://www.forbes.com/sites/tiriasresearch/2022/06/22/the-next-generation-of-ibm-quantum-computers/
https://www.forbes.com/sites/tiriasresearch/2022/06/22/the-next-generation-of-ibm-quantum-computers/
https://research.ibm.com/blog/quantum-development-roadmap
https://spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy
https://spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy
https://doi.org/10.1038/s41586-024-08449-y
https://doi.org/10.1038/s41586-024-07107-7
https://doi.org/10.1038/s41586-025-08642-7
https://doi.org/10.1038/s41586-024-08445-2
https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

24. a, b, cHu S, Lopata V, Soudjani S, Zuliani P (2025). "Verification of Quantum Circuits Through Barrier Certific

ates Using a Scenario Approach." In: 2025 IEEE International Conference on Quantum Software (QSW), pp.

151–161.

25. ^Lewis M, Soudjani S, Zuliani P (2024). "Verification of Quantum Circuits Through Discrete-Time Barrier C

ertificates." arXiv preprint arXiv:2408.07591.

26. a, b, cLewis M, Zuliani P, Soudjani S (2023). "Verification of Quantum Systems Using Barrier Certificates." In:

International Conference on Quantitative Evaluation of Systems. Springer, pp. 346–362.

27. ^Murali V, Trivedi A, Zamani M (2022). "A Scenario Approach for Synthesizing K-Inductive Barrier Certifica

tes." IEEE Control Syst Lett. 6:3247–3252.

28. ^Akella P, Ames AD (2022). "A Barrier-Based Scenario Approach to Verifying Safety-Critical Systems." IEEE

Robot Autom Lett. 7(4):11062–11069.

29. ^Cousot P, Cousot R (1977). "Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs

by Construction or Approximation of Fixpoints." In: Proceedings of the 4th ACM SIGACT-SIGPLAN POPL, p

p. 238–252.

30. a, b, cYu N, Palsberg J (2021). "Quantum Abstract Interpretation." In: Proceedings of the 42nd ACM SIGPLAN

International Conference on Programming Language Design and Implementation, pp. 542–558.

31. ^Ying M, Zhang Z (2024). "Verification of Recursively Defined Quantum Circuits." arXiv preprint arXiv:2404.

05934.

32. ^Rizvi SMA, et al. (2026). "Controlled Quantum Semantic Communication for Industrial CPS Networks." IE

EE Trans Netw Sci Eng. 13:996–1009.

33. ^Chen Y-F, et al. (2025). "An Automata-Based Framework for Verification and Bug Hunting in Quantum Cir

cuits." Commun ACM. 68(6):85–93.

34. ^Li L, et al. (2024). "Qafny: A Quantum-Program Verifier." arXiv preprint arXiv:2211.06411.

35. a, bShi Y, et al. (2020). "CertiQ: A Mostly-Automated Verification of a Realistic Quantum Compiler." arXiv pre

print arXiv:1908.08963.

36. a, b, cAssolini N, Marzari L, Mastroeni I, di Pierro A (2025). "Formal Verification of Variational Quantum Circ

uits." arXiv preprint arXiv:2507.10635.

37. ^Peham T, Burgholzer L, Wille R (2023). "Equivalence Checking of Parameterized Quantum Circuits: Verifyi

ng the Compilation of Variational Quantum Algorithms." In: Proceedings of the 28th Asia and South Pacific

Design Automation Conference, pp. 702–708.

qeios.com doi.org/10.32388/H7D715.3 19

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

38. ^Ye K, et al. (2024). "A Mutual-Influence-Aware Heuristic Method for Quantum Circuit Mapping." IEEE Tran

s Comput. 73(12):2855–2867.

39. ^Hung WNN, Song X, Yang G, Yang J, Perkowski M (2004). "Quantum Logic Synthesis by Symbolic Reachabi

lity Analysis." In: Proceedings of the 41st Annual Design Automation Conference, pp. 838–841.

40. ^Li X-W, Zhang X-M, Cheng B, Yung M-H (2024). "Reachability Deficit of Variational Grover Search." Phys. R

ev. A. 109(1):012414.

