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Vertical AI Agents are revolutionizing industries by delivering domain speci�c intelligence and

tailored solutions. However, many sectors, such as manufacturing, healthcare, and logistics,

demand AI systems capable of extending their intelligence into the physical world, interacting

directly with objects, environments, and dynamic conditions. This need has led to the emergence of

Physical AI Agents—systems that integrate cognitive reasoning, powered by specialized LLMs, with

precise physical actions to perform real-world tasks.

This work introduces Physical AI Agents as an evolution of shared principles with Vertical AI Agents,

tailored for physical interaction. We propose a modular architecture with three core blocks—

perception, cognition, and actuation—o�ering a scalable framework for diverse industries.

Additionally, we present the Physical Retrieval Augmented Generation (Ph-RAG) design pattern,

which connects physical intelligence to industry-speci�c LLMs for real-time decision-making and

reporting informed by physical context.

Through case studies, we demonstrate how Physical AI Agents and the Ph-RAG framework are

transforming industries like autonomous vehicles, warehouse robotics, healthcare, and

manufacturing, o�ering businesses a pathway to integrate embodied AI for operational e�ciency

and innovation.

Corresponding author: Fouad Bousetouane, bousetouane@uchicago.edu

1. Introduction

The rapid evolution of Arti�cial Intelligence (AI) has brought about unprecedented opportunities to

address challenges across industries. General-purpose AI systems, while showcasing remarkable

capabilities in natural language understanding and task automation, have yet to meet the nuanced
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demands of highly specialized sectors. The hope for a leap toward Arti�cial General Intelligence (AGI)

remains, but the complexities of precision, adaptability, and dynamic decision-making in real-world

environments have shifted the focus toward more targeted solutions.

This shift has given rise to Vertical AI Agents, specialized systems designed to tackle domain-speci�c

challenges with precision and scalability. By leveraging tailored frameworks, these agents are

reshaping core software operations and advancing autonomous systems across industries, enabling

intelligent decision-making that aligns with unique operational demands.

However, some industries—such as manufacturing, logistics, and healthcare—demand more than

cognitive problem-solving. They require AI systems capable of interacting directly with the physical

environment, navigating real-world dynamics, and executing precise actions. This necessity has led to

the emergence of Physical AI Agents, embodied systems that bridge cognitive reasoning with physical

interaction. By seamlessly integrating intelligence into the physical world, Physical AI Agents open

new frontiers for AI to address challenges in dynamic and unstructured environments.

1.1. The Pursuit of AGI: Beyond Generalization

AGI remains an aspiration[1],[2]. While the goal is to create AI systems that seamlessly solve problems

across industries and domains, no practical solutions currently exist. Research continues to advance,

but challenges such as data limitations, vertical reasoning gaps, and ethical concerns have hindered

progress.

General-purpose large language models (LLMs)—such as OpenAI GPT-4[3], Meta LLaMA[4], and

others—represent a signi�cant step in that direction[5]. These models have demonstrated remarkable

utility in tasks like natural language understanding, summarization, and even coding assistance,

showcasing a level of generalization across multiple domains. However, while LLMs are a notable

advancement, they still lack the versatility, adaptability, and contextual awareness required to achieve

AGI.

For instance, while general-purpose LLMs have demonstrated signi�cant utility, they often fall short

when addressing the nuanced requirements of highly specialized, complex domains. Their inability to

provide precise, context-aware solutions becomes evident in scenarios such as:

In supply chain management, the intricate interplay of logistics, demand forecasting, and global

disruptions demands AI systems capable of dynamic decision-making, real-time adaptability, and
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operational resilience.

The oil and gas industry presents high-stakes challenges, such as predictive maintenance for

drilling equipment and optimizing resource extraction processes, requiring domain-speci�c

insights that go beyond the capabilities of generalist AI.

In healthcare, tasks like personalized treatment planning, predictive diagnostics, and real-time

patient monitoring necessitate systems that are not only sensitive to ethical constraints but also

capable of processing highly specialized medical knowledge.

In manufacturing, dynamic shop �oor environments require AI systems capable of handling real-

time adaptations, integrating with physical equipment, and ensuring consistent quality control in

high-pressure production lines.

These examples underscore the limitations of general-purpose LLMs in delivering the level of

precision, adaptability, and contextual understanding required for these environments. To overcome

these barriers, businesses are increasingly turning to Vertical AI Agents—intelligent systems tailored

to address domain-speci�c challenges with unmatched precision and operational relevance.

Nowadays, with the growing need for embodied AI to enhance environmental understanding and

enable precise actions and operations, AI is increasingly stepping into the physical realm—AI is

getting physical!

