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This research aimed to identify signals of polygenic adaptation in various

phenotypes – such as educational attainment, height, and schizophrenia – by

employing traditional Fst enrichment tests and polygenic score differentiation

tests like Qst and Qx. Fst tests offered inconclusive evidence for over-

differentiation in allele frequencies, while Qst tests indicated signi�cant

differences for cognitive traits but not for height. The investigation

underscores that Fst underestimates the extent of phenotypic differentiation

due to additive genetic in�uences because it fails to account for the covariance

of allelic effects across populations. The research demonstrates that Bird's

(2021) analysis of the genetic IQ disparity between Africans and Europeans is

based on the incorrect assumption that Fst should be equal to the phenotypic

variance between populations (Qst), assuming all between-group variation

results from additive genetic effects.

The �ndings emphasize the importance of considering both Fst and Qst values

when assessing population genetic differentiation. They also stress the

importance of controlling for population-speci�c Linkage Disequilibrium (LD)

decay. Indeed, LD decay produced a pro-European bias in polygenic scores,

in�ating the European mean compared to Africans and East Asians. Finally,

family based or multi-ancestry GWAS are needed to account for other sources

of bias such as population strati�cation and ancestry-speci�c variants or

effects. The currently available data does not allow us to provide accurate

estimates of the genotypic potential of ancestral groups that are genetically

very different from Europeans.

Correspondence: papers@team.qeios.com — Qeios will

forward to the authors

1. Introduction

In recent years, the genomic effects of natural selection

on polygenic traits, or traits that are in�uenced by

multiple genes, has become a major area of study in

human population genetics and ecology (Berg and

Coop, 2014; Berg et al., 2021; Field et al., 2016; Gratten et

al., 2014). These genomic effects can provide insights

into the evolutionary history of populations and

contribute to our understanding of complex traits, such

as susceptibility to diseases and response to

environmental factors.
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Technological advancements in genome sequencing

and novel analytic methods have signi�cantly advanced

the �eld. One such method, the Fst enrichment test, is

used to measure divergent selection pressure on single-

gene traits. It involves comparing Fst, which quanti�es

genetic variation between populations, at the candidate

gene with the Fst of the background genetic variation,

which is mostly neutral. However, this method is

limited in its ability to detect divergent selection when

the selection signal is weak and spread across

numerous loci, as is often the case with polygenic traits

(soft sweeps) (Pritchard, 2010; Hollinger et al., 2019).

In contrast, Qst is employed to quantify phenotypic

differentiation between populations resulting from

genetic in�uences, particularly in the context of

polygenic traits under an additive model. Qst quanti�es

the proportion of genetic variation in a trait that exists

between populations. For polygenic traits, polygenic

scores represent the additive genetic variance, which is

the sum of the effects of individual genes. Qst can be

calculated as the ratio of the variation between

populations for polygenic scores to the overall variation

of polygenic scores, which is the sum of between-

population variation and twice the within-population

variation.

According to the model developed by Le Corre and

Kremer (2012), allelic covariance, or the relationship

between allele frequencies and their effects on a trait,

can be broken down into two components: the

covariance of allele frequencies and the covariance of

allelic effects. In cases where polygenic traits are under

divergent selection among populations, alleles with

similar effects are driven to similar frequencies within

populations across multiple loci. This can result in

population differences in the mean of a quantitative

trait due to positive covariances – that is, linkage

disequilibrium – between distant variants (Latta, 1998;

Le Corre and Kremer, 2003; Ma et al., 2010).

Factor analysis, a statistical method used to analyze the

structure of data, has been employed to measure allelic

covariance for traits such as educational attainment

and height (Piffer, 2013, 2016). Studies have

demonstrated that allelic covariance can help explain

the observed population differences in these traits,

emphasizing the importance of accounting for allelic

covariance when investigating the genetics of polygenic

traits under divergent selection.

The relationship between allelic effects and

frequencies, or the covariance of these variables, can be

considered as the between-population component of

linkage disequilibrium, which refers to the non-random

association of alleles at different loci (Storz and Kelly,

2008; Ma et al., 2010). Selection can lead to the

accumulation of intergenic disequilibrium, a

phenomenon that can cause differentiation at the gene

level to become uncoupled from differentiation at the

trait level or in the polygenic score, which represents

the cumulative effect of multiple genetic variants on a

trait.

The Fst enrichment test (Guo et al., 2018; Bird, 2021)

compares genetic differentiation, measured as the

average Fst across genome-wide association study

(GWAS) single nucleotide polymorphisms (SNPs), with

that of other randomly matched SNPs. However, this

test is only capable of detecting one component of

genetic differentiation resulting from divergent

selection, speci�cally, the Fstq(Fst at GWAS SNPs)/Fst(at

neutral SNPs) ratio. In many cases (Le Corre and

Kremer, 2012), this component is small compared to the

allelic covariance across populations, which can lead to

false negatives – that is, incorrectly identifying no

signi�cant difference when one actually exists.

Studies have compared genetic differentiation at

neutral markers (which are not in�uenced by selection)

to differentiation at candidate genes (which are

potentially under selection) for various tree species.

These studies have found low levels of genetic

differentiation that are not signi�cantly different from

those observed for neutral markers. However, they have

observed much higher levels of Qst (Eveno et al., 2008;

Pyhäjärvi et al., 2008; Heuertz et al., 2006; Hall et al.,

2007; Luquez et al., 2007; Derory et al., 2010; Namroud

et al., 2008).

Indeed, Qst can be large even if Fst is very small. This

situation occurs when there is little genetic

differentiation between populations at individual loci,

but the covariance in allele frequencies between

populations creates differences in the phenotypic traits.

For highly polygenic traits like height and cognition,

the genetic variance is expected to be mostly

attributable to the allelic covariance component, as the

signi�cance of this component increases with the

number of loci implicated in the trait (Kremer & Le

Corre, 2012; Berg and Coop, 2014).

For traits controlled by 40 loci, the genetic

differentiation Fstq at GWAS SNPs becomes very close

to the neutral differentiation (Fst) and the gap between

Qst and Fst becomes large (Le Corre & Kremer, 2012).