41. ^Hietala K, Rand R, Hung S-H, Li L, Hicks M (2021). "Proving Quantum Programs Correct." In: 12th Internati

onal Conference on ITP 2021, pp. 21:1–21:19.

42. ^Lin Y, Guan J, Fang W, Ying M, Su Z (2024). "VeriQR: A Robustness Verification Tool for Quantum Machine L

earning Models." arXiv preprint arXiv:2407.13533.

43. ^Guan J, Fang W, Ying M (2021). "Robustness Verification of Quantum Classifiers." In: International Confere

nce on Computer Aided Verification. Springer, pp. 151–174.

44. ^Franco N, Wollschlaeger T, Gao N, Lorenz JM, Guennemann S (2022). "Quantum Robustness Verification: A

Hybrid Quantum-Classical Neural Network Certification Algorithm." arXiv preprint arXiv:2205.00900.

45. ^Gheorghiu A, Kashefi E, Wallden P (2015). "Robustness and Device Independence of Verifiable Blind Quant

um Computing." New J Phys. 17(8):083040.

46. ^Fey G, Drechsler R (2008). "A Basis for Formal Robustness Checking." In: 9th International Symposium on

Quality Electronic Design (isqed 2008), pp. 784–789.

47. ^Gay SJ, Nagarajan R, Papanikolaou N (2008). "QMC: A Model Checker for Quantum Systems." In: Compute

r Aided Verification. Berlin, Heidelberg: Springer, pp. 543–547.

48. a, bFeng Y, Yu N, Ying M (2013). "Model Checking Quantum Markov Chains." J Comput Syst Sci. 79(7):1181–11

98.

49. ^Ying M (2021). "Model Checking for Verification of Quantum Circuits." In: International Symposium on For

mal Methods. Springer, pp. 23–39.

50. ^Do CM, Ogata K (2024). "Symbolic Model Checking Quantum Circuits in Maude." PeerJ Comput Sci. 10:e20

98.

51. ^Munir M, Gopikanna A, Fayyazi A, Pedram M, Nazarian S (2021). "QMC: A Formal Model Checking Verifica

tion Framework For Superconducting Logic." In: Proceedings of the 2021 Great Lakes Symposium on VLSI, p

p. 259–264.

52. ^Davidson T, Gay S, Mlnařík H, Nagarajan R, Papanikolaou N (2012). "Model Checking for Communicating

Quantum Processes." Int J Unconv Comput. 8:73–98.

qeios.com doi.org/10.32388/H7D715.3 20

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

53. ^Papanikolaou NK (2009). "Model Checking Quantum Protocols." Ph.D. dissertation, University of Warwic

k.

54. ^Jeon S, et al. (2024). "Quantum Probabilistic Model Checking for Time-Bounded Properties." Proc ACM Pro

gram Lang. 8(OOPSLA2):557–587.

55. ^Turrini A (2022). "An Introduction to Quantum Model Checking." Appl Sci. 12(4):2016.

56. ^Chen Y-F, et al. (2023). "AutoQ: An Automata-Based Quantum Circuit Verifier." In: Computer Aided Verificat

ion. Springer, pp. 139–153.

57. ^Anticoli L, Piazza C, Taglialegne L, Zuliani P (2016). "Towards Quantum Programs Verification: From Quip

per Circuits to QPMC." In: International Conference on Reversible Computation. Springer, pp. 213–219.

58. ^Gay S, Nagarajan R, Papanikolaou N (2005). "Probabilistic Model–Checking of Quantum Protocols." arXiv

preprint quant-ph/0504007.

59. ^Seiter J, Soeken M, Wille R, Drechsler R (2012). "Property Checking of Quantum Circuits Using Quantum M

ultiple-Valued Decision Diagrams." In: International Workshop on Reversible Computation. Springer, pp. 183

–196.

60. ^Wille R, Hillmich S, Burgholzer L (2022). "Decision Diagrams for Quantum Computing." In: Design Automa

tion of Quantum Computers. Springer, pp. 1–23.

