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Animation has gained signi�cant interest in the recent �lm and TV industry. Despite the success of

advanced video generation models like Sora, Kling, and CogVideoX in generating natural videos,

they lack the same e�ectiveness in handling animation videos. Evaluating animation video

generation is also a great challenge due to its unique artist styles, violating the laws of physics and

exaggerated motions. In this paper, we present a comprehensive system, AniSora, designed for

animation video generation, which includes a data processing pipeline, a controllable generation

model, and an evaluation dataset. Supported by the data processing pipeline with over 10M high-

quality data, the generation model incorporates a spatiotemporal mask module to facilitate key

animation production functions such as image-to-video generation, frame interpolation, and

localized image-guided animation. We also collect an evaluation benchmark of 948 various

animation videos, the evaluation on VBench and human double-blind test demonstrates consistency

in character and motion, achieving state-of-the-art results in animation video generation. Our

evaluation benchmark will be publicly available at https://github.com/bilibili/Index-anisora.

Yudong Jiang, Baohan Xu, and Siqian Yang equally contributed to this work.

1. Introduction

The animation industry has seen signi�cant growth in recent years, expanding its in�uence across

entertainment, education, and even marketing. As demand for animation content rises, the need for

e�cient production processes is also growing quickly, particularly in animation work�ows.

Traditionally, creating high-quality animation has required extensive manual e�ort for tasks like
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creating storyboards, generating keyframes, and inbetweening, making the process labor-intensive

and time-consuming. Previous e�orts[1][2]  to incorporate computer vision techniques have assisted

animators in generating inbetween frames for animation. However, these methods often show

e�ectiveness only within certain artistic styles, limiting their applicability to the varied demands of

modern animations.

With recent advancements in video generation, there has been notable progress in generating high-

quality videos across various domains. Inspired by Generative Adversarial Networks[3], Variational

Autoencoders[4], and, more recently, transformer-based architectures[5][6], the �eld has seen

remarkable improvements in both e�ciency and output quality. However, most video generation

methods are trained and evaluated on general-purpose datasets, typically featuring natural scenes or

real-world objects[7][8]. The domain of animation video generation, which plays an important role

ranging from entertainment to education, has received relatively little attention. Animation videos

often rely on non-photorealistic elements, exaggerated expressions, and non-realistic motion,

presenting unique challenges that current methods do not address.

In addition to the generation challenges, the evaluation of video generation is also inherently

complex. Evaluating video generation quality requires assessing not only the visual �delity of each

frame but also temporal consistency, coherence, and smoothness across frames[9]. This challenge

intensi�es in animation, where unique artistic styles must remain consistent despite exaggerated

motions and transformations. Progress in this �eld demands e�ective evaluation datasets tailored to

animated video generation, enabling comprehensive testing of model adaptability to diverse styles,

scene changes, and complex motions, thereby driving model optimization and innovation.

In this paper, as shown in Fig.  1, a full system AniSora is presented for animation video generation.

First, our data processing pipeline o�ers over 10 million high-quality text-video pairs, forming the

foundation of our work. Secondly, we develop a uni�ed di�usion framework adapted for animation

video generation. Our framework leverages spatiotemporal masking to support a range of tasks,

including image-to-video generation, keyframe interpolation, and localized image-guided

animation. By integrating these functions, our system bridges the gap between keyframes to create

smooth transitions and enables dynamic control over speci�c regions, such as animating di�erent

characters speaking precisely. This enables a more e�cient creative process for both professional and

amateur animation creators. Fig.  2 demonstrates some examples generated by our model under

image-to-video conditions.

qeios.com doi.org/10.32388/HIFC4X 2

https://www.qeios.com/
https://doi.org/10.32388/HIFC4X


Figure 1. Overview. We propose AniSora, a comprehensive framework for animation video generation that

integrates a high-quality animation dataset, a spatiotemporal conditional model, and a specialized

animation video benchmark. The Data Processing Pipeline constructs a 10M video clip dataset derived

from 1M diverse long animation videos. The Video Generation model employs a spatiotemporal

conditional model, supporting various User Control and Interaction modes and enabling tasks such as

frame interpolation, localized guidance, and so on. The benchmark set comprises 948 ground-truth videos

spanning diverse styles, common motions, and both 2D and 3D animations. The prompt suite provides

standardized prompts and guiding conditions, complemented by Human Preference Evaluation and a

Quantitative Evaluation with eight objective metrics for assessing visual appearance and consistency.

