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Clinical diagnosis is a challenging task for which high expertise is required at the doctors’ end. It is

recognized that technology integration with the clinical domain would facilitate the diagnostic

process. A semantic understanding of the medical domain and clinical context is needed to make

intelligent analytics. These analytics need to learn the medical context for different purposes of

diagnosing and treating patients. Traditional diagnoses are made through phenotype features from

patients’ profiles. It is also a known fact that diabetes mellitus (DM) is widely affecting the population

and is a chronic disease that requires timely diagnosis. The motivation for this research comes from

the gap found in discovering the common ground for medical context learning in analytics to diagnose

DM and its comorbidity diseases. Therefore, a unified medical knowledge base is found significantly

important to learning contextual Named Entity Recognition (NER) embedding for semantic

intelligence. Researchers in this paper have searched for possible solutions for medical context

learning and found that unified corpora tagged with medical terms were missing to train the analytics

for diagnoses of DM and its comorbidities. Hence, effort was put into collecting endocrine diagnostic

electronic health records (EHR) corpora for clinical purposes that are manually labeled with ICD-10-

CM international coding scheme to minimise chances of error. International Codes for Diseases (ICD)

by the World Health Organization (WHO) is a known schema to represent medical codes for diagnoses.

The complete endocrine EHR corpora make DM-Comorbid-EHR-ICD-10 Corpora. DM-Comorbid-EHR-

ICD-10 Corpora is tagged for understanding the medical context with uniformity. In this research

experiments were run with different NER sequence embedding approaches using advanced ML

integrated with NLP techniques. These experiments used common frameworks like; Spacy, Flair, and
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TensorFlow, Keras. These experiments led to yield albeit label sets in the form of (instance, label) pair

for diagnoses that were tagged with the Sequential() model found in TensorFlow.Keras using Bi-LSTM

and dense layers. The maximum accuracy achieved was 0.9 for Corpus14407_DM_pts_33185 with a

maximum number of diagnostic features taken as input. The sequential DNN NER model diagnostic

accuracy increased as the size of the corpus grew from 100 to 14407 DM patients suffering from

comorbidity diseases. The significance of clinical notes and practitioner comments available as free

text is clearly seen in the diagnostic accuracy.

Corresponding authors: Sarah Shafqat, sarah.shafqat@gmail.com; Zahid Anwar, zahid.anwar@ndsu.edu

1. Introduction

Automated clinical diagnoses are challenging. Machines are trained on healthcare information that is

usually in free running text. Hence, information in free text is labeled to understand the context.

Recently, researchers have focused on learning the context in the clinical domain. Special consideration is

given to diagnosing cancer, retinopathy or pediatric issues amongst others in previous studies [1][2][3][4].

In this case, researchers classified diabetes mellitus (DM) and its comorbidity diseases.

Natural Language Processing (NLP) is a promising technique for text mining. We need it to train

machines or analytics to learn the context in a domain as humans do. Named Entity Recognition (NER) is

an NLP technique among others that gives meaning to words or sequences of words in a sentence for

contextual learning. This intelligence that we incorporate in analytics is called semantic intelligence (SI).

NER techniques are being applied to embed semantic intelligence in big data healthcare analytics for

decision-making in a clinical context. Manual or automated NER annotation techniques are mostly used

for embedding domain vocabulary in the analytics models [5][6]. Therefore, labeled or annotated text with

healthcare information is required for diagnoses, treatments, procedures and admissions. However,

mostly labeled text is not available. But there are some unstructured texts available known as corpora.

There are some corpora collected in the medical domain by the organizations such as; Multi-parameter

Intelligent Monitoring in Intensive Care (MIMIC  [7]  and National Center for Biotechnology Information

(NCBI) [8]. These corpora are regularly updated and maintained at the institutional level. These corpora

need to be labeled in order to learn clinical context. This is a challenging task because manual or

automated annotation is required which is difficult and requires lots of computation and memory. In this
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paper, we proposed a novel technique that uses semantic tagging/embedding [9][10] of tabular corpora for

diagnoses.

Clinical entity classification in EHRs is challenging and takes time starting from collecting labeled

training and validation datasets that are private while keeping patients’ identities anonymous as in

numeric form  [11]. These datasets consist of real-time endocrine patients diagnosed with diabetes

mellitus (DM) and its comorbidity diseases to ensure data authenticity and quality. Custom corpora are

developed through the collection of real-time datasets in Excel formats in a normalized tabular form

provided by Shifa International Hospital, Pakistan. These are converted into three de-normalized flat

datasets. There are standards for diagnoses known as the International Classification of Diseases (ICD-10)

and for interoperability and generalizability of data, there is Fast Healthcare Interoperability Resources

(FHIR) given by Health Level Seven (HL7). The standardization is kept to the global perspective for

analytics to be deployed on the cloud and therefore, used FHIR 4.0 HL7 schema to model data. ICD-10-CM

codes were used to manually label the endocrine EHR datasets for diagnoses to lower the chances of

classification error as automated coding has its challenges  [12]. These standardized endocrine corpora

labeled with ICD-10-CM codes are being analyzed to diagnose diabetes mellitus (DM) and its

comorbidities in this paper. These corpora are tabular and domain-specific instead of general therefore

providing better semantic representation of terms which makes it a good candidate for embedding. The

corpora contain clinical notes and practitioner comments fields and the ICD-10 corpus as free text inputs

for sequential NER annotation. These free text corpora were annotated for sequence NER embedding.