The next section explores this critical evolution—how AI is extending into the physical world—and

introduces Physical AI Agents as a transformative innovation for industries requiring seamless

interaction between cognitive intelligence and real-world adaptability.

1.2. Bringing AI to the Physical World

Imagine a world where AI integrates seamlessly into our roads, appliances, vehicles, and workplaces.

This transformation is becoming a reality with the emergence of Physical AI Agents. These systems

extend AI beyond digital ecosystems, combining cognitive reasoning with sensory perception and

precise physical actions to operate dynamically in real-world environments.

Building on the foundation of Vertical AI Agents, which excel in domain-speci�c decision-making,

Physical AI Agents go further by enabling intelligent interaction with and adaptation to physical

environments. From navigating complex terrains to performing precise tasks, these agents are

reshaping industries where intelligence and physical presence are essential.
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The following sections examine the architecture, applications, and transformative potential of

Physical AI Agents, highlighting their role in addressing both cognitive and physical challenges with

unmatched precision and adaptability.

1.3. Purpose of This Work

This work aims to spotlight emerging paradigms in AI that are poised to shape the future of industries

and transform daily life. The objectives are:

1. Highlight the Need for Vertical Intelligence:

Explore how domain-speci�c intelligence and agentic systems are revolutionizing industries

by enabling precision, adaptability, and operational e�ciency.

2. Propose a Standardized Architecture for Physical AI Agents:

De�ne the core blocks—perception, cognition, and actuation—and establish their

foundational overlap with Vertical AI Agents.

Introduce the Physical Retrieval-Augmented Generation (Ph-RAG) design pattern, which

connects physical intelligence to industry-speci�c LLMs for real-time decision-making and

context-informed augmentation.

3. Showcase Industry Applications:

Provide compelling examples of how Physical AI Agents are being applied in sectors such as

manufacturing, healthcare, logistics, and autonomous systems.

By addressing these objectives, this work seeks to bridge the cognitive and physical dimensions of AI,

paving the way for transformative innovations across industries.

2. Vertical AI Agents

2.1. De�nition

Vertical AI Agents are specialized intelligent systems designed to solve complex, domain-speci�c

challenges. By leveraging domain-speci�c knowledge and vertical intelligence, these agents optimize

work�ows, improve decision-making, and deliver precise, tailored insights.

At their core, Vertical AI Agents rely on advanced reasoning capabilities powered by a �ne-tuned,

domain-specialized LLM. Unlike general-purpose AI, these agents are designed to address the
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nuanced requirements of industries such as supply chain management, healthcare, and �nancial

services.

In our previous work[6], we extensively explored the paradigm of Vertical AI Agents, providing a

comprehensive guide on cross-industry use cases and diverse operational design patterns. For readers

interested in a deeper understanding, including tailored frameworks and implementation strategies,

we encourage referring to our earlier article.

2.2. Core Components of Vertical AI Agents

The architecture of Vertical AI Agents is modular and highly adaptable to domain-speci�c challenges.

The key components, as illustrated in Figure 1, include:

Large Language Model (LLM) Backbone: Provides the foundational reasoning and contextual

understanding, �ne-tuned to address industry-speci�c needs.

Memory Module: Retains historical context, past actions, and domain-speci�c knowledge to

enable continuity and adaptive responses.

Cognitive Skills Module: Integrates specialized models for executing precision tasks such as

anomaly detection, inventory forecasting, and diagnostics.

Tools Module: Extends the agent’s functionality by connecting it to external systems through

vector search, dynamic API integration, and contextual retrieval mechanisms.
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Figure 1. Core Components of a Vertical AI Agent: LLM Backbone, Memory, Cognitive Skills, and Tools[6].

2.3. Applications Across Industries

Below are examples of impactful applications of Vertical AI Agents:

1. Supply Chain Management: Vertical AI Agents optimize logistics, streamline inventory

management, and predict bottlenecks in real-time. For example, they leverage cognitive skills to

forecast demand, recommend replenishment schedules, and dynamically adapt to disruptions in

the supply chain.

2. Healthcare: In the healthcare sector, these agents provide predictive diagnostics, enable

personalized treatment planning, and improve operational work�ows. By integrating medical

knowledge with real-time patient data, they support faster, more accurate decision-making and

improve patient outcomes.

3. Financial Services: Vertical AI Agents support fraud detection, credit risk assessment, and

compliance monitoring. With access to vast �nancial datasets and domain-speci�c cognitive

skills, they provide insights that enhance risk management and regulatory compliance, ensuring

secure and e�cient �nancial operations.

Vertical AI Agents provide the foundation for Physical AI Agents, enabling AI systems to operate in

dynamic real-world environments. The Cognitive Skills module bridges this connection by
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transforming real-world perception data into actionable insights. The following sections explore the

de�nitions, core components, and real-world applications of Physical AI Agents.