AniSora surpasses SOTA models, establishing a new benchmark for animation video generation.
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Figure 2. Our method can generate high quality and high consistency in various kinds of

2D/3D animation videos. These examples are generated under image-to-video settings

conditioned on the leftmost frame. It is best viewed in color.

Additionally, we propose a benchmark dataset speci�cally designed for animation video evaluation.

Unlike existing evaluation datasets, which primarily focus on natural landscapes or real-world human

actions, our dataset addresses the unique requirements of animation video assessment. To achieve

this, we collected 948 animation videos across various categories and manually re�ned the prompts

associated with each video.

Our contributions can be summarized as follows:

We develop a comprehensive video processing system that signi�cantly enhances preprocessing

for video generation.

We propose a uni�ed framework designed for animation video generation with a spatiotemporal

mask module, enabling tasks such as image-to-video generation, frame interpolation, and

localized image-guided animation.

We release a benchmark dataset speci�cally for evaluating animation video generation.
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2. Related Work

2.1. Video generation models

With the development of di�usion models, signi�cant progress has been made in video generation

over the past two years. Some research including[7][8][10][11] have demonstrated promising results in

general video generation. Due to the limited available animation datasets, these models are not

particularly e�ective for animation video generation.

2.2. Animation video datasets

Video data is one of the most critical elements for generation models, particularly for domain-speci�c

data. However, obtaining high-quality animation video data is especially di�cult compared to natural

video datasets. Previous research has released some animation-related datasets, including ATD-

12K[1], AVC[12]. While these datasets, collected from various animation movies, are helpful for some

video interpolation and super-resolution tasks, they are limited by their small size. More recently,

Sakuga-42M[13]  has been proposed with 1.2M clips. It has improved compared to previous datasets

that only contained a few hundred clips. Nevertheless, this remains insu�cient for training video

generation models, in contrast to general video datasets like Panda-70M[14] and InternVid-200M[15].

Additionally, 80% of its clips are low-resolution and less than 2 seconds, which hampers the

generation of high-quality videos.

2.3. Evaluation of video generation models

Evaluating video generation models has remained a signi�cant challenge in the past few years.

Recently, Liu et al. have made great e�orts to generate a diverse and comprehensive list of 700

prompts using LLM[16]. Besides, Huang et al. have proposed vbench for general video generation[9].

The authors have released 16 evaluation dimensions and prompt suites. Moreover, there is a notable

absence of dedicated animation evaluation datasets, which limits the ability to benchmark models

speci�cally designed for this genre. In[17], the authors primarily have focused on the performance of

recent video generation models across various categories of datasets. Furthermore, they have also

investigated some vertical-domain models like pose controllable human generation, and audio-

driven animation.

qeios.com doi.org/10.32388/HIFC4X 5

https://www.qeios.com/
https://doi.org/10.32388/HIFC4X


While these works provide valuable insights into the capabilities of these models in generating diverse

video content, they don’t speci�cally address the unique requirements and challenges associated with

animation video generation.

3. Dataset

We build our animation dataset according to the observation that high quality text-video pairs are the

cornerstone of video generation, which is proved by recent researches[18]. In this section, we give a

detailed description of the construction of our animation dataset and the evaluation benchmark.

Animation Dataset Construction

We build a pipeline to get high-quality text-video pairs among   million raw animation videos. First of

all, we use scene detection[19] to divide raw animation videos into clips. Then, for each video clip, we

construct a �lter rule from four dimensions: text-cover region, optical �ow score, aesthetic score, and

number of frames. The �lter rule is gradually built up through the observations in model training. In

detail, the text-cover region score (obtained by[20]) can drop those clips with text overlay similar to

end credits. Optical �ow score[21]  prevents those clips with still images or quick �ashback scenes.

Aesthetic score[22]  is utilized to preserve clips with high artistic quality. Besides, we retain the video

clips whose duration is among  -   according to the number of the frames. After the four steps

mentioned above, about   clips (more than 10 million clips) can be retained into training step. In

addition, a few higher quality clips will be �nally �ltered from training set to further improve the

model’s performance. Speci�cally, during the training process, we adjust the proportions of speci�c

training data (e.g., talking and motion amplitude) according to the observed performance.