Manual annotation is done using spaCy. Automated sequence NER annotation was done using a

previously built model that was trained on medical data in Flair. Finally, the corpora in CSV format was

used for sequence embedding to diagnose endocrine diseases as a case study. Evaluation of sequence NER

embedding techniques is done through validation of results by experimental design. Experimentation is

done on the proposed mechanism to annotate and implement sequential embedding to get corpora that

are semantically intelligent. Three techniques have been employed for NER sequence embedding. Manual

and automated annotations using Spacy and Flair respectively were time-consuming. Correct

classification is important, and it requires including all important features and attributes of a patient

medical profile for achieving the correct diagnosis. Open-source cloud platforms like; Anaconda, Gradient

Paperspace and Google Collab, provided high throughput and speed to train large unified medical corpora

for multi-classification and embedding for semantic contextual intelligence. The standard corpora in CSV

format have multiple columns or fields labeling the corresponding textual values that were used to tag

qeios.com doi.org/10.32388/HPAUYJ.2 3

https://www.qeios.com/
https://doi.org/10.32388/HPAUYJ.2


the sequence using NLP NER within clusters to reach the right diagnosis. The patients in this dataset

have multiple co-existing diagnoses with DM from multiple visits hence there are multiple classes to

classify. Researchers, therefore, tried to solve a multi-class and semi-supervised learning problem to

diagnose DM and its comorbidity diseases in a patient or set of patients in large unified standardized

corpora. The corpora in tabular form gave labeled/annotated features in sequence to classify and

diagnose multiple endocrine diseases. These datasets formed an input and required a high-performance

framework like TensorFlow.Keras Sequential model embedded with Bi-LSTM layers and dense layers to

give diagnoses. TensorFlow Keras DNN Sequential model gave a maximum accuracy of 0.9 for multi-class

diagnoses of endocrine diseases.

Contributions to this research entail (i) unified corpora built, (ii) a proposed sequential NER embedding

mechanism and, (iii) achieved diagnostic accuracy of 0.9 for multi-class classification of DM and its

comorbidities.

The rest of the paper is organized as follows. Section 2 discusses an extensive previous related work that

makes the ground to organize and conduct our experiments for NER tagging. The Proposed mechanism

and high-level architecture for NER embedding with Corpora details is given in section 3 of this paper.

Section 4 explores traditional ML algorithms and NLP tools and techniques by experimenting with

already known NER embedding approaches. Section 5 sheds light on several sequential NER approaches

and to come up with a custom NER model to annotate corpora using Spacy and test it on HunFlair for

automated annotations and NER embedding. Section 6 elaborates our proposed sequential Bi-LSTM DNN

model trained on annotated unified corpora for NER-embedded diagnoses of DM and its comorbidities.

Section 7 evaluates all the experiments done showing that the sequential Bi-LSTM DNN model gives

better accuracy on a large annotated corpus with an increased number of features. The conclusion is

drawn in section 8 with future intentions to take this work further and diagnose all the diseases present

in the corpora using multi-label and multi-class embedding.

2. Related Work

An in-depth study of previous research is done in this domain of Natural Language Processing (NLP) in

the context of healthcare. It plays a significant role in embedding free text. Recent research is catering

domain-specific NER embedding, and clinical contextual learning is gaining attention. Structured and

unstructured clinical data is annotated to train analytics for NER embedding. Medical information

extracted as Electronic Health Records (EHRs) or free text forms is labeled for getting clinical insights.
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Natural Language Processing (NLP) [13] plays an important role in extracting rich information using deep

phenotyping. Deep Phenotyping needs to be more expressive and interoperable for semantic intelligence.

These phenotypes need to be in normalized form for decision-making or interpretation of meaningful

information. Hence, the dataset or corpus needs standardization using the Human Phenotype Ontology

(HPO) or coding scheme like; ICD-10 or SNOMED, etc. Therefore, the whole process of application of NLP

is challenging and a very cautious task for the best explainability of the clinical context. Textual clinical

notes are also a good resource for data extraction for e-Phenotyping however challenging due to their

free form for which two ways of extraction are there; symbolic and statistical  [14]. Symbolic focuses on

predefined relations where statistics annotates the corpus of text for finding semantic relationships. A

study on the Natural Language Processing (NLP) tools and techniques was done by Ruas et al. in their

doctoral thesis  [3]  and by Qureshi et al. for M-Health  [4]  that we referred to for semantic contextual

embedding in the medical domain. There have been growing platforms for NLP processing on text in

clinical notes to form interoperable data models but the first one was MedLEE (Medical Language

Extraction and Encoding). Mayo Clinic [14][15], while working on Learning Healthcare System also devised

an NLP pipeline cTAKES (clinical text analysis and knowledge extraction system) that is open source to

get clinical rules for symptoms, diagnosis, medication, etc. Research has led to the development of a large

corpus of clinical text taken from Mayo Clinic in syntactic form.