Conversely, there may be signi�cant levels of genetic

differentiation by (Fst > 0.15) without any variations in

the population means (Qst = 0).

The Fst enrichment test has a technical limitation in

that it relies on randomly matched sets of SNPs, which
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can result in different outcomes based on �ltering

criteria. Additionally, high genetic differentiation can

occur without differences in population means (Qst =

0). The ratio between the Qst and Fst coef�cients

indicates the degree of decoupling between Fstq and

Qst, and it serves as a useful indicator of selection for

many polygenic trait scenarios when the allelic

covariance, denoted as θB, is the largest component.

The covariance of allelic effects is related to Cronbach's

Alpha, a measure of internal consistency commonly

employed in psychometric scales. However, Cronbach's

Alpha is dependent on the number of variables (i.e.

SNPs) used, hence it is far from being a perfect measure

of cross-population LD. The Cronbach´s Alpha

coef�cient will be used to assess the reliability of

polygenic scores.

As mentioned earlier, theoretical modeling predicts a

high level of decoupling between Qst and Fst for highly

polygenic traits under moderate to strong divergent

selection. Consequently, we predict that Qst > Fst for the

traits hypothesized to be under divergent selection in

humans.

Transferring polygenic scores across populations has

proven challenging in this �eld of research (Martin et

al., 2019). This issue arises from the variability in the

impact of causal variants and differences in linkage

disequilibrium patterns between populations

(Vilhjálmsson et al., 2015). These factors can lead to a

misalignment in non-GWAS populations between the

"true" causal variant and the "tag" variant (variants

linked to the causal variant that do not directly affect

the trait in question) identi�ed through GWAS in

populations, typically of European descent. The effect

of different, mainly weaker, LD patterns is particularly

strong in individuals of African ancestry, where the

polygenic scores typically show considerably less

validity than they do for other populations, such as

South and East Asians (Fahed et al., 2021). In fact, a

polygenic score for educational attainment had 50%

reduction in effect size for African Americans as

compared to Europeans (Lee et al., 2018), though it still

retained some predictive validity in a replication sample

(Rabinowitz et al., 2019). In an independent sample,

there was a slightly lower (~40%) effect size reduction

(from 0.26 to 0.16) (Fuerst et al., 2023).

Differential LD patterns are probably responsible for a

large portion of the limited trans-ethnic portability of

GWAS results, because the effects of the "true" causal

alleles remain relatively consistent across ancestries,

with a correlation of 0.95 across local ancestries within

African-European admixed individuals (Hou et al.,

2023). This paper employs a previously published

method (Piffer, 2021) to identify the in�uence of

population-speci�c LD patterns on polygenic scores,

and to demonstrate how eliminating the most-

impacted SNPs affects pairwise differences.

We aim to examine the potential in�uence of divergent

selection on height, educational attainment, and mental

disorders (such as schizophrenia) by employing

polygenic score overdispersion tests (Qst, Qx). Qx

measures the deviation of polygenic scores from their

distribution under genetic drift (Refoyo-Martinez et al.,

2021).

Qst will be calculated on all the traits to show the

amount of population differentiation and how this is

in�ated by LD decay, whereas Qx will be computed only

on the traits that were found not to be signi�cantly

biased by LD decay.

To investigate whether genetic factors contribute to

phenotypic differences between groups, we will

calculate the correlation between population-level

polygenic scores and average population IQ (used as a

proxy for education-related abilities), as well as average

height. A strong correlation between average

phenotype and polygenic scores is a signal of divergent

adaptation (Turchin et al., 2012).

Partial polygenic scores will be computed for the

ancestry components found in the Latino/Hispanic

gnomAD sample. This will help us examine if the

mixing of different ethnic groups happens randomly or

not, focusing on certain characteristics like education.

If individuals from one ethnic group don't choose

partners from other ethnic groups randomly, especially

considering certain characteristics, then the average

genetic scores for these characteristics will differ from

the scores of the ethnic groups they partner with. For

example, if individuals from group A only choose highly

educated partners from group B, then the partial group

B genetic scores related to education among mixed

individuals will be higher than the overall genetic

scores for education among individuals of group B.

Moreover, it will allow us to estimate a “pure” Native

American polygenic score, instead of computing it

using mixed individuals from 1KG (e.g. PEL, MXL, PUR)

or alternatively relying on small indigenous samples

from HGDP.

Finally, we show that Kevin Bird’s analysis (Bird, 2021)

rests on the fallacious assumption that Fst = Qst and

that the value he computed from phenotypic data is

very close to the Qst value computed using polygenic

scores for education.
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2. Materials and methods

Datasets: For polygenic score computation, we utilized

data from various GWAS studies. For instance, the latest

GWAS of height used a multi-ancestry sample of 4

million individuals, identifying 7209 height-associated

loci from 12,111 genome-wide signi�cant regions, as

de�ned by COJO P-value < 5×10-8 in trans-ancestry

GWAS meta-analysis, with +/- 35 kb �anking regions

(Yengo et al., 2022). Among these, the SNPs (N= 3,779)

that were signi�cant in the GWAS summary statistics

�le for all populations. The educational attainment (EA)

GWAS summary statistics were obtained from four

different studies, including Lee et al. (2018), who used

multi-trait analysis of GWAS (MTAG) to identify SNP

associations with high predictive accuracy for EA3

polygenic score computation. In addition, the latest

GWAS of educational attainment, which used a sample

size of ~3 million individuals, was used for EA4

polygenic score computation (Okbay et al., 2022).

Furthermore, summary statistics for sibship (within-

family) GWAS of education were retrieved from a recent

meta-analysis of sibship GWAS (Howe et al., 2022). A

recent, small Danish GWAS identi�ed 4 signi�cant

SNPs correlated with the �rst principal component of

school grades (E1), which captured overall school

performance and showed the strongest genetic

correlations with educational attainment  (r g = 0.90; SE

= 0.03; P = 4.8 × 10 –198) and intelligence  (r g = 0.80; SE

= 0.03; P = 3.3 × 10–128) (Rajagopal et al., 2023). The PGS

from this study will be referred to as DKedu (Denmark

education).