3. Foundations of Physical AI Agents

3.1. De�nition

Physical AI Agents are intelligent, embodied systems designed to interact directly with the physical

world. Equipped with advanced sensory capabilities, cognitive intelligence, and precise actuation

systems, these agents navigate dynamic environments, manipulate objects, and execute physical

tasks with unmatched accuracy and e�ciency.

A de�ning capability of Physical AI Agents is their ability to understand and adapt to physical

dynamics, including forces such as gravity, friction, and inertia. This enables them to seamlessly

navigate complex environments, handle delicate objects, and perform tasks that require precision and

adaptability in real-world conditions.

Beyond understanding physical dynamics, Physical AI Agents are also equipped with industry-

speci�c intelligence, powered by �ne-tuned, domain-speci�c LLMs. These specialized models

provide the cognitive backbone for decision-making and contextual understanding, enabling the

agent to align its actions with the unique demands of the industry it serves.

By integrating real-time perception, decision-making, and physical execution, Physical AI Agents

bridge the gap between digital intelligence and real-world action, o�ering a transformative solution

for tasks that demand physical interaction and domain expertise.

3.2. Core Components of Physical AI Agents

Despite their transformative potential, there is no universally accepted architecture for the design and

implementation of Physical AI Agents. To address this gap, we present a modular architecture

designed to standardize the core components required for these agents across industries and domains.

The proposed architecture is structured around three primary blocks: Perception, Cognition, and

Actuation. These blocks are designed to function cohesively, enabling Physical AI Agents to interpret

their surroundings, reason and plan based on contextual understanding, and execute precise actions

in dynamic environments. By integrating these modular components, the architecture aims to

establish a comprehensive framework applicable across various industries and use cases.
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Figure  2 provides an overview of the architecture, highlighting the interactions between the three

blocks and the external physical environment.

Figure 2. Core Components of a Physical AI Agent: Perception, Cognitive, and Actuation Blocks, with

Interaction with the Physical Environment.

1. Perception Block:

The Perception Block is the agent’s sensory interface, enabling it to sense and interpret its

surroundings. By capturing and processing real-time environmental data, it provides

situational awareness critical for e�ective decision-making.

Sensors: Includes cameras, LIDAR, proximity sensors, inertial measurement units (IMUs),

and IoT-enabled devices.

Role: Captures and processes real-time environmental data, such as spatial layouts, object

positions, and motion, providing the agent with situational awareness.

qeios.com doi.org/10.32388/HA0F5Z 8

https://www.qeios.com/
https://doi.org/10.32388/HA0F5Z


2. Cognitive Block:

The Cognitive Block serves as the agent’s reasoning and decision-making hub. It integrates

memory, specialized LLM, and cognitive skills to process inputs, plan actions, and adapt to

dynamic environments.

Role:

Processes sensory data, generates contextual understanding, and translates insights into

actionable plans.

Enables real-time decision-making by synthesizing perception data with domain-speci�c

knowledge.

Plans and sequences tasks dynamically based on environmental and operational

constraints.

Facilitates adaptability and continuous learning to improve task execution in changing

conditions.

LLM Reasoning: A specialized �ne-tuned LLM serves as the cognitive backbone, enabling

decision-making, contextual understanding, and planning.

Memory: Retains historical context and records past actions, enabling the agent to adapt to

changing conditions and maintain continuity.

Cognitive Skills:

Perception-to-Action Mapping: Translates sensory inputs into actionable tasks by

processing real-time situational data.

Understanding Physical Dynamics: incorporates models that enable the agent to

comprehend physics-related concepts such as gravity, friction, and inertia, allowing for

precise navigation, object handling, and real-world interactions.

Task-Speci�c Models: Executes specialized tasks such as navigation, object recognition,

and predictive planning for physical interactions.

Tools: Facilitates integration with external systems such as vector search for domain

knowledge and APIs for real-time updates.

3. Actuation Block:

The Actuation Block converts cognitive decisions into physical actions. This enables the agent

to interact with the environment through precise movements, manipulation, and task

execution.
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Actuators: Includes robotic arms, grippers, rotational actuators, hydraulic systems, and

mobility platforms.

Role: Executes precise physical actions based on decisions from the Cognitive Block, enabling

seamless interaction with objects and environments.

3.3. Applications Across Industries

As Physical AI Agents continue to mature, their versatility and potential to address complex industry

challenges become increasingly evident. These systems are reshaping various sectors by seamlessly

integrating advanced reasoning, sensory perception, and precise physical actions. Below are real-

world examples showcasing their impactful applications:

1. Autonomous Vehicles

Scenario: A self-driving car operates in a busy urban environment, navigating through tra�c,

pedestrians, and changing road conditions.