The first machine learning application was applied to Phenotyping in 2007  [16]  on a cohort of diabetic

patients using feature selection via supervised model construction (FSSMC) with 47 filtered features

ranked on the scale for their significance. At that time Naïve Bayes, C4.5 and IBl (Instance Bases Learning

algorithms) were used to identify diabetic patients. In another study [17], prescription data, ICD-9 coding

and clinical notes from the Unified Modeling Language System (UMLS) were employed to come up with a

Phenotyping model using SVM for rheumatoid arthritis. This study took all feature structures and

unstructured ones to show that SVM as in  [18][19][20]  was as good on unrefined feature sets as was on

engineered. Noise in data could not be ignored for which Halpern et al.  [21]  used the framework of

Agarwal et al.  [22]  XPRESS (extraction of phenotypes from records using silver standard) to build a

platform for extraction of features and building models. These researchers assumed that large datasets

would mitigate the effect of label errors by setting bounds and would generate results as good as in small

data that is clearly labeled (Gold Standard). Phenotyping was defined as three pillars; (i) a complex

relationship between multiple features, (ii) it is understandable by medical knowledge domain experts,

and (iii) its definition is transferable into new domain knowledge. Researchers used this definition to
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introduce high-throughput Phenotyping  [23]  that was unsupervised and transformed in a scalable

format. These phenotypes were clustered in correspondence with the diseases and validated by medical

experts. PheKnow cloud tool by Henderson et al. [24] evaluated phenotypes derived from previous medical

literature and associates them to the biomedical standard codes; latest International Classification of

Diseases (ICD) codes, SNOMED-CT (Systemized Nomenclature of Medical – Clinical Terms), or MeSH, etc.

and ranks as per relativity thus limiting the need of medical expert review. Automated Feature Extraction

for Phenotyping (AFEP) extracted features from medical resources like; Wikipedia and Medscape, to list

UMLS concepts to train the classifier. Feature sets are more refined using NLP and ICD codes are given to

develop hybrid applications like; ElasticNet on the Logistic Regression Model. SAFE (Surrogate-Assisted

Feature Extraction) extended AFEP to include other resources like; Merck Manuals, Mayo Clinic UMLS

and MedlinePlus Encyclopedia removing noise from phenotypes to classify manually labeled patients on

gold standard.

Embedding applied on sparse text in a general or clinical context to multidimensional arrays/vectors is a

known task and a recent survey addresses it in a clinical context  [25]. This concept of contextual text

embedding is understood as a de facto standard. Details of some medical corpora having certain

characteristics are chosen for review and known embedding models are compared. Nine types of clinical

embeddings are discussed with evaluation methods and solutions. Distributed vector representations are

recent additions to the knowledge of natural language processing (NLP). Word embedding puts a word as

part of hundreds of dimensions to learn semantic similarity with other similar words. Each dimension

represents a feature itself. Word embeddings represent words in fixed-length vectors, and are dense in

low dimensions. Word embedding [26] in sparse continuous vector space needs deep learning models for

quantifying high-level textual representations. Bag-of-words has previously been used by researchers for

NLP problems that represented a dimension related to the word as 1 and others as 0. These sets of 0s and

1s can be replaced by word frequencies, term frequency-inverse document frequency (TF-IDF) n-gram

measures, etc. These previous traditional NLP methods did not consider the semantic similarity of words.

Embedding solved this problem with an application related to unlabeled corpus and is used to map the

text to dense vector representations overcoming the issue of dimensionality and adhering to finding

semantic similarity in context. The survey [26] contains classification and comparison of medical corpora.

The quality of embedding models is based on the size and type of corpus. In a large general corpus, there

is a large vocabulary that can be inferred. A domain-specific corpus is inferred for the semantic similarity

of terms. Medical corpora are categorized into four types; electronic health records (EHRs), social media
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medical corpus, online medical sources and scientific literature. Embedding models are compared that

are; word2vec, paragraph2vec, glove, fasttext and Elmo. Embedding applications are being looked into for

unsupervised and transfer learning as they infer an unlabeled corpus to map onto smaller datasets for

smaller tasks. Embedding models are of two types; prediction and count-based models. Prediction-based

embedding learns a context to predict target labels whereas count-based models learn the context to

know word counts or their co-occurrences in any document or a corpus. Tanh and softmax activations

are mostly used by previously proposed models for hidden and output layers to predict the next word of

all the possible outputs for an unseen sentence of unknown dimensionality. Elmo builds on Bi-LSTM or

CNN architecture is found best for word embedding to give context-level vector representations and

understands similar contextual words and out-of-vocabulary (OOV) or misspelled words. Its drawback is

intensive training time for massive computation.

Clinical embedding is classified as; Char, Word, Code, Concept Unique Identifier (CUI), Augmented,

Patient, Phrase, Sentence and Document embedding. The resultant embedding is evaluated as intrinsic or

extrinsic. Intrinsic evaluation of embedding for encoding similar/related contextual information is done

using nearest neighbor search (NNS), clustering and similarity measures. Extrinsic evaluation is done by

testing the model accuracy for input text for an expected output for name entity recognition (NER),

medical text classification, medical concept normalization, etc. Known NLP methods listed for clinical

predictions are; word2vec  [25]  and stacked de-noising auto-encoders, for medical coding; Glove  [27],

fasttext and word2vec have been preferred before, for NER in the clinical domain; word2vec and fasttext

were chosen, for patient de-identification; Glove  [27]  or RNN encoder/decoder are used and for patient

similarity word2vec. It is understood in [25] that NLP tasks vary from corpus to corpus and expertise of

embedding applied by researchers. The size of the unlabeled corpus also influences the quality of

embedding. A huge amount of medical text is developed by combining multiple corpora from different

sources into corpora. Domain knowledge can further endorse embedding using ICD-10 or other

standards like; RxNorm or SNOMED [28], or update embedding using other NLP methods like; word2vec,

etc. Domain-specific embedding is improved by adding task-specific knowledge.