Trubetskoy et al. (2022) conducted the latest

schizophrenia (SCZ) GWAS and identi�ed 313

independent SNPs in the “primary” GWAS that were

signi�cant at a genome-wide level (P < 5 × 10 -̂8) with a

linkage disequilibrium (LD) of r2 < 0.1. In the extended

GWAS (hereafter “combined”), primary GWAS results

were meta-analyzed with summary statistics from

deCODE genetics, identifying 342 linkage-

disequilibrium-independent signi�cant SNPs.

This study was selected because it is the most recent

and because it is the �rst large-scale trans-racial GWAS

for schizophrenia, including individuals of European,

East Asian, Africa, and Amerindian ancestry. Polygenic

scores were computed using both sets of SNPs

(“primary” and “combined”). The PGS derived from the

larger combined ancestry GWAS had more explanatory

power than the one based on the matched ancestry

GWAS even for non-European cohorts, likely due to the

smaller sample size of the latter. Hence, we did not use

the ancestry-speci�c GWAS summary statistics.

1000 Genomes (1000 Genomes Project Consortium,

2015), HGDP (Bergstrom et al., 2020) and gnomAD v3

(Chen et al., 2022) were used to compute allele

frequencies for different ethnic groups.

Bioinformatics: LD clumping was performed using

PLINK 2.0 on the GWAS summary statistics, with a p-

value threshold of 5×10-8, unless otherwise speci�ed

(Chang et al., 2015). Allele frequencies were computed

by individual using PLINK (Chang et al., 2015), and

polygenic scores were computed using R (R Core Team,

2021) for individuals in the four 1KG super-populations

(EUR, AFR, EAS, SAS), with AMR being excluded due to

their admixture.

Test of selection and genetic differentiation: The Fst

enrichment test (Guo et al., 2018), which calculates the

Fstq and Fst values (for sets of randomly matched

SNPs), will be performed to test for selection acting on

allelic differentiation. The decoupling between Qst and

Fst is caused by the allelic covariance (θB), which is the

predominant component of selection at highly

polygenic traits (Kremer & Le Corre, 2012). The

covariance of allelic effects and frequencies can also be

thought of as the between-population component of

linkage disequilibrium (Storz and Kelly, 2008; Ma et al.,

2010). Selection can lead to the accumulation of

intergenic disequilibrium, which decouples

differentiation at the gene and trait (or polygenic score)

levels. This happens when alleles with similar effects

are driven to similar frequencies within populations

across multiple loci. Qst was computed using the

formula Qst = σ²B / (σ²B + 2σ²W) (Leinonen et al., 2013).

Qst is de�ned as the level of genetically based

population differentiation in quantitative traits (Li et

al., 2019).

The total genetic variance is the variance of the

polygenic scores across all individuals in all

populations. The genetic variance within populations is

the average variance of the polygenic scores within

each population, weighted by the number of individuals

in each population.

Qst is then calculated as the genetic variance among

populations divided by the sum of the genetic variance

among populations and twice the genetic variance

within populations.

As a test of divergent selection, GWAS beta (or OR, odds

ratio) were randomly �ipped with a probability of 0.5.

The A1 and A2 alleles were randomly shuf�ed with a

probability of 0.5 (i.e., coin �ip) to produce a null

distribution of polygenic scores and calculate random

Qst values.
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Another measure of over-dispersion of phenotypes (or

polygenic scores) closely related to Qst, Qx, will be

calculated using the formula provided by Berg and Coop

(2014). Qx will be much smaller than 1 for traits under

stabilizing selection with the same optimum across

populations, whereas diversifying selection will

produce values larger than 1. P-values for the Qx

statistic were computed using a randomization

procedure based on randomizing the sign of the effect

size estimates of the GWAS SNPs as done in Refoyo-

Martinez et al. (2021).

For the Qst test, the Fst enrichment test and Qx, control

variants were matched to SNP variants using vSampler

(Huang et al., 2021). The effect of LD decay on mean

population polygenic scores will be tested using the

method described by Piffer (2021).

To investigate the variation in linkage disequilibrium

(LD) patterns across populations, the SNPs were

inputted into LDlink (Machiela and Chanock, 2015).

Variants within a +/- 500 Kb window of the query

variant that had a pairwise R2 value greater than 0.01

were downloaded, using CEU (Utah residents with

Northern and Western European ancestry), YRI (Yoruba

in Ibadan, Nigeria), and JPT (Japanese in Tokyo, Japan)

as reference populations.

The pairwise R2 values between the GWAS variant and

the linked variants were then computed for CEU, YRI

and JPT, and the correlation coef�cient was used as a

measure of differential LD decay across these

populations compared to the query variant. A higher

correlation between the CEU and YRI (or JPT) R2 values

indicated a lower level of trans-ethnic LD decay. Genetic

value scores (GVS) for CEU and YRI (or JPT) were

calculated for each GWAS SNP by multiplying the

frequency of the effect allele by the GWAS effect size.

Other populations of interest could also be used to

calculate genetic value scores in a similar manner.

To compute the correlations between polygenic scores

and population IQ, we merged HGDP, 1KG and gnomAD

datasets and when there were overlapping populations,

the larger sample was retained. For example, the ASW

and FIN in 1KG (N = 113) were replaced with the African

American (N = 20,744) and Finnish (N = 5,316) gnomAD

samples. The resulting dataset comprised 72

populations.

The data sources used for population average IQ and

national average height were as follows: Lynn and

Vanhanen (2012) for IQ data and NCD-RisC (2020) for

height data. In cases where speci�c groups did not

correspond to nations, alternative sources were

consulted. The height data was obtained from various

studies: Zeevi et al. (2019) for Ashkenazi Jews, Fryar et

al. (2021) for African Americans, Whites, and Hispanics,

Cacciari et al. (2006) for Italian regions, Lu et al. (2022)

for Chinese regions, and Corsini (2008) for Sardinia. IQ

data was sourced from Lynn & Cheng (2013) for Chinese

regions, Piffer & Lynn (2014) for Italian regions, Dalliard

(2017) for Hispanics, Malloy (2014) for Vietnam, Bakhiet

and Lynn (2014) for Palestine, Lynn (2010) for Sardinia,

and Shibaev & Lynn (2017) for the Yakut population.

