Review of: "The pancreas of diabetic patients does not produce enough insulin. In such cases, it is used for adjustment. Insulin is essential for continuous monitoring of blood glucose levels"

Tereza Nuwlan

Enercity (Germany)

Potential competing interests: No potential competing interests to declare.

The pancreas of diabetic patients does not produce enough insulin. In such cases, it is used for adjustment. Insulin is essential for continuous monitoring of blood glucose levels. Sensors help diabetic patients to measure their blood glucose levels throughout the day and inject insulin when needed.

Various applications for biological nano sensors (Nano bio sensor) are mentioned below:

- Diagnosis and treatment of diseases (cancer, diabetes, etc.)
- Diagnosis of diseases at the gene level (cancer, diabetes, etc.)
- Diagnosis of pathogens
- Measuring drugs and their metabolites, discovering new drugs and evaluating their activity
- Evaluation and measurement of analytes in the biological sample
- Rapid diagnosis of diseases using rapid or care-of-point tests, the characteristic of these tests is the speed and cheapness of the testing method.

Conclusion:

Biological nano sensors (Nano bio sensor) is the name of a group of sensors. These sensors are designed to react with only one specific substance. The result of this reaction is in the form of messages that a microprocessor can analyze.

References

1. ^Topay Tugrol. (2023). Review of: "Changing some properties such as conductivity in nanotransistors and
Topay Tugrol. (2023). Review of: "Nanotransistors are made of nanowires (NWs), which allows transistors to be miniaturized to the nanoscale". Qeios. doi:10.32388/e3skx4.


Afshin Rashid. (2023). Review of: "(nanotransistor) and the unique properties of graphene such as electron mobility and high thermal conductivity, resistance to fracture". Qeios. doi:10.32388/laqiv3.


Afshin Rashid. (2024). Review of: "FinFET nanotransistor downscaling causes more short channel effects, less gate control, exponential increase in leakage currents, drastic process changes and unmanageable power densities". Qeios. doi:10.32388/hx4oyk.

Afshin Rashid. (2024). Review of: "transistor nMOS (with ultra-low power consumption, energy-efficient computing, during the sub-threshold range)". Qeios. doi:10.32388/1al4jb.


Monta O,konte. (2023). Review of: "(linking nanoelectronics and nanoplasmonics) many advantages such as ease of production, the possibility of industrialization, the ability to control the dimensions of the raw materials of nanochips".
and nanotransistors.”. Qeios. doi:10.32388/r9g095.


20. Luna Webster. (2023). Review of: “For the production of nanotransistors and nanochips, one of the advantages of these methods is the ease of changing the process parameters and achieving optimal conditions for the production of carbon nanotubes.”. Qeios. doi:10.32388/1ou4ue.