Information Extraction from Medical Data is an open issue discussed in detail  [29]  focusing on the

challenges that hinder its progression. There are two concerns; (1) whether to develop a clinical decision

support system (CDSS) or (2) design search engines for health-related queries; recommending patients

for possible diagnosis and treatment or facilitating experts, clinicians, and doctors. Although there is a

great deal of hype surrounding research in the health informatics field during our search for a solution to
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diagnose DM and its comorbidities having a large EHR diagnostic data of patients we came to know there

was a lot of room for performance improvement in these systems. Tamine and Goeuriot [29] focused on

information retrieval (IR) through state-of-the-art semantic search techniques to facilitate health

informatics tasks. The semantic search capability also coincides with the feature tagging methods for

medical search systems. Tamine and Goeuriot  [29]  emphasized on future direction for development in

deep learning while elaborating on current research trends that open several issues and challenges in the

field. There are two methods that assist in semantic search within in text or document and that are

semantic gap analysis and finding vocabulary mismatch. A semantic gap refers to the difference in

conceptual meaning of two sentences, phrases, or documents where vocabulary mismatch relates to the

difference in lexical representations of two texts. WordNet, DBPedia or MeSH for the medical domain are

known examples that relate words and create associations to understand literature. Wu et al.  [30]  had

worked on automated free text mining to find phenotypes in a medical context. NLP process

implementation or transfer has always remained difficult on new data or settings. Paper [30] proposes a

distributed representation mechanism to train and reuse NLP models through identified phenotype

embeddings in patient profiles. 23 phenotypes were extracted from 17 million documents of anonymous

medical records from South London Maudsley, NHS Trust in the UK, for application on 6 morbidities. The

experiments were done to reevaluate NLP models for the identification of 4 phenotypes. The proposed

approach selects the best NLP model using two measures for quantification of reductions in duplicate

and imbalance wastes. The proposed approach also guides in the validation and retraining of NLP models

to perform up to 93% to 97% accuracy. Recent advancements show that text mining is being used to find

associating features with diseases  [31]. Electronic Health Records (EHRs) are there to keep these

phenotypes in a structured format. Language models are best at finding patterns and relationships

between dependable features. Accuracy increases by adding additional dense layers to be used as deep

learning heuristics to analyze big EHR diagnostic data. These Language Models [11][32] like bidirectional

Long Short Term Memory (Bi-LSTM) combined with dense layers analyze big EHR data in a generalized

way when given categorical feature vectors. Dense layers  [33]  of variable sizes of neurons build deep

learning heuristics to analyze big complex datasets as in our case. A deep learning model is built and

trained with the perspective of continuous data coming in to predict. Recently deep learning heuristics

are seen embedded in automated clinical diagnoses architecture for higher accuracy  [34]. NER

Embedding [11] in EHR patients’ diagnostic records to label disease names with associated attributes rely

on annotated labeled data. Task-specific rules-based NER embedding is a known technique in clinical
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text. Recent promising research  [7]  has compared NLP techniques enhanced with neural networks for

contextual embedding with traditional embedding in a clinical setting but could not provide a common

standard mechanism to follow.

EHRs [25] is defined as a publicly available form of the known corpus. MIMIC is a public dataset fetched

from Intensive Care Units (ICU) and prepared by MIT lab. The MIMIC dataset has three versions and the

latest version collected data from 2001 to 2012. Access to this dataset is given with permission and a

training course. Electronic libraries are being maintained to tag prominent medical vocabulary for

named entities. Some medical resources mentioned in the paper [29] are; ICD-10, SNOMED-CT, MeSH and

UMLS. NER tagging requires annotating the raw text dataset to be used as train and test sets. Annotation

makes the raw text semantically intelligent to understand vocabulary and the contextual relationship of

words in the document. Annotation [10] is either done manually or automatically for NER tagging. In the

medical domain, it is mostly manual and ICD-10 codes are also given to related diagnoses by humans.

Mostly it is seen that NER embedding follows Part-of-Speech (POS) tagging for best textual learning

approaches [35]. In our study, we omitted the use of POS tagging and applied NER embedding only that

minimized the code and kept it simple. Our experimental study took inspiration from the experiment

run in [36] that predicted miscoded diabetes ICD-10 labels in a large EHR dataset extracted from CERNER

Health Facts, a HIPPA-compliant repository maintained by the University of South California.

This previous research helped us to take it further and apply it to the custom DM_Comorbid_EHR_ICD10

corpora for diagnoses of endocrine diseases. Study of big data classification tools and techniques [37] was

done to direct our experimental study for diagnosing DM and its comorbidity diseases labeled with

related ICD-10-CM diagnostic codes. The data tables specifically for diagnostics of endocrine patients

were fetched from the Shifa International Hospital EHR system. This normalized data was converted to

flat tables using data warehousing techniques. It was cleaned and pruned where the target diagnostic

labels were missing. We started off with some traditional ML algorithms like; multinomial logistic

regression, decision tree, naïve Bayes, ada boost and light gradient boosting machine (Light GBM) as

in  [38]. Our previous explorations in  [38]  and  [39]  showed us some good results using deep learning

heuristics. ML algorithms integrated with traditional NLP methods were also experimented with and

results were obtained. Free text fields in a single patient profile in Corpus100_DM_pts_2844, were

manually annotated using spaCy which gave us 789 lines of information-rich annotated text and was

tested in HunFlair for NER tagging. Manual annotation was a time-consuming task and we used it to

train a custom NER model for automated annotation of the corpora using Spacy. This annotated corpora
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became input to proposed Sequential Bi-LSTM DNN model that was customized in the TensorFlow Keras

framework for optimal results.