3. Results

ANOVA

Polygenic scores were calculated for individuals in the

four 1KG super-populations.

One-way ANOVA was run using the GWAS summary

statistics for EA3, EA4, SCZ and Height 2022. Results

revealed statistically signi�cant differences between

the group-level polygenic scores (Table 1), which

suggest there are genetic differences between the

populations studied that are associated with the traits

examined.
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GWAS p-value Omega²

EA3 0.00e+00 0.607

EA4 0.00e+00 0.956

Sibling EA 5.65e-40 0.089

Schizophrenia 0.00e+00 0.619

Height 2.16e-107 0.220

Sibling Height 8.48e-128 0.255

Table 1.

The mean and distribution of individual scores can be

visualized in the boxplots (Suppl. Figures 1a, b, c and 2a,

b)

Tests of divergent selection

2.2. Randomization

Table 2 reports the results of the computation of Qst,

random Qst, and Fst for the four 1KG superpopulations

as well as Fstq (for random and GWAS SNPs,

respectively). The distribution of random Qst and Fst

values are visualized in Figures 1 and 2, respectively.

Random Qst was calculated by randomly shuf�ing

effect and non-effect alleles, and the shuf�ing process

was repeated 1000 times to generate random Qst

values. The Z score and p-value for Qst/Qst_random and

Fstq/Fst are also reported.

LD clumping was performed on the SNPs, using two

different R2 thresholds: 0.1 and 0.01. For Schizophrenia

and Height this was not necessary because there were

no SNPs within the same LD block.

For EA3, EA4, Schizophrenia, and Height GWASs, the

real Qst values were compared to their respective

random Qst and Fst values. EA3 had Qst values of 0.435

(LD �lter 0.1), 0.582 (LD 0.1), and 0.465 (LD 0.01), and all

were signi�cantly different from their respective

random Qst and Fst values. EA4 had a Qst value of 0.91

(LD �lter 0.1) and 0.864 (LD �lter 0.01), and both were

signi�cantly different from their respective random Qst

and Fst values. Schizophrenia had a Qst value of 0.406

(LD �lter 0.1), which was signi�cantly different from its

respective random Qst and Fst values. Height 2022 had

a Qst value of 0.123, which was not signi�cantly

different from its respective random Qst and Fst values.

On the other hand, the within family EA SNPs had Fst

and Qst values that were not signi�cantly different

from random values.

The ratio between Qst and Fst reveals the degree of

decoupling between phenotypic and genotypic

differentiation. The Qst/Fst values are generally high

(with the exception of height) and match theoretical

predictions of strong divergent selection on traits

controlled by a large number of loci (Kremer & Le Corre,

2012).
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GWAS LD �lter* Qst Qst_random Fstq Fst Z score; p (Qst/Qst_random) Z score; p (Fstq/Fst) Qst/Fst

EA3 0.1 0.582 0.08 0.099 0.093 7.97; 0.001 2.96; 0.003 6.25

EA3 0.01 0.465 0.077 0.098 0.095 6.3; 0.001 1.24; 0.11 4.89

EA4 0.1 0.91 0.068 0.086 0.091 14.26; 0.001 -3.54; 0.95 10

EA4 0.01 0.864 0.067 0.083 0.093 14.22; 0.001 -5.84; 0.96 9.29

EA sibling NA 0.046 0.057 0.06 0.074 -0.22; 0.483 -1.95; 0.98 0.62

SCZ NA 0.406 0.087 0.118 0.096 4.62; 0.004 4.7; 0.001 4.23

Height NA 0.123 0.096 0.109 0.095 0.31; 0.270 10.84; 0.001 1.29

Height sibling 0.1 0.250 0.091 0.093 0.088 2.09; 0.05 1.398; 0.075 2.84

Table 2. Global Qst and Fst values for GWAS and neutral SNPs

*NA values indicate that LD �ltering was not possible

because SNPs in the GWAS summary �le were LD free.

Figure 1. Qst with reshuf�ed alleles and betas for

polygenic scores

Figure 2. Fst enrichment test

Pairwise differences

The results of Fst analysis for two different population

pairs (EUR-EAS and EUR-AFR) are presented in Table 3.

The Fst values ranged from 0.081 to 0.149, indicating

moderate genetic differentiation among populations.

To assess the signi�cance of the Fst values, we

compared them with the random Fst values generated

by permutation tests. The Z score (Fstq/Fst) and p-

values are also reported in Table 3.

For the EUR-EAS population pair, the Fst values for the

polygenic scores EA3 and EA4 (LD �lter 0.1) were 0.094
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and 0.081, respectively. The corresponding random Fst

values were 0.087 and 0.084, and the Z scores (Fst/Fst

random) were 2.87 (p = 0.003) and -1.79 (p = 0.55),

respectively. These results suggest signi�cant genetic

differentiation between the EUR and EAS populations

for the EA3 score but not for the EA4 score.

For the EUR-AFR population pair, the Fst values for

schizophrenia and height were 0.096 and 0.149,

respectively. The corresponding Fst random values

were 0.089 and 0.11, and the Z scores (Fst/Fst random)

were 5.23 (p = 0.001) and 5.23 (p = 0.001), respectively.

These results suggest signi�cant genetic differentiation

between the EUR and AFR populations for both traits.
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GWAS LD �lter EUR - EAS EUR - AFR

Fstq Fst random Z (Fstq/Fst random); p  Fstq Fst random Z score (Fstq/Fst random); p

EA3 0.1 0.094 0.087 2.87; 0.003 0.119 0.107 4.07; 0.001

EA4 0.1 0.081 0.084 -1.79; 0.55 0.101 0.115 -3.51; 0.975

Schizophrenia  NA 0.096 0.089 1.17; 0.11 0.149 0.112 5.23; 0.001

Height NA 0.094 0.088 3.56; 0.001 0.129 0.109 10.27; 0.001

Sibship Height 0.1 0.087 0.089 -0.42; 0.638 0.132 0.112 2.96; 0.001

Table 3. WC pairwise Fst for GWAS and control SNPs*.