Solution: Physical AI Agents leverage an integrated set of components to ensure safe and

e�cient navigation:

Cognitive Skills: Pre-trained models for path planning, collision avoidance, and tra�c

sign recognition; purpose-built models for motion prediction and real-time decision-

making.

LLM (Reasoning): A �ne-tuned industry-speci�c LLM evaluates contextual inputs,

generates planning strategies, and ensures coherent and logical decision-making across

dynamic tra�c scenarios.

Tools: Domain-speci�c guidance such as dynamic tra�c rules, road conditions, and

vehicle maintenance policies accessed through vector search or external APIs.

Sensors: LIDAR, cameras, radar, and GPS for real-time environmental perception.

Actuators: Steering, braking, and acceleration systems for precise control and execution.

Example Flow:

Input: Sensors detect a pedestrian crossing ahead while the agent receives real-time tra�c

updates.

Perception: LIDAR and cameras identify the pedestrian’s motion and map the surrounding

vehicles.
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Reasoning: The LLM evaluates inputs and determines the optimal response using cognitive

models for path planning while referencing local tra�c rules through Tools.

Action: Actuators apply the brakes to stop safely while maintaining awareness of

surrounding tra�c.

2. Warehouse Robotics

Scenario: A large e-commerce warehouse requires e�cient inventory management, including

picking, sorting, and replenishing products stored across thousands of bins.

Solution: Warehouse robots combine multiple components to streamline operations:

Cognitive Skills: Pre-trained SLAM models for navigation; purpose-built object

recognition models for product identi�cation.

LLM (Reasoning): A �ne-tuned industry-speci�c LLM orchestrates task assignment,

contextual reasoning, and adaptive planning for e�cient work�ows.

Tools: Real-time access to inventory systems, order ful�llment policies, and safety

protocols through APIs or vector search.

Sensors: Cameras, proximity sensors, and barcode scanners for location tracking and

product identi�cation.

Actuators: Robotic arms, grippers, and mobility systems for item retrieval, transport, and

replenishment.

Example Flow:

Input: The agent receives a request to replenish a speci�c SKU running low in the system.

Perception: Sensors locate the product and identify its storage bin.

Reasoning: The LLM uses navigation models and inventory policies accessed via Tools to

determine the most e�cient route and task sequence.

Action: The robot retrieves the product and replenishes the designated shelf.

3. Healthcare Robotics

Scenario: A surgical procedure requires a high degree of precision to minimize invasiveness

and ensure patient safety.

Solution: Surgical robots integrate advanced components to perform minimally invasive

procedures:

Cognitive Skills: Pre-trained models for image segmentation and motion stabilization;

purpose-built models for tool precision in real-time.
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LLM (Reasoning): A �ne-tuned medical LLM evaluates surgical plans, patient-speci�c

data, and ongoing sensor inputs to guide robotic actions.

Tools: Access to medical knowledge databases, patient history, and surgical guidelines via

APIs or vector search.

Sensors: High-resolution cameras, force sensors, and haptic feedback systems for precise

control.

Actuators: Robotic arms with micro-scale precision and surgical tools for executing

complex maneuvers.

Example Flow:

Input: The agent receives a command to perform a speci�c incision.

Perception: Sensors provide real-time imaging of the surgical site.

Reasoning: The LLM references surgical guidelines and patient-speci�c data from Tools to

determine the optimal incision path.

Action: The robotic arm performs the incision with precise control and real-time feedback

for adjustments.

4. Manufacturing

Scenario: An automotive assembly line needs to automate repetitive yet precise tasks such as

welding, painting, and quality inspection.

Solution: Smart factory robots integrate advanced components to optimize production:

Cognitive Skills: Pre-trained vision models for defect detection; purpose-built models for

real-time task sequencing.

LLM (Reasoning): A �ne-tuned manufacturing LLM coordinates work�ows and optimizes

resource allocation in real-time.

Tools: Integration with supply chain data, production guidelines, and maintenance

protocols via vector search.

Sensors: Cameras and proximity sensors for defect detection and positioning.

Actuators: Welding arms, painting tools, and conveyor systems for seamless assembly

processes.

Example Flow:

Input: The agent receives a request to weld speci�c joints on a car body.

Perception: Cameras and sensors identify the joint’s location and assess its condition.
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Reasoning: The LLM calculates optimal welding parameters, referencing safety protocols

and production standards through Tools.

Action: The robotic arm executes the weld with precision, while quality inspection systems

validate the output.

5. Agriculture

Scenario: A large-scale farm requires monitoring of crop health, optimization of irrigation,

and e�cient harvesting.