Benchmark Dataset Construction

Moreover, to compare the generation videos between our model and other recent researches directly,

we construct a benchmark dataset manually.   animation video clips are collected and labeled with

di�erent actions, e.g., talking, walking & running, eating, kissing, and so on. Among them, there are 

  2D animation clips and    3D clips. These action labels are summarized from more than 

  common actions with human annotation. Each label contains  -   video clips. The

corresponding text prompt is generated by Qwen-VL2[23]  at �rst, then is corrected manually to

guarantee the text-video alignment.

1

2s 20s

10%

948

857 91

100 10 30

qeios.com doi.org/10.32388/HIFC4X 6

https://www.qeios.com/
https://doi.org/10.32388/HIFC4X


4. Method

In this section, we present an e�ective approach for animation video generation using a di�usion

transformer architecture. Section  4.1 provides an overview of the foundational video di�usion

transformer model. In section  4.2, we introduce a spatiotemporal mask module that extends the

di�usion transformer model, enabling crucial animation production functions such as image-to-

video generation, frame interpolation, and localized image-guided animation within a uni�ed

framework. These enhancements are essential for professional animation production. Finally,

section 4.3 details the supervised �ne-tuning strategy employed on the animation dataset.

4.1. Dit-based Video Generation Model

We adopt a DiT-based[6] text-to-video di�usion model as the foundation model. As shown in Fig. 3,

the model leverages the three components to achieve coherent, high-resolution videos aligned with

text prompts.
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Figure 3. Method. This �gure illustrates the Masked Di�usion Transformer framework for animation

video generation, designed to support various spatiotemporal conditioning methods for precise and

�exible animation control. A 3D Causal VAE compresses spatial-temporal features into a latent

representation, generating the guide feature sequence  , while a reprojection network constructs the

mask sequence  . These components, combined with noise and prompt’s feature, serve as input to the

Di�usion Transformer. The transformer employs techniques such as patchify, 3D-RoPE embeddings, and

3D full attention to e�ectively capture and model complex spatial-temporal dependencies. This

framework enables seamless integration of features like keyframe interpolation, motion control, and mid-

frame extension, streamlining animation production and enhancing creative possibilities.

3D Casual VAE used in video generation frameworks[24][25]serves as a specialized encoder-decoder

architecture tailored for spatiotemporal data compression. This 3D VAE compresses videos across both

spatial and temporal dimensions, signi�cantly reducing the di�usion model computing. We follow the

approach of Yang et al.[8] to extract latent features, transforming the original video with dimensions 

 into a latent representation of shape  .

Patchify is a critical step for adapting vision tasks to transformer-based architectures[26]. Given an

input video of size  , it is split spatio into patches of size  , and temporal into

G

M

(W, H, T , 3) (W/8, H/8, T /4, 16)

T × H × W × C P × P
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size    resulting in    patches. This method enables e�cient high-

dimensional data processing by reducing complexity while retaining local spatial information.

3D Full Attention is a module we propose for spatial and temporal modeling, inspired by the

remarkable success of long-context training in large language models (LLMs)[27]  and foundation

video generation models[8][18].

Di�usion schedule applies Gaussian noise to an initial sample    over    steps, generating noisy

samples  , where    and  . The reverse process

predicts   by minimizing the mean squared error:

To stabilize training, we use the v-prediction loss[28], where    and the loss

becomes

This approach enhances stability and model performance.

4.2. Spatiotemporal Condition Model

Keyframe Interpolation creates smooth transitions between key-frames by generating intermediate

frames, or ”in-between.” It is an essential stage in professional animation production and represents

some of the most labor-intensive tasks for artists. We extend this concept to video generation

conditioned on one or multiple arbitrary frames placed at any position within a video sequence.

Motion Control, as a technique within our framework, addresses the limitations of text-based control

and enables precise control over motion regions. This approach enhances artists’ control over video

content, allowing them to express their creativity while signi�cantly reducing their workload.

4.2.1. Masked Di�usion Transformer Model

In the Masked Di�usion Transformer framework, we construct a guide feature sequence 

 by placing the VAE-encoded guide frame   at designated positions  , while

setting    for all other positions  . A corresponding mask sequence 

 is generated, where   for guide frame positions and   otherwise.