*sibs= within-family (sibship) GWAS. LD indicates the LD-

clumping R2 threshold value.
**NA values indicate that LD �ltering was not possible

because SNPs in the GWAS summary �le were LD free.

Pairwise Qst values were calculated for two population

pairs: EUR-EAS and EUR-AFR. The Qst values were

computed using both real and shuf�ed beta weights,

These values are reported in Table 4.

For the EUR-EAS population pair, the Qst value for the

EA3 PGS was 0.044 based on real Beta weights, and 0.05

based on shuf�ed Beta weights. The Z score comparing

these values was -0.1 with a p-value of 0.36. The Qst

value for the EA4 PGS was 0.456 based on real beta

weights, and 0.045 based on shuf�ed beta weights. The

Z score comparing these values was 7.6 with a p-value

of 0.001.

The Qst value for the height PGS was 0.192 based on real

Beta weights, and 0.057 based on shuf�ed beta weights.

The Z score comparing these values was 1.92 with a p-

value of.059.

For the EUR-AFR population pair, the Qst value for

Schizophrenia was 0.568 based on real beta weights,

and 0.088 based on shuf�ed beta weights. The Z score

comparing these values was 4.73 with a p-value of.001.

The Qst value for the EA3 PGS was 0.619 based on real

beta weights, and 0.062 based on shuf�ed beta weights.

The Z score comparing these values was 6.83 with a p-

value of.001.The Qst value for the EA4 PGS was 0.942

based on real Beta weights, and 0.057 based on shuf�ed

beta weights. The Z score comparing these values was

12.58 with a p-value of.001.

The Qst value for the polygenic score height was 0.013

based on real beta weights, and 0.076 based on shuf�ed

beta weights. The Z score comparing these values was

-0.67 with a p-value of.698.

Overall, these results provide evidence of divergent

selection for some polygenic scores, particularly for EA3

and SCZ in the EUR-AFR and EA4 in the EUR-EAS and

EUR-AFR population pair.

qeios.com doi.org/10.32388/HDJK5P 9

https://www.qeios.com/
https://doi.org/10.32388/HDJK5P


EUR - EAS EUR - AFR

Real Qst Random Qst Z; p Real Qst Random Qst Z score; p

EA3*  0.044 0.050 -0.10; .360 0.619 0.062 6.83; .001

EA4 * 0.456 0.045 7.60; .001 0.942 0.057 12.58; .001

EA sibling 0.001 0.027 -0.72; .830 0.071 0.052 0.29; .257 

Schizophrenia  0 0.050 -0.76; .911 0.568 0.088 4.73; .001

Height  0.192 0.057 1.92; .059 0.013 0.076 -0.67; .698

Sibs Height 0.091 0.048 0.72; 0.179 0.166 0.079 1.01; 0.151

Table 4. Qst pairwise values, computed using real and reshuf�ed beta weights.

*LD-clumping: R2= 0.1

Reliability of population-level polygenic scores

Table 5 reports the Cronbach's alpha of EA3, EA4,

schizophrenia, and height. The values of Cronbach's

alpha are reported for 33 populations for each genetic

trait. In this context, the higher the Cronbach's alpha,

the more reliable the PGS is across the 33 populations.

The table demonstrates that the reliability of

population-level PGS varies across different genetic

traits. EA3, EA4, and schizophrenia have relatively high

reliability, while height and DKedu have moderate to

low reliability. Within Family (WF) EA, on the other

hand, exhibits a negative relationship, warranting

further investigation.
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GWAS Cronbach’s Alpha (33 pops) # SNPs

EA3* 0.935 1695

EA4* 0.997 3734

Schizophrenia 0.835 342

Height 0.484 3772

Sibs EA -0.604** 115

DKedu 0.494 4

Table 5. Cronbach's Alpha for EA3, EA4, SCZ and Height

*LD clumping= R2 0.1
**p< 5*10 -̂5

Controlling for LD decay

We investigated the impact of LD decay on trans-ethnic

polygenic score differences for four different polygenic

scores (EA3, EA4, SCZ and height) across two

population pairs: Europeans (CEU) and Africans (YRI),

and Europeans (CEU) and East Asians (JPT). LD decay

was measured by calculating the correlation coef�cient

(R2) between CEU and YRI or CEU and JPT R2 values

across the GWAS SNPs. The average R2 value between

CEU and YRI was found to be between 0.59 and 0.78,

indicating the presence of moderate LD decay. LD decay

for EUR-EAS was lower, with R2 ranging from 0.72 to

0.75. The GVS (“genetic value score” or weighted allele

frequency) difference between CEU and YRI or CEU and

JPT was then computed by multiplying the effect allele

frequency by the GWAS beta. The correlation between

the GVS difference and the amount of LD decay is

reported in Table 6. The results are visualized in Figure

3. They show that LD decay did not signi�cantly impact

the trans-ethnic polygenic score difference for most of

the polygenic scores and population pairs. However, for

the EUR-AFR EA4 and EUR-EAS EA4 and height EUR-

EAS pairs, we observed a signi�cant negative

correlation between the GVS difference and the amount

of LD decay. A negative correlation between GVS

difference and lack of LD decay implies that LD decay is

in�ating the European PGS relative to the other

population, as SNPs with lower LD decay have smaller

PGS differences.

These �ndings suggest that the impact of LD decay on

trans-ethnic polygenic score differences may vary

across different polygenic scores and population pairs.
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r* r x GVS difference p

EUR-AFR EA3 0.59 0.02 0.47

EUR-EAS EA3 0.72 -0.0001 0.37

EUR-AFR EA4 0.588 -0.059 0.005

EUR-EAS EA4 0.716 -0.083 0.002

EUR-AFR Height 0.628 0.016 0.385

EUR-EAS Height 0.75 -0.046 0.016

EUR-AFR SCZ 0.594 -0.015 0.8

EUR-EAS SCZ 0.725 -0.104 0.074

Table 6. LD decay and correlation with GVS difference.