Solution: Physical AI Agents integrate diverse components to enhance productivity:

Cognitive Skills: Pre-trained spectral imaging models for crop health analysis; purpose-

built models for irrigation optimization and yield prediction.

LLM (Reasoning): A �ne-tuned agricultural LLM analyzes sensor inputs and contextual

data to generate actionable insights for farm management.

Tools: Access to historical weather data, soil analysis, and irrigation protocols via APIs or

vector search.

Sensors: Drones with multi-spectral cameras, soil moisture sensors, and temperature

monitors for environmental monitoring.

Actuators: Autonomous harvesters, irrigation systems, and pesticide sprayers for e�cient

farm management.

Example Flow:

Input: The agent receives a request to optimize irrigation for a speci�c �eld.

Perception: Sensors collect data on soil moisture and crop health.

Reasoning: The LLM references irrigation protocols and weather forecasts from Tools to

determine the optimal irrigation strategy.

Action: Autonomous irrigation systems adjust water distribution accordingly.

3.4. Industry E�orts to Build Platforms for Physical AI Agents

The development of platforms for physical AI agents is in its early stages, with several industry

leaders making notable strides. Traditional frameworks like NVIDIA Isaac[7], ROS (Robot Operating

System)[8], AWS RoboMaker[9], Google Robotics Core[10], and Microsoft’s robotics solutions[11] have

provided foundational tools for building autonomous agents in conventional ways. These platforms
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o�er essential components for perception, decision-making, and actuation, enabling the creation of

autonomous systems.

At CES 2025[12], NVIDIA unveiled signi�cant advancements aimed at creating truly agentic platforms

with generative AI capabilities for reasoning. A highlight is NVIDIA Cosmos[13], a family of

foundational AI models designed to train humanoids, industrial robots, and self-driving cars,

enhancing their understanding of the physical world through synthetic data generation.

In addition to Cosmos, NVIDIA expanded its Omniverse platform with generative physical AI

capabilities, introducing:

NVIDIA Edify SimReady: A generative AI model that can automatically label existing 3D assets with

attributes like physics or materials, signi�cantly reducing manual processing time[14].

Omniverse Blueprints: Designed to accelerate industrial and robotic work�ows, these include Mega

for developing and testing robot �eets at scale within digital twins of industrial environments, and

Autonomous Vehicle (AV) Simulation for AV developers[15].

These developments mark a signi�cant progression toward more advanced, agentic AI systems

capable of sophisticated reasoning and interaction within complex physical environments.

4. Case Study I: Ph-RAG for Oil and Gas Pipeline Integrity

Monitoring

4.1. Problem Statement

Monitoring the structural integrity of extensive oil and gas pipelines is a critical task. Failures in

pipelines can result in catastrophic environmental damage, operational disruptions, and signi�cant

�nancial losses. Traditional inspection techniques often rely on manual labor and periodic

assessments, which are not only resource-intensive but also incapable of providing real-time

insights, especially in remote or hazardous locations.

4.2. Solution Design: Ph-RAG Architecture

This work introduces the Ph-RAG (Physical Retrieval-Augmented Generation) framework to address

these challenges by seamlessly integrating physical intelligence with advanced cognitive reasoning.
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The architecture, illustrated in Figure 3, consists of two core components: the Physical AI Agent and

an industry-speci�c LLM.

The Physical AI Agent resides in the real-world ecosystem, performing on-site perception,

navigation, and reasoning. It leverages its embedded physical intelligence to adapt to dynamic

environments, interact with the physical world, and gather actionable insights.

The industry-speci�c LLM, on the other hand, operates within the knowledge ecosystem (digital

world), serving as a collaborative partner to the Physical AI Agent. It processes the contextual data

provided by the Physical AI Agent to generate comprehensive, domain-speci�c reports and augment

its decision-making capabilities with domain expertise informed by real-world interactions.

Figure 3. Ph-RAG Architecture - Core Components and Work�ow for Pipeline Monitoring.

4.3. Components of the Physical AI Agent

The Physical AI Agent is speci�cally designed to operate in challenging oil and gas pipeline

environments. Its modular architecture enables seamless navigation, data collection, and interaction

with the physical world. The key components of the agent include:
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1. Perception Block:

Sensors: The agent is equipped with high-resolution cameras for visual inspection, LIDAR for

structural mapping, acoustic sensors for detecting leaks or vibrations, chemical analyzers for

identifying hazardous substances, and thermal imaging units for spotting temperature

anomalies.

Role: Processes real-time sensory data to detect corrosion, leaks, structural deformities, and

environmental risks. This data forms the foundation for anomaly identi�cation and decision-

making.

2. Cognitive Block:

Internal Reasoning LLM: A �ne-tuned, task-speci�c LLM embedded within the agent,

responsible for on-site reasoning tasks such as anomaly prioritization, terrain navigation,

and pipeline condition assessments.