The mask is processed through a re-projection function, yielding an encoded representation 

Q (T /Q) × (H/P ) × (W/P ) × C

x0 T

= + ϵxt αt
−−√ x0 1 − αt

− −−−−
√ = (1 − )αt ∏t

i=1 βi ϵ ∼ N (0, I)

ϵ

= [∥ϵ − ( , t) ] .Ldiffusion E ,ϵ,tx0 ϵθ xt ∥2
2

v = − ϵ1 − αt
− −−−−

√ x0 αt
−−√

= [∥v − ( , t) ] .Lv−prediction E ,v,tx0 vθ xt ∥2
2

G = { , , … , }G1 G2 Gn Fpi
pi

= 0Gj j ≠ pi

M = { , , … , }M1 M2 Mn = 1Mpi
= 0Mj
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. The �nal input to the Di�usion Transformer is the concatenation of noise, encoded mask,

prompt’s T5 feature, and guide sequence along the channel dimension:

This setup integrates position-speci�c guidance and mask encoding, enhancing the model’s

conditioned generation capabilities.

4.2.2. Motion Area Condition

This framework can also support spatial motion area conditions inspired by Dai et.al[29]. Given the

image condition  , and motion area condition is represented by mask  , the same shape with  .

Motion area in   is labeled 1, other place is set to 0. As equation 1 in 4.2.1, for guide frame position 

, set  . The data processing and training pipeline can be summarized as follows:

Constructing video-mask pairs, we �rst construct paired training data consisting of videos and their

corresponding masks. Using a foreground detector by Kim et.al[30], we detect the foreground region in

the �rst frame of the video. This region is then tracked across subsequent frames to generate a

foreground mask for each frame. Union of foreground masks, the per-frame foreground masks are

combined to create a uni�ed mask  , representing the union of all foreground regions across the

video. Video latent post-processing, for the video latent representation  , non-moving regions are

set to the latent features of the guide image, ensuring static areas adhere to the guide. LoRA-based

conditional training, we train the conditional guidance model using Low-Rank Adaptation (LoRA)

with a parameter size of 0.27B. This approach signi�cantly reduces computational requirements while

enabling e�cient model training.

4.3. Supervised Fine-Tuning

We initialize our model with the pre-trained weights of CogVideoX, which was trained on 35 million

diverse video clips. Subsequently, we perform full-parameter supervised �ne-tuning (SFT) on a

custom animation training dataset to adapt the model speci�cally for animation tasks.

Weak to Strong

Our video generation model adopts a weak-to-strong training strategy to progressively enhance its

learning capabilities across varying resolutions and frame rates. Initially, the model is trained on 480P

videos at 8fps for 3 epochs, allowing it to capture basic spatiotemporal dynamics at a lower frame rate.

Reproj(M)

X = Concat(Nois , Reproj(M), G, T 5)et (1)

Fpi
MF Fpi

MF

pi =Mpi
MF

MF

z0
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Following this, the model undergoes training on 480P videos at 16fps for an additional 1.9 epochs,

enabling it to re�ne its temporal consistency and adapt to higher frame rates. Finally, the model is

�ne-tuned on 720P videos at 16fps for 2.3 epochs, leveraging the previously learned features to

generate high-resolution, temporally coherent video outputs. Additionally, we applied stricter

�ltering as in section3, producing a 1M ultra high-quality dataset for �nal-stage �ne-tuning,

signi�cantly boosting high-resolution video quality.

Removing Generated Subtitles

The presence of a signi�cant number of videos with subtitles and platform watermarks in our training

data led to the model occasionally generating such artifacts in its outputs. To mitigate this issue, we

performed supervised �ne-tuning using a curated dataset of videos entirely free of subtitles and

watermarks. This dataset, consisting of 790k video clips, was constructed through proportional

cropping of videos containing subtitles and the selection of clean, subtitle-free videos. Full-parameter

�ne-tuning was then applied to the model, and after 5.5k iterations, we observed that the model

e�ectively eliminated the generation of subtitles and watermarks without compromising its overall

performance.

Temporal Multi-Resolution Training

Given the scarcity of high-quality animation data, we employ a mixed training strategy using video

clips of varying durations to maximize data utilization. Speci�cally, a variable-length training

approach is adopted, with training video durations ranging from 2 to 8 seconds. This strategy enables

our model to generate 720p video clips with �exible lengths between 2 and 8 seconds.