61. ^Wille R, Hillmich S, Burgholzer L (2022). "Tools for Quantum Computing Based on Decision Diagrams." AC

M Trans Quantum Comput. 3(3):13.

62. ^Yamashita S, Minato S, Miller DM (2008). "DDMF: An Efficient Decision Diagram Structure for Design Verif

ication of Quantum Circuits Under a Practical Restriction." IEICE Trans Fundam Electron Commun Comput

Sci. 91-A:3793-3802.

63. ^Hong X, et al. (2023). "Decision Diagrams for Symbolic Verification of Quantum Circuits." In: 2023 IEEE Int

ernational Conference on Quantum Computing and Engineering (QCE), pp. 970–977.

64. ^Wang S-A, Lu C-Y, Tsai I-M, Kuo S-Y (2008). "An XQDD-Based Verification Method for Quantum Circuits." I

EICE Trans Fundam. E91-A(2):584–594.

65. ^Wang Z, Cheng B, Yuan L, Ji Z (2025). "FeynmanDD: Quantum Circuit Analysis with Classical Decision Diag

rams." In: International Conference on Computer Aided Verification. Springer, pp. 28–52.

66. ^Abramsky S, Coecke B (2004). "A Categorical Semantics of Quantum Protocols." In: Proceedings of the 19th

Annual IEEE Symposium on Logic in Computer Science, pp. 415-425.

67. ^Rand R, Paykin J, Zdancewic S (2018). "QWIRE Practice: Formal Verification of Quantum Circuits in Coq." E

lectron Proc Theor Comput Sci. 266:119–132.

qeios.com doi.org/10.32388/H7D715.3 21

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

68. ^Amy M (2019). "Towards Large-Scale Functional Verification of Universal Quantum Circuits." Electron Pro

c Theor Comput Sci. 287:1–21.

69. ^Kaivola R, Aagaard MD (2000). "Divider Circuit Verification with Model Checking and Theorem Proving."

In: International Conference on Theorem Proving in Higher Order Logics. Springer, pp. 338–355.

70. ^Chen Y-F, Rümmer P, Tsai W-L (2023). "A Theory of Cartesian Arrays (With Applications in Quantum Circu

it Verification)." In: International Conference on Automated Deduction. Springer, pp. 170–189.

71. ^Mahadev U (2018). "Classical Verification of Quantum Computations." In: 2018 IEEE 59th Annual Symposi

um on Foundations of Computer Science (FOCS), pp. 259-267.

72. ^Govindankutty A, Srinivasan SK, Mathure N (2023). "Rotational Abstractions for Verification of Quantum

Fourier Transform Circuits." IET Quantum Commun. 4(2):84–92.

73. ^Govindankutty A, Srinivasan SK (2025). "Superposition-Based Abstractions For Quantum Data Encoding

Verification." IET Quantum Commun. doi:10.1049/qtc2.70002.

74. a, b, cTao R, et al. (2022). "Giallar: Push-Button Verification for the Qiskit Quantum Compiler." In: Proceeding

s of the 43rd ACM SIGPLAN Conference on PLDI, pp. 641–656.

75. a, bHietala K, Rand R, Hung S-H, Wu X, Hicks M (2021). "A Verified Optimizer for Quantum Circuits." Proc AC

M Program Lang. 5(POPL):1–29.

76. ^Tang W, Tomesh T, Suchara M, Larson J, Martonosi M (2021). "Cutqc: Using Small Quantum Computers for

Large Quantum Circuit Evaluations." In: Proceedings of the 26th ACM International Conference on ASPLOS,

pp. 473–486.

77. a, bBurgholzer L, Raymond R, Wille R (2020). "Verifying Results of the IBM Qiskit Quantum Circuit Compilat

ion Flow." In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 356

–365.

78. ^Villalonga B, et al. (2019). "A Flexible High-Performance Simulator for Verifying and Benchmarking Quant

um Circuits Implemented on Real Hardware." npj Quantum Inf. 5(1):86.

79. a, bWille R, Hillmich S, Burgholzer L (2020). "Efficient and Correct Compilation of Quantum Circuits." In: 20

20 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5.