Pre-Trained Cognitive Models: Specialized models for analyzing pipeline-speci�c physical

dynamics, such as stress distribution, pressure variations, and material degradation.

Memory Module: Stores historical pipeline data, including prior inspections, environmental

conditions, and detected anomalies, enabling trend analysis and informed decision-making.

Tools Module: Provides access to operational protocols, environmental regulations, and

terrain maps, ensuring the agent adheres to industry standards during inspections.

3. Actuation Block:

Actuators: Includes aerial drones for long-distance and overhead monitoring, ground robots

for traversing complex terrains, and modular systems for conducting repairs or deploying

advanced sensors.

Role: Enables precise navigation along pipeline routes, execution of inspection tasks, and

interaction with physical components to collect detailed data and address critical anomalies.

By combining these components, the Physical AI Agent bridges the gap between real-world

environmental understanding, autonomous reasoning, and interaction-driven decision-making. This

architecture, as illustrated in Figure 3, ensures that actionable insights can be relayed to the industry-

speci�c LLM for generating comprehensive reports, enhancing pipeline integrity monitoring.
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4.4. End-to-End Work�ow

1. User Query: The monitoring team initiates a request for pipeline integrity analysis or sets up

alerts for speci�c anomalies.

2. Physical AI Agent:

Embodied through robotic platforms such as drones or ground-based robots, the Physical AI

Agent collects data such as visual, thermal, acoustic, or chemical indicators.

The agent uses its internal reasoning LLM for tasks like navigation, anomaly detection, and

planning. This LLM is �ne-tuned for reasoning tasks related to real-world conditions,

enabling on-the-�y decision-making.

Pre-trained cognitive models process raw sensory data, identify anomalies, and provide

structured context for further analysis.

3. Environment Interaction: The Physical AI Agent adapts to terrain and environmental conditions,

ensuring robust performance in challenging settings.

4. Industry-Speci�c LLM :

The Physical AI Agent sends processed contextual data (e.g., detected anomalies,

environmental conditions) to an external, industry-speci�c LLM, �ne-tuned for pipeline

monitoring.

The external LLM provides higher-order reasoning, contextualizing the data, identifying

trends, and generating actionable insights for the monitoring team.

5. Reporting: The external LLM delivers detailed reports to the monitoring team, complete with

recommendations and identi�ed risks.

This architecture and operational �ow are visualized in Figure 3.

4.5. Scalability Across Industries

While this case study focuses on oil and gas pipeline monitoring, the Ph-RAG framework is versatile

and scalable. The design pattern can be seamlessly applied to other industries, including

infrastructure inspection, environmental monitoring, and precision agriculture, where similar

work�ows and modular architectures can drive signi�cant operational improvements.
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5. Case Study II: A Hybrid Agentic System for Inventory

Management and Product Replenishment

5.1. Problem Statement

Managing inventory and product replenishment in large-scale warehouses is a complex challenge. In

a warehouse with over 50,000 products stored in various storage bins and shelves, ine�ciencies often

arise due to the inability to monitor stock levels in real-time, predict replenishment needs accurately,

and execute physical replenishment tasks e�ciently. Traditional systems struggle to bridge the gap

between virtual inventory management and the physical handling of products, leading to delays,

errors, and suboptimal utilization of resources.

5.2. Solution Design

A hybrid Agentic AI system integrates the strengths of a Vertical AI Agent and Physical AI Agents to

create an intelligent, end-to-end solution. The Vertical AI Agent oversees inventory management,

monitors stock levels, and predicts replenishment needs, while Physical AI Agents handle the physical

logistics of navigating the warehouse, identifying products, and replenishing shelves. This

collaboration minimizes ine�ciencies, optimizes work�ows, and bridges the digital and physical

domains seamlessly.

5.3. Components of Each AI Agent

1. Vertical AI Agent (Inventory Management):

Role: Supervises the inventory system, assigns tasks to Physical AI Agents, and ensures

replenishment occurs in real-time.

Key Components:

Cognitive Skills: Inventory forecasting model to predict replenishment needs within 30

minutes.

Tools:

Vector search capabilities for domain knowledge retrieval.

Integration with external systems for order processing and ful�llment work�ows.

Knowledge Domains:

qeios.com doi.org/10.32388/HA0F5Z 18

https://www.qeios.com/
https://doi.org/10.32388/HA0F5Z


Product-level inventory knowledge.

Historical sales and demand patterns.

Supply chain and ful�llment work�ows.

Reasoning Module:

Specialized LLM trained to leverage domain knowledge for decision-making and task

prioritization.

Memory Module:

Stores the agent’s past actions, including task assignments and replenishment

decisions.