*Average Pearson’s r correlation coef�cient between the

CEU and other population (YRI or JPT) R2 values across the

GWAS SNPs

Figure 3. Correlation between LD Decay and GVS

difference

Selecting low LDD SNPs

To select SNPs with low LD decay for the EUR-AFR and

EUR-EAS pairs, a threshold of r = 0.8 was chosen and

applied separately to each population pair. Because LD

decay patterns vary across population pairs, different

SNPs will belong to the low LD group in each pair of

populations. Hence retaining a single set of SNPs

(corresponding to the intersection of the different sets)

would result in a much smaller number of SNPs,

reducing reliability. Cohen’s d values for the group

differences in polygenic scores were compared to those

for the full set of SNPs and are reported in Table 7.
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Cohen’s d raw Cohen’s d LDD adjusted

EUR-AFR EA3 3.17 1.05

EUR-EAS EA3 -1.12 -1.45

EUR-AFR EA4 10.12 2.2

EUR-EAS EA4 1.55 -0.5

EUR-AFR height 0.09 0.81

EUR-EAS height 1.45 0.42

Table 7.

Qx test

The Qx test (Berg and Coop, 2014) was carried out on

EA3, SCZ, the sibship EA and height PGS. EA4 was

omitted from the analysis because it was found to be

strongly biased by differential LD-decay. The values of

the Qx for the GWAS effect sizes and the SNPs with

randomly �ipped effect sizes are shown in table 8.

There is evidence for overdispersion of EA3 and Height

polygenic scores (p= 0.001 and 0.035, respectively) but

not for the sibship-derived EA PGS.
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Qx Qx neutral p

EA3 52.82 4.63 0.001

EA sibling 3.35 3.84 0.490

Schizophrenia 14.08 5.14 0.027

Height 13.31 5.08 0.035

Height sibling 10.38 4.81 0.071

Table 8. Qx test results

Correlation with phenotypic means

The correlations between the average

cognitive/educational polygenic scores and average

population IQ were 0.87, 0.78 for EA3 and EA4,

respectively (Figures 5,6).

Figure 5. Correlation between average IQ and EA3

Figure 6. Correlation between average IQ and EA4

As a measure of discriminant validity, we correlated the

height PGS to average IQ, obtaining a correlation of

circa 0 (Figure 7).
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Figure 7. Correlation between average IQ and height

polygenic scores

Conversely, the correlation between the Height PGS and

average height was.74 (Figure 8).

Figure 8. Correlation between average height and

height polygenic score

To test the discriminant validity of the cognitive PGS, it

was correlated with average population height, yielding

positive correlations of 0.54 and 0.51 for EA3 and EA4.

Both EA3 and EA4 were correlated to absolute latitude (r

= 0.64 and 0.60, respectively). A multiple linear

regression was performed with average height as the

dependent variable and Height PGS + EA3 + Latitude as

predictors. The standardized betas were 0.62 and 0.44

for the Height and EA3 PGS, respectively (Table 10).
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Standardized Beta

(Intercept) 0.00 (0.08)

Height PGS 0.62*** (0.10)

EA3 0.44*** (0.12)

Latitude 0.08 (0.13)

R2 0.82 (N=29)

Table 10. Regression of average height on Height PGS, EA3 and Latitude.

All continuous predictors are mean-centered and scaled by 1

standard deviation. *** p < 0.001; ** p < 0.01; * p < 0.05.

These �ndings indicate that both the height and EA3

PGS are valid predictors of average height.

Both EA3 and latitude were signi�cant predictors of

average IQ (Table 11).
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Standardized Beta (S.E.)

(Intercept) 0.00 (0.08)

EA3 0.73*** (0.11)

Latitude 0.26* (0.11)

R2 0.83 (N=27)

Table 11. Regression of average IQ on EA3 and latitude.

All continuous predictors are mean-centered and scaled

by 1 standard deviation. *** p < 0.001; ** p < 0.01; * p <

0.05.

Replication: School performance GWAS (2023)

The scholastic performance PGS (DKedu) was strongly

correlated to EA3 and EA4 (Figure 9).

Figure 9. Heatmap of cognitive PGS

Partial PGS

Partial polygenic scores were computed for the three

local ancestry components (Amerindian, African,

European) of the Admixed American/Latino population

in gnomAD. This ethnic group is extremely

heterogeneous, consisting of 5% of individuals who

derive their genetic ancestry primarily from a single

continental population, 60% from two continental

populations, and 35% with three continental

populations well-represented within their genome. The

allele frequencies for the three local ancestry groups

were made available by gnomAD in a VCF �le.

(https://gnomad.broadinstitute.org/news/2021-12-local-

ancestry-inference-for-latino-admixed-american-

samples-in-gnomad/).

The partial and full PGS are very similar (Figure 10). The

partial AFR PGS is lower than the full PGS because the

latter is computed using the African/African American

sample in the gnomAD dataset, which is mixed with

Europeans, whereas the local ancestry is “purely”

African.
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Figure 10. Partial and full polygenic scores in the gnomAD Latino population.

Discussion

Traditional tests of population genetic differentiation

based on individual loci (Fst enrichment test) offered

mixed evidence for over-differentiation in allele

frequencies (Tables 2 and 3, Figure 2). For the global test

comprising four superpopulations, EA3, the test

attained signi�cance only without LD clumping and

with LD clumping using a threshold of R2 = 0.1. The

results became non-signi�cant with a stricter LD

threshold of 0.01. Conversely, there was evidence of

population under-differentiation for EA4 because the

GWAS Fst values were signi�cantly lower than the

average Fst of the random SNPs. On the other hand, SCZ

and height had signi�cantly higher Fst than the average

Fst of random SNPs.

Tests of polygenic score differentiation such as Qst in

contrast yielded signi�cant results for the cognitive

traits but not for height (�gure 1, table 2, 4). Qst values

of polygenic scores were signi�cantly higher than those

obtained from reshuf�ing the effect alleles.