MetaMap  [40], cTakes  [40]  or QuickUMLS  [29]  would be looked into in future as cTakes  [29]  was not

downloadable from ctakes.apache.org and our use of Interactive MetaMap [29] yielded us no results.

3. Architecture and Design

A high-level diagram of our diagnosis framework is shown in Figure 1. The figure illustrates that there

are five main modules in our system. Starting from the left we provide EHR corpora as input to the

extraction module. The extraction module covers the corpora in an input format suitable for machine

learning and NLP. Various algorithms are employed in the ML module which returns trained classifiers.

Finally, the model is executed on a cloud platform to return the primary diagnosis and comorbidity

diseases. An abstraction of this figure has recently been presented by researchers at an international

conference  [41]. Detailed descriptions of the modules comprising our system are described in the

subsections below.

Figure 1. The Architectural Design for Clinical Diagnoses.
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Figure 2. Entity Relationship Diagram (ERD) for Diagnostic Data Model.

3.1. Unified Corpora

The work on building a knowledge base in healthcare is initiated. The corpora were prepared from real-

time health care data made available from the Management Information System (MIS) of Shifa

International Hospital, Pakistan. They were provided Excel sheet templates which the health

professionals filled out in hospital's EHR system and were returned to us by MIS department in three

parts. It is to be noted that the patient IDs were anonymized for privacy purposes. The data model of

these Excel sheets is shown as an Entity Relationship Diagram (ERD) in Figure 2. As can be seen in the

figure these entities were designed based on the HL7 FHIR v4.0 schema. There are a total of sixteen

normalized entities. The main entities are Patients, Tests, Allergies, Medication and DiagnosticReport.

These were also the main entities that were used for features in our machine-learning algorithms. These

Excel sheets were first imported into an access database as normalized tables. Subsequently, these were

de-normalized into three flat data sheets. Data wrangling and preprocessing steps were carried out for

cleaning and pruning where the labeled columns had missing or misspelled diagnoses.

To keep the naming convention uniform and meaningful throughout the rest of the paper the corpora

and three corpora are named as follows:

‘DiseaseName_Comorbid_EHR_StandardLabelConvention’

In this paper, we are diagnosing primarily DM patients and their comorbidity diseases labeled with ICD-

10 codes Therefore, our corpora are named ‘DM_Comorbid_EHR_ICD10’. The descriptions of the corpora

comprising our ‘DM_Comorbid_EHR_ICD10’ corpora are provided in Table 1. As can be seen, the corpus
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size gradually increases with the number of patients. However, Corpus100_DM_pts_9304, is relatively

complex having 65 diagnostic classes including DM as primary disease. It has multiple records of each

patient who is diagnosed by DM and simultaneously with several other comorbid diseases. In

comparison, Corpus14407_DM_pts_33185, is much larger corpus of 14407 DM patients but these patients

are diagnosed with lesser number of comorbid diseases and has only 32 diagnostic classes including DM.

Table 1. Corpus Descriptions.

3.2. Feature Extraction

Table 2 illustrates through the example of a single patient record what these corpora contain. An

individual patient ID is connected to multiple visits and is denoted as Visit Account Numbers (VAN) as can

be seen in column two of Table 2 along with the medical examinations recommended by the clinician

over the course of these visits. Further, the laboratory examinations contain multiple prescribed lab tests

with their corresponding results as well as the diagnoses. Raw text columns comprising clinical notes

and practitioner comments are also included in the example.
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Table 2. Example of a Single patient record in our corpus.

3.3. Advanced Machine / Deep Learning algorithms

This module houses a collection of advanced machine-learning algorithms with the goal of maximizing

the accuracy and the speed of diagnosis. To build an optimal ML model, diagnostic data is required for

correct prediction. However, the challenge for the ML algorithm is to understand and interpret the variety

of formats in medical data that are quantitative e.g., tests like pH or are categorical e.g., negative or

positive bilirubin. Therefore, we used fuzzification to unify the input features in numerical form. In

addition, the data is multidimensional because there are multiple classes of diagnosis for which we

employed multinomial methods in the ML models. In fact, medical data also contains plain text e.g.,

clinical notes and practitioner comments but to process these we employed NLP techniques mentioned in

the next section.

qeios.com doi.org/10.32388/HPAUYJ.2 13

https://www.qeios.com/
https://doi.org/10.32388/HPAUYJ.2


3.4. Natural Language Processing Pipeline

As mentioned in the previous section the clinical notes and practitioner comments features in the corpus

cannot be reliably processed by traditional machine learning algorithms or through fuzzification.

Therefore, for text data, the NLP pipeline is used for tokenization and preprocessing using the popular

NER embedding techniques [25] that includes bag of words, TF-IDF for 1-gram, 2-gram and word2vector

frequency analysis. This data was then used to train ML models through stratified sampling and was

cross-validated.

3.5. Deep Neural Net (DNN) Layered Architecture for NER Embedding

Sequential NER embedding is an effective NLP technique because it helps understand the semantics by

defining a sequence of categorical features for diagnosis. For example, the proper sequencing for

recommended medical analysis is first examination, then the test and then its result in that order, gives a

diagnosis. The module of the NLP pipeline for sequential NER embedding works as a DNN. Selected

categorical fields are converted to vectors; Examination, Test and Result. These inputs (x) are passed to

the sequential model adapted with an embedding layer, bidirectional language model layers (Bi-LSTM)

and dense layers. The Output (y) dense layer then predicts a multiclass diagnosis for a single patient

labeled with ICD-10-CM codes. NER-embedded tags are given on the true prediction of test sets. The

various submodules of the DNN module are described below.