Multi-Task Learning

Compared to the physically consistent motion patterns in the real world, animation styles, and motion

dynamics can vary signi�cantly across di�erent works. This domain gap between datasets often leads

to substantial quality di�erences in videos generated from guide frames with di�erent artistic styles.

We incorporate image generation into a multi-task training framework to improve the model’s

generalization across diverse art styles. Experimental results demonstrate that this approach

e�ectively reduces the quality gap in video generation caused by stylistic di�erences in guide frames.
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Mask Strategy

During training, we unmask the �rst, last, and other frames obtained through uniform sampling with

a 50% probability. This strategy equips the model with the ability to handle arbitrary guidance,

enabling it to perform tasks such as in-betweening, �rst-frame continuation, and arbitrary frame

guidance, as discussed in Section 4.2.1.

5. Experiment

5.1. Benchmark Evaluation

In this section, we give both objective and human evaluation results of our benchmark.

Automated Evaluation

To obtain the objective results, we choose several dimensions in VBench[9], e.g., motion smoothness,

aesthetic quality, imaging quality, subject consistency, I2V subject consistency, I2V background

consistency, and overall consistency. The former three metrics evaluate the visual quality, while the

latter four re�ect the degree of consistency. Especially, in VBench, overall consistency evaluates the

text-video consistency, since they use ViCLIP[15]  as the baseline model. In addition, we utilize a

motion amplitude model, which is based on ActionCLIP[31] framework to evaluate the motion score of

the generation clips. In detail, About   million animation video clips and their corresponding motion

captions are collected into   degrees of movement amplitude (from stillness to signi�cant motion) to

�netune the action model. Finally, the motion score is obtained from the similarity score between the

designed motion prompt and the participant video.

where    denotes the �netuning action model.    represents the generation video, and 

 denotes the designed motion prompt.

  recent I2V investigations are involved into our evaluation: Open-sora-V1.2[10], Open-sora-plan-

V1.3[11], Cogvideox-5B-V1[8], Vidu[32], Minimax[33] and AniSora(ours).

Tab. 1 gives the automated results from    metrics. We observe that our method performs well on

subject consistency and motion smoothness, and closely on other   dimensions except motion score.

These mainly because we conduct a thorough assessment of the balance between generation quality

10

6

= cos(MCLIP (V ), MCLIP ( )),Smotion Tm (2)

MCLIP V

Tm

6

8

5
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and motion magnitude, and �nd most generation clips with big motion results in distortion or

unnatural segments. It is worth mentioning that the automated scores of AniSora are similar to those

of GT, and the visual performance can refer to Fig. 2. Furthermore, the automated scores from VBench

show the room for improvement across several dimensions, and we will provide our improved metrics

soon.

Method

Appearance Consistency

Motion Motion Aesthetic Imaging I2V I2V Overall Subject

Smoothness Score Quality Quality Subject Background Consistency Consistency

Opensora-

Plan(V1.3)
99.13 76.45 53.21 65.11 93.53 94.71 21.67 88.86

Opensora(V1.2) 98.78 73.62 54.30 68.44 93.15 91.09 22.68 87.71

Vidu 97.71 77.51 53.68 69.23 92.25 93.06 20.87 88.27

Cogvideo(5B-

V1)
97.67 71.47 54.87 68.16 90.68 91.79 21.87 90.29

MiniMax 99.20 66.53 54.66 71.67 95.95 95.42 21.82 93.62

AniSora 99.34 45.59 54.31 70.58 97.52 95.04 21.15 96.99

AniSora-K 99.12 59.49 53.76 68.68 95.13 93.36 21.13 94.61

AniSora-I 99.31 54.96 54.67 68.98 94.16 92.38 20.47 95.75

GT 98.72 56.05 52.70 70.50 96.02 95.03 21.29 94.37

Table 1. Automated Performance Comparison of Di�erent Methods. (Note that AniSora-K denotes the

results with keyframe interpolation, and AniSora-I denotes the interpolated average results of AniSora)

Human Evaluation

To comprehensively evaluate our model, we introduce a brief and clear human blind testing for 

  dimensions: visual smoothness, visual motion, visual appeal, text-video, image-video, and

character consistency. Correspondingly, visual smoothness, text-video, and character consistency are