Qst indicates the proportion of phenotypic variance

accounted for by additive genetic components between

populations to the total variance. Qst values ranged

from 0.12 for height to 0.58 for EA3 and 0.91 for EA4,

indicating that a substantial proportion of variation in

polygenic scores is found between populations. More

importantly, Fst underestimates the amount of

phenotypic differentiation due to additive genetic

effects, because it is a single-gene test that does not

take into account the covariance of allelic effects

between populations, which can cause large differences

in phenotypic means even with low Fst values. Kremer

and Le Corre (2012) showed that the genetic

differentiation at the level of individual loci (Fst) does

not necessarily correspond to the genetic

differentiation underlying phenotypic traits (Qst). This

is because Qst considers the additive genetic variance

between populations, while Fst only measures the allele

frequency differences.

Consequently, Bird's assumption (Bird, 2021) that the

Fst value estimated from GWAS-identi�ed SNPs should

equal the phenotypic variance if all between-group

variation is due to additive genetic effects is

theoretically �awed. His oversight when accounting for

cross-population LD leads him to equate phenotypic

(IQ) group differences with Fst, and to conclude that

genetic differentiation cannot explain between-group

variance in IQ scores because the Fst value is much
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lower than the phenotypic Fst (Qst) calculated using his

equation 2.

Bird calculated phenotypic Fst values ranging from 0.51

to 0.6, based on an estimated EUR-AFR difference of

30.8 IQ points and h2= 0.35 or 0.5 and observed that

these are much higher than the EUR-AFR actual Fst

(0.11), which would instead translate to a 4.7 - 8.5 IQ

points EUR-AFR difference.

In fact, as shown in the introduction, Qst (erroneously

named “phenotypic Fst” by Bird) is often much higher

than Fst as shown by mathematical modeling (Kremer

and Le Corre, 2013) and empirical results (Berg and

Coop, 2014). The equivalence between Qst and Fst (Qst =

Fst) is expected under neutrality, and higher values of

Qst (Qst > Fst) indicate divergent selection (Leinonen et

al., 2013).

Bird’s failure to acknowledge the difference between

Qst and Fst leads him to expect Qst = Fst and to discard

deviations from this equivalence as due to

environmental factors or erroneous estimates of

average IQ (Bird, 2021).

We derived a Qst value of 0.61 for EA3 concerning the

EUR-AFR difference, which aligns with Bird's estimate

of Qst derived from phenotypic IQ (erroneously

misinterpreted as Fst by Bird) of 0.6. Indeed, Pst

(“pseudo Qst” or the phenotypic equivalent of Qst) = Qst

when environmental variance is zero (Saether et al.,

2007).

Divergent selection often occurs in two phases: initially

capturing advantageous allelic associations at various

loci in distinct populations, followed by targeting

changes in allelic frequencies. This supports the idea

that allelic associations contribute to rapid genetic

divergence between populations more effectively than

changes in allelic frequencies. The disparity between

Qst and Fst becomes more pronounced in traits

governed by a large number of loci experiencing strong

divergent selection (Kremer & Le Corre, 2012), and this

effect is expected to be signi�cant for traits such as

educational attainment, schizophrenia, and height. This

in turn reinforces the �ndings of Berg and Coop (2014)

that the power to detect population differentiation in

polygenic scores stems almost entirely from the LD-like

component, and the differentiation at the individual

loci (i.e. Fst) has very little impact. Indeed, the Qst

values were much higher than the Fst values for the

neutral alleles, with Qst/Fst ratios of 6, 10 and 4 for EA3,

EA4 and SCZ respectively (Table 2). Phenotypic traits

with Qst signi�cantly larger than the Fst estimated

from neutral markers are considered as being under

local adaptation, whereas Qst = Fst is the expectation

under neutrality (Leinonen et al., 2013). Moreover, Qst

was much higher than Fst estimated from GWAS SNPs.

This “decoupling” is caused by the allelic covariance

component (Kremer and Le Corre, 2012; Berg and Coop,

2014).

In fact, the polygenic selection test carried out by Bird

(2021) that compared the squared difference of

polygenic scores to a null distribution, yielded highly

signi�cant results, showing a large EUR-AFR

divergence. The same test run using within-family

effect sizes failed to reach statistical signi�cance.

However, this is likely due to the small sample size

employed in within-family GWAS, much smaller than

the population GWAS (N = 55K vs 1 and 3 million for

EA3 and EA4, respectively).

Remarkably, none of the within-family SNPs reached

statistical signi�cance (after correction for multiple

testing) and only 15 SNPs passed the p< 5*10 -̂6 �lter

after clumping with LD < 0.1. The null effect of within-

family SNPs was evident both from the Fst enrichment

test (Table 2) and the tests of polygenic score

overdispersion such as Qst and Qx (Tables 4 and 5,

respectively). This lack of validity was corroborated by

the negative Cronbach's Alpha values (Table 6).

However, the signi�cant overdispersion of education-

related polygenic scores derived from the traditional

between-family GWAS (Lee et al., 2018) was con�rmed

by the Qx test, which achieved values much higher than

the null expectation (table 5). The Qx values for the

height PGS also barely exceeded random expectations

(p = 0.035).

SCZ had Qst values signi�cantly higher than chance

expectation (Qst = 0.57), but this was restricted to the

EUR-AFR difference, with no differentiation between

EUR-EAS (Table 4). This replicates earlier �ndings of a

strong association between schizophrenia PGS and

African ancestry (Curtis, 2018). The mean EUR-AFR

difference was 10 times as high as the mean difference

between European schizophrenia cases and controls.

Although there were cross-population differences in LD

patterns, they did not signi�cantly affect most of the

polygenic score differences (Table 7). Nonetheless, LD

decay did cause the European mean to be in�ated

compared to Africans and East Asians (Table 8). This

was evident in the signi�cant negative correlation

between the GVS difference and the amount of LD decay

(Figure 4). A similar effect was observed for the height

PGS for the EUR-EAS difference. Moreover, when only

the SNPs with low LD differences (r > 0.8) were selected,

East Asians had higher EA4 than Europeans (Cohen´s

d= -0.5 vs 1.55), and the gap in the height PGS was
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reduced (d = 0.42 vs 1.45). Controlling for LD decay also

decreased the EUR-AFR gap in EA4, with the value of

Cohen’s d decreasing from 10 to 2 and in EA3 from 3.17

to 1.05. It is also likely that the extremely high EA4

global Qst value (0.91) was in�ated by LD decay.