1. Language Model: find patterns and relationships between dependent features and are helpful for

our use case of classifying diseases. Using language models, we associated lab results comprising of

medical examinations, test and their results. We utilized the Bidirectional Long Short-Term

Memory (Bi-LSTM) language model which when combined with dense layers allowed us to analyze

big EHR data in a generalized way on a given set of categorical feature vectors. Annotations of

features or events are used to create contextual embedding taking word vectors as inputs. In our

case, we have tabular fields to annotate the values in each column vector and sequence them as

albeit form (x, y) to classify diagnoses with corresponding ICD-10-CM code for NER embedding.

2. Dense Layers: The accuracy of a DNN increases by adding additional dense layers of configurable

sizes of neurons to build a deep learning heuristic tailored to our healthcare dataset. The deep

learning model is specifically trained with the intention of embedding it for automated disease

diagnosis by streaming input data on the cloud. Our big datasets of endocrine patients having

multi-class diagnoses for a single patient add the desired complexity to test the accuracy of such
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embedding models based on DNNs. The architecture in Figure 1 has a flexible number of dense

layers of variable sizes with respect to the complexity of the problem at hand.

3. Sequential NER Embedding: in EHR patients’ diagnostic records to label disease names with

associated attributes rely on annotated labeled data. NER embedding using task-specific rules is a

known technique for processing clinical text. In this framework, we propose a novel NER sequential

model that uses vectored categorical features; clinical examination, test and results combined as

laboratory results to tag diagnoses with ICD-10-CM codes.

3.6. HPC Cloud Platform

Different ML and deep learning models integrated with NLP pipelines produce various trained classifier

models. These models were needed for experiments to achieve the maximum accuracy possible. The

models were then validated on test datasets of different sizes and needed HPC cloud platforms for

processing. We consider three cloud platforms to compare performance and speed achieved with selected

classifier models. These three platforms are: (i) Anaconda, (ii) Google Colab and (iii) Gradient Paperspace

for High-Performance Computing (HPC).

3.7. Predicted Diagnoses

The test datasets had endocrine-diagnosed diseases with DM as primary and several other coexisting

comorbid secondary diseases affecting individual patients. The outputs gained from different classifier

models are presented in different forms showing corresponding diagnoses as primary and secondary

diseases.

4. Diagnoses using Previously Known Machine Learning

Algorithms with NLP Pipeline

This section provides the implementation-level details of the architecture introduced previously. We start

with an exploratory data analysis and discuss the machine learning and NLP algorithms applied.

4.1. Exploratory Data Analysis (EDA)

The corpora are used to diagnose corresponding diseases listed in Table 3 with their frequency of

occurrences. The first partition of rows shows five disease labels for corpus100_DM_pts_2844. The two

highlighted diseases were not included in the analysis due to repetition in the records and ambiguity in
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the terminology. The other two corpora likewise have 20 and 27 diseases listed respectively. The diseases

shown in Table 4 are those that have all the features including clinical notes and practitioner comments.

These corpora are explored for data and NLP preprocessing to be inputted into the ML algorithms to train

classification models. For the exploratory data analysis, we used visualization techniques to characterize

our data and understand the summary statistics of the patients. Practitioners’ diagnoses listed for

different endocrine diseases with the relevance of the respective corpora with the frequencies in Table 3

are relatable with figures 3, 4, 5 and 6.

Table 3. Diagnostic classes from multiple visits of endocrine patients with frequencies of occurrences.

1. Gender, Age, Examination Ratio with Diagnoses: Figure 3 illustrates the correlation between the

patient gender and age with the practitioner diagnoses present in Corpus14407_DM_pts_33185. In

endocrine patients, it is observed that the ratio of females is more compared to men. There are some

diseases like urinary tract infection, obesity, infertility, and gestational diabetes generally seen only

in females and chronic obstructive pulmonary disease (COPD) or pre-diabetes are identified mostly

in males. It can be observed that DM in females is typically diagnosed in the early middle ages from

25 to 40 and then in the later ages of 50 to 60. Similarly, males are diagnosed with DM after their

30s. Other comorbidity diseases evolve at later stages resulting from mismanagement of DM. Figure

4 provides a sunburst plot of gender that can be seen in the innermost circle for corresponding
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diagnoses in the middle circle and recommended examinations in the outermost circle. Amongst all

the diseases in Corpus100_DM_pts_9304 shown in figure 4 affecting females, DM and breast cancer

are the most prevalent. The data in figure 4 shows that practitioners mostly recommend several

examinations to ascertain that a patient is suffering from a particular disease. For example, to

accurately diagnose breast cancer there are 22 possible examinations. The HbA1c examination is

important as shown expanded in the orange box on the right corner of figure 4. It is conducted to

diagnose DM and its severity in any patient as here it is done for a male patient.
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Figure 3. Correlation between gender and age with practitioner diagnosis.

Figure 4. Sunburst for Examination and Gender with diagnosis.