6
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similar to motion smoothness, overall, and subject consistency, respectively. Moreover, image-video

consistency is equal to I2V subject and I2V background consistency, visual appeal is equal to aesthetic

quality and imaging quality, and visual motion is the same as the motion score mentioned in the

automated evaluation. In detail, each participant labeled   dimensions (from   to  , and   is the best)

without prior knowledge of the generation methods. Tab. 2 shows the human evaluation results in a

percentage format. We observe that Anisora outperforms the other methods across most dimensions;

however, there is still substantial room for improvement, particularly in text-video consistency. We

conducted a statistical analysis to evaluate the consistency of scores given by 12 raters across various

dimensions. The results indicate that the Pearson correlation coe�cients for individual dimensions

range from 0.5 to 0.6, with an overall correlation coe�cient of 0.56. This suggests that even human

evaluators exhibit signi�cant subjectivity and randomness when assessing the quality of generated

videos across di�erent dimensions. These �ndings highlight the importance of establishing

consistent and objective evaluation criteria for assessing video generation quality.

Method

Appearance Consistency

Visual Visual Visual Text-Video Image-Video Character

Smooth Motion Appeal Consistency Consistency Consistency

Opensora-Plan(V1.3) 38.1 38.92 47.88 55.82 43.52 34.72

Opensora(V1.2) 28.14 37.24 37.46 47.64 42.62 31.52

Vidu 58.78 47.9 65.48 60.8 56.5 54.26

CogVideoX(5B-V1) 46.64 49.3 56.06 68.82 56.36 48.88

MiniMax 65.98 57.08 71.56 80.38 67.88 65.82

AniSora(Ours) 71.68 51.06 74.36 71.56 78.38 75.14

Table 2. Human Evaluation Scores

6 1 5 5
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5.2. Spatiotemporal Mask module

Frame Interpolation

Tab.  1 presents the results of di�erent interpolation settings on our benchmark dataset (AniSora-K

and AniSora-I). Our evaluation process involved generating videos on our benchmark with various

guidance conditions sampled at equal proportions, which can refer to Fig.  3. We then compute the

average score of all samples, as well as speci�c statistical analysis for keyframe interpolation results.

The performance indicates that single-frame guidance achieves competitive results whether the

guiding frame is placed at the beginning, middle, or end of the frame sequence, which also

consistently outperforms other methods. Adding more guiding frames further improves both

character consistency and motion stability. We also observed from the motion score and smooth score

that our baseline model achieves a balance between motion range and consistency, while keyframe

guidance enables the model to produce animation videos with larger motion ranges and more realistic

motion. More samples can be found in supplementary materials.

As shown in Fig.  4, our uni�ed framework supports di�erent interpolation settings, enabling these

functions to meet the demands of professional animation production. We observe that more guiding

frames contribute to a more stable character identity and more precise actions align with creators.

Nonetheless, amateur creators can still obtain satisfactory results by using just the �rst or last frame.
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Figure 4. Illustration of di�erent interpolation strategies. The images highlighted in red indicate the

provided reference images.

Motion Area Condition

The evaluation of motion area condition is constructed based on our benchmark dataset. For each

initial frame, we performed saliency segmentation, followed by connected-component analysis to

generate bounding boxes for each instance. Then we manually �ltered the results to select high-

quality motion area masks, resulting in 200 samples. Following the experiment settings in[29], we

conducted the comparison of motion mask precision in Tab.  3. We also computed the score of

AnimateAnything on our selected 200 samples. The lower score is primarily due to �ickering and noise

appearing outside the motion mask area. The results demonstrate the e�ectiveness of our spatial

mask module in controlling movable regions. It is also noticeable that even without motion control,

our generation model trained for animation video still shows a certain level of control. This may be

due to the e�ective prompt-based guidance for the main subject, which aligns well with the de�ned

motion mask. Fig. 5 also illustrates several motion mask guidance examples.
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Method Motion Mask Precision

AnimateAnything[29] 0.6141

Ours - No Control 0.4989

Ours - Motion Mask 0.9604

Table 3. Comparison of motion mask precision

Figure 5. Examples of motion mask guidance. The �rst column shows the ref image, while the second

column displays the mask. Animation creators can produce videos with �ne-grained control over

characters and backgrounds, ensuring alignment with various storylines.