Tracks the history of product movements and operational work�ows for continuity.

2. Physical AI Agents (Robots):

Role: Execute physical replenishment tasks in the warehouse.

Key Components:

Sensors: Cameras and LIDAR for perception and navigation.

Cognitive Skills:

SLAM (Simultaneous Localization and Mapping) for warehouse navigation.

Object recognition for identifying products, shelves, and employees.

Tools:

Navigation knowledge through vector search for spatial information.

Integration with external systems to ensure e�cient item handling and safety

compliance.

Actuators: Grippers for picking and placing items.

Reasoning Module:

Specialized LLM trained to combine navigation knowledge, safety protocols, and

product information for real-time decision-making.

Memory Module:

Stores past navigation routes, completed tasks, and replenishment actions.

Maintains a history of operational adjustments and interactions with the environment.
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5.4. End-to-End Flow in Action

1. The Vertical AI Agent continuously monitors product stock levels and detects that certain SKUs

are approaching low thresholds. Using its inventory forecasting model, it predicts which

products will need replenishment in the next 30 minutes.

2. Based on the replenishment requirements, the Vertical AI Agent assigns tasks to Physical AI

Agents, including speci�c SKUs to retrieve and their corresponding shelf locations.

3. The Physical AI Agents navigate the warehouse using SLAM, perceiving their environment with

cameras and LIDAR while avoiding obstacles and ensuring safety.

4. Upon reaching the designated storage location, the robots use object recognition to identify the

correct products and shelves, then pick up the required items using their grippers.

5. The robots transport the products to the replenishment location and accurately place them on

the shelves.

6. The Vertical AI Agent updates inventory levels in real-time, ensuring alignment between the

digital and physical systems and preparing for future replenishment tasks.

This hybrid system exempli�es the power of combining Vertical and Physical AI Agents to bridge the

digital and physical domains. By integrating cognitive intelligence for inventory management with

embodied intelligence for physical execution, the system optimizes work�ows, minimizes

ine�ciencies, and transforms traditional warehouse operations into a scalable, adaptive, and highly

e�cient process.

6. Conclusion and Future Directions

6.1. Conclusion

This work introduced Physical AI Agents as a transformative paradigm, extending the capabilities of

Vertical AI Agents into the physical world. By embedding advanced cognitive reasoning,

environmental understanding, and autonomous decision-making into physical platforms, these

agents represent a pivotal step toward bridging the gap between digital intelligence and real-world

interaction.

We explored the architecture of Physical AI Agents, de�ning their core blocks—Perception, Cognition,

and Actuation—and demonstrated their adaptability across various industries through real-world use
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cases. The proposed Physical-RAG (Ph-RAG) design pattern exempli�es how physical intelligence can

seamlessly collaborate with industry-speci�c LLMs to provide real-time, context-informed insights,

enhancing operational e�ciency and decision-making.

By integrating modular design principles with domain-speci�c intelligence, Physical AI Agents

rede�ne how businesses approach complex challenges in dynamic environments. Their ability to

process, reason, and act within physical contexts positions them as foundational tools for industries

aiming to achieve greater e�ciency, scalability, and precision in their operations.

The transformative potential of Physical AI Agents lies not only in their technical capabilities but also

in their ability to adapt to diverse environments and integrate seamlessly into existing work�ows. As

industries continue to evolve, these agents will play a critical role in driving innovation, enabling

businesses to meet the demands of an increasingly complex and interconnected world.

6.2. Future Directions

To unlock the transformative potential of Physical AI Agents and catalyze innovation at the

intersection of research and industry, several strategic priorities must be addressed:

Advancing Physical Intelligence: Focus on designing advanced cognitive frameworks that

integrate real-time perception, spatial reasoning, and adaptive decision-making, enabling agents

to perform complex tasks in dynamic environments.

Developing Standardized Architectures: Establish interoperable and scalable design standards that

facilitate seamless integration across diverse industrial applications, fostering ecosystem-wide

compatibility.

Enhancing Large Language Model (LLM) Synergy: Augment industry-speci�c LLMs to process

multimodal inputs from physical contexts, enabling precise synthesis and actionable insights

tailored to specialized use cases.

Optimizing LLMs for Robotic Platforms: Focus on LLM optimization and quantization techniques

to ensure e�cient deployment on resource-constrained robotic platforms. This includes reducing

computational overhead, minimizing latency, and maintaining accuracy for real-time decision-

making.

Prioritizing Sustainability and E�ciency: Pursue research and development in energy-e�cient

hardware and algorithms to align agent operations with global sustainability initiatives while

reducing operational costs.

qeios.com doi.org/10.32388/HA0F5Z 21

https://www.qeios.com/
https://doi.org/10.32388/HA0F5Z


Enabling Multi-Agent Ecosystems: Investigate cooperative multi-agent systems that enable

Physical AI Agents to collaborate in performing large-scale, interdependent tasks across industries

such as logistics, healthcare, and manufacturing.