2. Word Embedding for Clinical Notes and Practitioner Comments:}

NLP is used to preprocess clinical notes and practitioner comments in all records in the corpora to

find embedding in sentences for input into ML algorithms. In Figure 5 there are three bar graphs for

each corpus showing sentence length on the x-axis and their frequencies on the y-axis. There were

five classes of diseases in Corpus100_DM_pts_2844 out of which we only considered three discarding

the other two erroneous disease labels that were repeating themselves or were not understandable.
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The three diseases taken for analysis are DM, Thyroid and Hormonal as was shown in the first row

of Table 4. The clinical notes and practitioner comments on these three diseases are analyzed for

sentence length. The sentences had a maximum length of 41 words and a mean length of 3.56 which

were tokenized into a total of 10114 words with a vocabulary size of 208. On tokenizing clinical notes

and practitioner comments in Corpus100_DM_pts_9304, we get 29670 words total from sentences

ranging from a maximum length of 60 to a mean sentence length of 31.33 with a vocabulary size of

464. In Corpus14407_DM_pts_33185, the sentences ranging from a maximum length of 76 and mean

sentence length of 20.9 are tokenized into 681676 words total, with a vocabulary size of 1151. In our

understanding the varying sentence lengths could affect the performance of ML models and

diagnostic results therefore we used NLP word embedding techniques to tokenize. Tokenization

into unigrams (i.e. tokenized into separate words), and removal of stop words and bad symbols were

done with the goal of balancing the data and for fast processing in training multinomial ML models

with weighted average [42]. This way of preprocessing clinical notes and practitioner comments did

not let sentence length and vocabulary affect the diagnostic results and performance of the ML

models.

Figure 5. (a) Minimum sentence length = 2, Maximum sentence length = 41 in Corpus100_DM_pts_2844 (b)

Minimum sentence length = 5, Maximum sentence length = 60 in Corpus100_DM_pts_9304 (c) Minimum

sentence length = 5, Maximum sentence length = 76 in Corpus14407_DM_pts_33185.
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Figure 6. Extracted words relevant to DM and comorbidities.

2. In Figure 6, three bar graphs are plotted for each of the major diseases namely DM, hypo-glycaemia

and kidney infection. Relevance to the diagnosis of these diseases is shown on the x-axis of some

important keywords (on the y-axis) extracted from tokenization. Note the keywords ‘tamoxifen’,

‘breast’ and ‘cancer’ have a high degree of importance. This is because Breast cancer is treated with

the medication tamoxifen and has a strong relationship with DM. Medical research shows that

patients who recovered from breast cancer formed DM later due to chemotherapy treatment.

Similarly in the second graph, hypoglycemia means low blood glucose that DM patients often

undergo. ‘Increased’ and ‘urine’ are other keywords related to hypoglycemia and in the medical

literature, this test is shown to be a very important measure that doctors recommend to patients for

such diagnoses. This condition of low glucose results in several complications as can be seen in the

third graph of Figure 6 resulting in stress, HTN or even kidney infection. All these correlations

between words related to DM and its comorbidities were also manually validated from the relevant

literature in the discipline. It is also interesting to note that inverse relationships typically exist as

well where for example patients prone to DM also form diseases like breast cancer, hypoglycaemia,

HTN or kidney infection.

qeios.com doi.org/10.32388/HPAUYJ.2 21

https://www.qeios.com/
https://doi.org/10.32388/HPAUYJ.2


4.2. Traditional Machine Learning Algorithms Applied

Multi-label encoding is a technique for fuzzification. We have a human-understandable dataset having

multiple categorical column fields that contain labels in text. Traditional machine learning algorithms

process quantitative data more accurately and therefore label encoding converts the labels into numerical

form. This preprocessing of structured data is an important step in supervised learning. We used the

LabelEncoder() method in Scikit-learn which takes multiple columns as arguments and returns a

numbered matrix for input into ML algorithms.

Our ML models comprised of the below algorithms were run successfully on our input corpora.

1. Logistic Regression  [43][44][45][46][47]  model is taken from statistical method to evaluate or

distinguish between classes or events through probabilistic distribution. It may be binary in the

case of two classes or multinomial if multiple target classes exist with regard to any specific

classification problem as diagnosed in our case.

2. Decision Tree algorithm  [48][46][49][50][51]  breaks the problem or features (nodes) in a tree-like

structure to find sequence or association between each node to reach a decision or a consequence

and finally a target class (leaf).

3. Adaptive Boosting (AdaBoost) algorithm  [49][52][53][54][55]  when combined with other types of

learning algorithms boosts the overall performance of a classifier.

4.3. Analytics applied using NLP and ML techniques

NLP methods are applied to preprocess the textual fields in the datasets before the application of ML

algorithms. Distributed vector representations are recent additions to the knowledge of natural language

processing (NLP) [25]. The previous traditional NLP methods did not consider the semantic similarity of

words. Embedding solved this problem with application on unlabeled corpus and is used to map the text

to dense vector representations overcoming the issue of dimensionality and adhering to find semantic

similarity in context. The quality of embedding models is based on the size and type of corpus whether

general or domain-specific. In a large general corpus, there is a large vocabulary to infer. The domain-

specific corpus is inferred for semantic similarity of terms as in our case of clinical diagnoses. Data is

preprocessed taking different NLP embedding as vector lists from a bag of words, word2vec and TF-IDF.

Analytics is then applied using cross-validation with stratified sampling in logistic regression, Naïve
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Bayes and Light Gradient Boosting Machine (GBM). These embedding techniques and ML algorithms are

detailed below.