5.3. Animation Video Training

2D and 3D Animation

Analysis using QWEN2[23]  shows that 2D samples account for 85% of our dataset, yet 3D animation

generation quality consistently surpasses that of 2D. Benchmark evaluations in Tab.  4 con�rm 3D

animations demonstrate superior visual appearance and consistency, a phenomenon unique to
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animation training. We attribute this gap to the pre-trained model’s exposure to real-world video

data. Unlike 2D animations with diverse motion patterns, 3D animations rendered by physics-based

engines like Unreal Engine follow consistent physical laws, enabling better knowledge transfer during

SFT. Consequently, improving generalization on 2D animation data remains more challenging than on

3D or real-world data.

Dims 2D 3D All

Visual Smooth 70.23 73.48 71.68

Visual Motion 51.14 50.97 51.06

Visual Appeal 74.05 74.74 74.36

Text-Video Consistency 70.23 73.21 71.56

Image-Video Consistency 77.59 79.37 78.38

Character Consistency 75.64 74.52 75.14

Table 4. Human Evaluation Results between 2D and 3D Generation Clips

The Fig. 6 demonstrates some results of 2D and 3D animation generation. Artifacts are more prevalent

in 2D generation results, such as exaggerated deformations, more diverse character appearances, and

motions that break the physical rules. For instance, in the third row of 2D examples, tears appear to be

�oating in the air, making it more di�cult for the model to capture the dynamic details accurately. In

contrast, the motions rendered by the physics-based engines in 3D animations enable the model to

achieve more reasonable results.
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Figure 6. Comparison of 2D and 3D animation examples. The badcases in 2D animation are mainly due to

exaggerated deformations, diverse appearances, and motions that violate physical laws.

Multi-Task Learning

The diversity of anime styles presents a challenge for video generation. Although our model performs

well in most styles, unique styles may result in inconsistencies, particularly in character details. To

address this, we applied multi-task learning, combining image and video training to enhance the

model’s adaptability to diverse styles.

We evaluated multi-task training using a manga with a unique artistic style. About 270 illustrations

were used for the image generation task, while video training data remained the same as the baseline

model. Additional illustrations served as �rst-frame conditions during video generation. After 5k

training steps, as shown in Fig.  7, without incorporating images, the model struggles to fully

understand such styles, resulting in �aws in character detail generation. While with the help of a small

dataset of 270 images, the generated videos showed signi�cantly greater stability and improved visual

quality, particularly with highly distinctive guidance images. This approach e�ectively tailors

animations to speci�c characters and mitigates domain gaps caused by variations in artistic styles,

especially when high-quality animation data is limited.
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Figure 7. Comparison of results w/wo multi-task learning. The highlighted regions in red demonstrate

signi�cant improvements in stability and consistency after applying multi-task learning.

Low-resolution vs High-resolution

During the weak-to-strong training process, we observed that higher frame rates and resolutions

enhance stability in visual details. As illustrated in Fig.  8, at 480P, facial features exhibit noticeable

distortions, while at 720P, the model preserves both motion consistency and �ne details. The higher

resolution increases token representation for high-density areas, improving temporal consistency

and overall content quality.
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Figure 8. The �gure compares the generation performance of 480P and 720P videos,

highlighting that 720P achieves greater stability in the generation of details such as

the character’s facial features and hands.
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Figure 9. Comparison of our method with others using the �rst frame in the leftmost column as the

guiding condition. Existing methods often struggle with animation data, leading to issues such as

character identity shifts, unnatural dynamics, and motion blur.

6. Conclusion

In this paper, our proposed AniSora, a uni�ed framework provides a solution to overcoming the

challenges in animation video generation. Our data processing pipeline generates over 10M high-

quality training clips, providing a solid base for our model. Leveraging a spatiotemporal mask, the
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generation model can create videos based on diverse control conditions. Furthermore, our evaluation

benchmark demonstrates the e�ectiveness of our method in terms of character consistency and

motion smoothness. We hope that our research and evaluation dataset establish a new benchmark and

inspire further work in the animation industry.

Despite the promising results, some artifacts and �ickering issues are still present in our generated

animation videos. In the future, we aim to develop a comprehensive automated scoring system

speci�cally designed for animation video evaluation datasets, ensuring closer alignment with human

subjective perceptions. Additionally, we plan to expand the current model architecture to incorporate

guidance across multiple modalities, such as camera movements, trajectories, skeletal motions, and

audio. To tackle the challenge posed by the limited availability of high-quality animation data, we will

employ reinforcement learning techniques to further re�ne the model’s performance.
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