Addressing these key areas will propel the evolution of Physical AI Agents, bridging the gap between

digital intelligence and real-world functionality. These advancements promise to rede�ne industry

standards, drive technological progress, and create unprecedented opportunities for embodied

intelligence across global markets.

Statements and Declarations

Disclaimer

The architectures, diagrams, and concepts presented in this work are the intellectual property of the

author. Proper attribution to the author and this publication is expected when referencing or sharing

these materials.

References

1. ^Goertzel B, Wang P, editors. Advances in Arti�cial General Intelligence: Concepts, Architectures and Alg

orithms. Amsterdam: IOS Press; 2007. (Frontiers in Arti�cial Intelligence and Applications; vol. 157).

2. ^Yu B, Wei J, Hu M, Han Z, Zou T, He Y, Liu J (2024). "Brain-inspired AI Agent: The Way Towards AGI".

arXiv. Available from: https://arxiv.org/abs/2412.08875.

3. ^OpenAI, Achiam J, Adler S, et al. GPT-4 Technical Report. 2024. Available from: https://arxiv.org/abs/2

303.08774.

4. ^Gratta�ori A, Dubey A, Jauhri A, Pandey A, Kadian A, et al. The Llama 3 Herd of Models. arXiv [cs.AI]. 2

024. Available from: https://arxiv.org/abs/2407.21783.

5. ^Bubeck S, Chandrasekaran V, Eldan R, Gehrke J, Horvitz E, Kamar E, Lee P, Lee YT, Li Y, Lundberg S, No

ri H, Palangi H, Ribeiro MT, Zhang Y (2023). "Sparks of Arti�cial General Intelligence: Early experiment

s with GPT-4". arXiv. arXiv:2303.12712.

6. a, bBousetouane F (2025). "Agentic Systems: A Guide to Transforming Industries with Vertical AI Agent

s". arXiv. Available from: https://arxiv.org/abs/2501.00881.

7. ^NVIDIA. NVIDIA Isaac Platform. Available at: https://developer.nvidia.com/isaac-sdk.

qeios.com doi.org/10.32388/HA0F5Z 22

https://arxiv.org/abs/2412.08875
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2501.00881
https://developer.nvidia.com/isaac-sdk
https://www.qeios.com/
https://doi.org/10.32388/HA0F5Z


8. ^Open Source Robotics Foundation. Robot Operating System (ROS). Available at: https://www.ros.org/.

9. ^Amazon Web Services. AWS RoboMaker. Available at: https://aws.amazon.com/robomaker/.

10. ^Google Research. Google Robotics Core. Available at: https://robotics.google.com/.

11. ^Microsoft. Microsoft Robotics Development Platform. Available at: https://www.microsoft.com/robotic

s/.

12. ^Consumer Technology Association (2025). "CES 2025: Innovations in Technology". CES 2025 O�cial

Website. Available at: https://www.ces.tech/.

13. ^NVIDIA (2025). "NVIDIA Cosmos: AI for Humanoid Robots and Autonomous Systems". CES 2025 Anno

uncement. Available at: https://www.wired.com/story/nvidia-cosmos-ai-helps-robots-self-driving-c

ars.

14. ^NVIDIA. NVIDIA Edify SimReady. Available at: https://markets.businessinsider.com/news/stocks/nvidi

a-expands-omniverse-with-generative-physical-ai.

15. ^NVIDIA. Omniverse Blueprints. Available at: https://markets.businessinsider.com/news/stocks/nvidia-

expands-omniverse-with-generative-physical-ai.

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/HA0F5Z 23

https://www.ros.org/
https://aws.amazon.com/robomaker/
https://robotics.google.com/
https://www.microsoft.com/robotics/
https://www.microsoft.com/robotics/
https://www.ces.tech/
https://www.wired.com/story/nvidia-cosmos-ai-helps-robots-self-driving-cars
https://www.wired.com/story/nvidia-cosmos-ai-helps-robots-self-driving-cars
https://markets.businessinsider.com/news/stocks/nvidia-expands-omniverse-with-generative-physical-ai
https://markets.businessinsider.com/news/stocks/nvidia-expands-omniverse-with-generative-physical-ai
https://markets.businessinsider.com/news/stocks/nvidia-expands-omniverse-with-generative-physical-ai
https://markets.businessinsider.com/news/stocks/nvidia-expands-omniverse-with-generative-physical-ai
https://www.qeios.com/
https://doi.org/10.32388/HA0F5Z