In all cases except for the height EUR-AFR difference,

the bias due to varying LD patterns favored the

European population. This bias results from the

frequency distribution of non-causal SNPs. Although

exploring the origins of this bias is beyond the scope of

this study, it could be explored in future research.

The partial polygenic scores calculated using the

admixed Latino population revealed a similar pattern to

those computed using relatively admixed individuals

from gnomAD and 1KG (Figure 10). The low score

obtained by the Amerindian genetic component

replicated earlier results by Piffer (2013), who observed

a discrepancy between the relatively low genetic

distance of Native American from East Asians and the

large gap in polygenic scores (Piffer, 2013). This �nding

is supported by the results of admixture analyses of

different American ethnic groups, which found that

Amerindian ancestry is about equally negatively

associated as African ancestry with general cognitive

ability among African, Hispanic, and other American

subsamples (Fuerst, Hu and Connor, 2021).

There was a strong correlation between the new

polygenic score for educational attainment (EA4) and

the old (EA3). However, the former had a weaker

correlation with IQ (r = 0.78 vs 0.87) because it had a

strong European bias caused by differences in LD

patterns.

Remarkably, a new polygenic score of school grades

showing strong genetic correlations with educational

attainment  (rg = 0.90) and intelligence  (rg = 0.80)

(Rajagopal et al., 2023) was highly correlated to EA3 and

EA4 (r = 0.91 and 0.76, respectively), replicating the

cross-population validity of education PGS (Piffer,

2021).

The EA3 and EA4 PGS were both correlated to latitude

at r = 0.6. A regression model showed that both EA3 and

latitude were signi�cant predictors of average IQ (Table

11). This suggests that higher latitude may confer an

advantage in cognitive performance via environmental

factors, such as limiting the detrimental effects of heat

(Piil et al., 2020).

On the other hand, both EA3 and the height PGS

predicted average height (Table 10). This suggests that

cognitive abilities have an impact on average height by

improving economic conditions.

Finally, we introduced Cronbach’s alpha (a measure

borrowed from psychometrics) to assess the reliability

of population polygenic scores. In psychometrics, tests

are supposed to gauge the same underlying construct

(like anxiety, depression, intelligence, and so on). If the

test is reliable, then we would expect all the items on

the test to correlate highly with each other – since they

all aim to measure the same thing. Cronbach's alpha

quanti�es the degree of intercorrelation among test

items. It ranges from 0 to 1. A higher Cronbach's alpha –

generally, above 0.7 – indicates good internal

consistency, meaning the items on the test are all

measuring the same underlying construct.

When applied to population-level polygenic scores, the

strength of the coef�cient depends on the magnitude of

cross-population LD (“covariance of allelic effects”) and

the number of SNPs. However, instead of the underlying

construct, it is the divergent selection pressure that

causes the inter-correlation between the items (i.e.

frequency of the GWAS effect allele weighted by the

effect size).

In summary, this study investigated the relationship

between genetic differentiation in various traits, such

as educational attainment (EA3 and EA4), height, and

schizophrenia, using traditional Fst enrichment tests

and polygenic score differentiation tests such as Qst.

The results revealed mixed evidence for over-

differentiation in allele frequencies using Fst tests,

while Qst tests yielded signi�cant results for cognitive

traits but not for height. The study also highlighted that

Fst underestimates the amount of phenotypic

differentiation due to additive genetic effects, as it does

not account for the covariance of allelic effects between

populations. This �nding calls into question Bird's

(2021) assumption that Fst should equal the phenotypic

variance if all between-group variation is due to

additive genetic effects.

The study's �ndings emphasize the importance of

considering both Fst and Qst values in assessing

population genetic differentiation, as well as the need to

account for the covariance of allelic effects between

populations when interpreting results. The results also

demonstrate that allelic associations contribute to rapid

genetic divergence between populations more

effectively than changes in allele frequencies. This

phenomenon is particularly pronounced in traits

governed by a large number of loci experiencing strong

divergent selection, such as educational attainment,

schizophrenia, and height.

The results of the selection tests are greatly affected by

the Genome-Wide Association Studies (GWAS) used to

derive polygenic scores. This in�uence can be discerned
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from the disparities observed when comparing

different versions of these studies, such as between EA3

and EA4, or when contrasting GWAS based on sibling

data versus those relying on broader population data.

However, it is currently unfeasible to account for all

possible sources of bias and inaccuracies when

estimating these polygenic scores on a population-wide

level. For instance, potential sources of bias might stem

from the lack of representation of diverse populations

in the GWAS databases, which primarily contain data

from people of European ancestry. Another source of

error can be the complex nature of many traits that are

in�uenced by a multitude of genes interacting in ways

that we do not fully understand yet.

Moreover, population-based GWAS results are

confounded by population strati�cation, assortative

mating and indirect genetic effects. Within-family

genetic association estimates are relatively free from

these sources of biases, but the studies published so far

rely on small sample sizes that lack the power to detect

meaningful associations. For example, the sibship EA

and Height GWAS relied on sample sizes of 150K and

129K individuals (Howe et al., 2022), respectively, much

smaller than the population based GWAS sample sizes

of 3 and 5 million individuals (Okbay et al., 2022; Yengo

et al., 2022). This results in few or no GWAS-signi�cant

SNPs, and the lack of GWAS signi�cant SNPs affects

between population genetic estimates more strongly

than within-population genomic prediction.

Therefore, the �ndings drawn from these tests should

be viewed as provisional and subject to alteration. This

is because new GWAS, incorporating more diverse

population samples and using more advanced

methodologies, will continue to be conducted. As we

re�ne these techniques and broaden the scope of our

research, our understanding of polygenic scores and

their implications will evolve, and this will likely

change the outcomes of the selection tests.

Supplementary Figures

Figure 1a. EA3 superpopulations PGS

Figure 1b. EA4 superpopulations PGS
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Figure 2s. Within family EA superpopulations PGS

Figure 3s. SCZ superpopulations PGS

Figure 4s. Height superpopulations PGS

Figure 5s. Sibship height superpopulations PGS
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