80. ^Hurwitz L, Datta K, Kole A, Drechsler R (2024). "Is Simulation the Only Alternative for Effective Verificatio

n of Dynamic Quantum Circuits?" In: International Conference on Reversible Computation. Springer, pp. 20

1–217.

81. ^Xu A, Molavi A, Pick L, Tannu S (2023). "Synthesizing Quantum-Circuit Optimizers." Proc ACM Program L

ang. 7(PLDI):140.

qeios.com doi.org/10.32388/H7D715.3 22

https://doi.org/10.1049/qtc2.70002
https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

82. ^Devitt SJ, Munro WJ, Nemoto K (2013). "Quantum Error Correction for Beginners." Rep Prog Phys. 76(7):076

001.

83. ^Kitaev AY (1997). "Quantum Computations: Algorithms and Error Correction." Russ Math Surv. 52(6):1191.

84. ^Knill E, Laflamme R (1997). "Theory of Quantum Error-Correcting Codes." Phys. Rev. A. 55(2):900–911.

85. ^Huang Q, Zhou L, Fang W, Zhao M, Ying M (2025). "Efficient Formal Verification of Quantum Error Correct

ing Programs." Proc ACM Program Lang. 9(PLDI):190.

86. ^Poulin D (2005). "Stabilizer Formalism for Operator Quantum Error Correction." Phys. Rev. Lett.. 95(23):23

0504.

87. ^Fang W, Ying M (2024). "Symbolic Execution for Quantum Error Correction Programs." Proc ACM Program

Lang. 8(PLDI):189.

88. ^Wu A, Li G, Zhang H, Guerreschi GG, Xie Y, Ding Y (2021). "QECV: Quantum Error Correction Verification." ar

Xiv preprint arXiv:2111.13728.

89. ^Chen K, et al. (2025). "Verifying Fault-Tolerance of Quantum Error Correction Codes." arXiv preprint arXiv:

2501.14380.

90. ^Chong FT, Franklin D, Martonosi M (2017). "Programming Languages and Compiler Design for Realistic Q

uantum Hardware." Nature. 549(7671):180-187.

91. ^Salm M, Barzen J, Leymann F, Weder B, Wild K (2021). "Automating the Comparison of Quantum Compiler

s for Quantum Circuits." In: Service-Oriented Computing. Springer, pp. 64–80.

92. ^Nguyen T, et al. (2021). "Quantum Circuit Transformations with a Multi-Level Intermediate Representatio

n Compiler." arXiv preprint arXiv:2112.10677.

93. ^Yan G, et al. (2025). "Quantum Circuit Synthesis and Compilation Optimization: Overview and Prospects."

arXiv preprint arXiv:2407.00736.

94. ^Liu J, et al. (2019). "Formal Verification of Quantum Algorithms Using Quantum Hoare Logic." In: Compute

r Aided Verification. Springer, pp. 187–207.

95. ^Amy M, Lunderville J (2025). "Linear and Non-Linear Relational Analyses for Quantum Program Optimiz

ation." Proc ACM Program Lang. 9(POPL):37.

96. ^Zuliani P (2007). "A Formal Derivation of Grover’s Quantum Search Algorithm." In: First Joint IEEE/IFIP Sy

mposium on TASE ’07, pp. 67-74.

97. ^Witzel WM, Craft WD, Carr R, Kapur D (2023). "Verifying Quantum Phase Estimation Using an Expressive

Theorem-Proving Assistant." Phys. Rev. A. 108(5):052609.

qeios.com doi.org/10.32388/H7D715.3 23

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

98. ^Peng Y, et al. (2023). "A Formally Certified End-to-End Implementation of Shor’s Factorization Algorithm."

Proc Natl Acad Sci. 120(21):e2218775120.

99. ^Alam MS, et al. (2022). "Practical Verification of Quantum Properties in Quantum-Approximate-Optimiza

tion Runs." Phys. Rev. Appl.. 17(2):024026.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/H7D715.3 24

https://www.qeios.com/
https://doi.org/10.32388/H7D715.3