1. Bag of Words [10][56][57][58] is a multi-set representation of all the vocabulary present in the text or a

document ready to be used in NLP for information extraction. A bag of words has previously been

used by researchers for NLP problems that represented a dimension to related words as 1 and

unrelated as 0. These sets of 0s and 1s can be replaced by word frequencies, TF-IDF and n-gram

measures.

2. Term Frequency Inverse Document Frequency (TF-IDF) [56][59][60][61]  is a statistical evaluation of a

word in relevance of its importance in a document or a corpus. It is important to assign weights to a

word for its relevance in a particular finding or prediction.

3. Word2Vec  [7][56][59][62][63]  is an NLP technique that uses neural networks to learn relationships

between words in a textual corpus. Each word has a particular number to form a list represented as a

vector. All the words listed in the vector have some sort of semantic similarity that can be deduced

using a mathematical function. Word embedding puts a word as part of hundreds of dimensions to

learn semantic similarity with other similar words. Each dimension represents a feature itself. Word

embedding represents words in fixed-length vectors, dense in low dimensions. Word embedding in

sparse continuous vector space needs deep learning models for quantifying high-level textual

representations.

4. Naïve Bayes [64][65][66][67] is a simple probabilistic classifier based on the Bayesian statistical model.

The Bayes classifier considers all features independently contributing to the target label without

any correlation. A multinomial Naïve Bayes is chosen for this multi-class diagnostic problem.

5. Multinomial logistic regression  [47][67][68][69][70]  generalizes the classifier to multi-class problems

where there are more than two target classes. It is applied to predict categorical or nominal class

variables.

6. Light Gradient Boosting Machine (Light GBM)  [71][72][73][74]  is a fast decision tree algorithm that

supports a high-performance distributed gradient boosting framework. It is used with multi-class

objectives here. It is fast as it puts continuous features in discrete bins for efficient memory usage.
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5. Comparative Analysis of HPC Opensource Platforms for

Sequential NER Embedding Techniques

Anaconda, Google Colab and Gradient Paperspace are cloud platforms with GPU and high-performance

computing (HPC) data science frameworks that were used to implement the NLP models for sequential

NER embedding. Anaconda and Google Colab are open-source and widely used by the research

community, whereas Gradient Paperspace is based on a subscription-based pricing model and all three

provide analytical processing capability by supporting frameworks like tensorflow. A comparative

analysis of the efficiency of these three platforms was performed as is detailed in the later sections. The

sequential NER analytical techniques used in our research are applied to the DM_Comorbid_EHR_ICD10

corpora. Phenotyping means to extract patient characteristics like age, gender, vitals and symptoms from

datasets. Our goal is to perform phenotyping of our corpus using text mining techniques. There are three

ways of doing this namely manual annotation through spaCy [9], automated annotation using pre-trained

NLP models like HunFlair  [75][76]  and later in Section 6 custom NLP models are trained using keras

sequential model [77].

5.1. Manual Annotation

To extract clinical embedding from the textual fields in the dataset manual annotation using spacy was

employed. Figure 7 elaborates on this process where nine named entities were defined for clinical

diagnosis. These entities are as follows: patient, age, gender, condition, exam, test, results, diagnosis, and

ICD-10-CM. Our naming convention is based on the FHIR HL7 schema that has defined a comprehensive

set of entities for clinical diagnosis. The ‘patient’ entity captures variables such as patient identifier, age,

and gender. Our labels ‘exam’ and ‘test’ are based on events from the HL7 ‘observation’ entity which

captures different categories and methods some important ones being vital signs, BMI, Triglyceride,

HDL, and LDL. Then ‘results’ are drawn for these observations to reach a final diagnosis. Finally, our ‘ICD-

10-CM’ is based on the ‘code’ entity in HL7. Other standardized coding schemes include SNOMED and

RxNorm.

We employed a team of nursing staff to annotate some textual data. The free text present in our dataset is

taken as sentences and individual words or sequences of words that are annotated with related named

entities as positional arguments. In figure 7, there are four compartments. Raw data is entered into the

bottom left corner box ready to be annotated. The upper left window shows the current sentence that is
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being annotated where ‘loss of appetite’, ’nausea’, ‘loss of consciousness’ and ‘dizziness’ are tagged with

the label ‘condition’. ‘DM’ is tagged with the ‘diagnosis’ label and ‘E08-E13’ as ‘ICD-10-CM’. The right-

hand side window shows the spans of labeled entities that are identifiable in different colors. Finally, on

tagging each sentence when the ‘Mark as completed’ tab is pressed all the annotated data gets collected

in the bottom right window in annotated format to be stored as a dataset. It was observed that one staff

member was able to annotate on average 70 comments per hour. With an average of 6000 comments per

dataset, it is not hard to imagine that this process can easily become intractable. However, it is to note

that if this process is conducted comprehensively, it can be very useful to build future knowledge bases as

annotated datasets to train NER models with human precision. Due to increased man hours, we preferred

to use automated annotation for our problem and finally came up with a custom bi-LSTM DNN sequential

model for NER embedding built on categorically annotated tabular datasets that is explained in Section 6.

Figure 7. The spacy manual annotation is shown tagging named entities.

5.2. Automated Annotation

Flair  [75]  is an easy-to-use NLP framework built on top of PyTorch. It boasts a unified interface for

embedding and labeling sequences in contextual domain-specific data. Flair can integrate with manual

annotation tools like Spacy and NLTK. Reusing pre-trained word embedding models is helpful for

generalized learning from unlabeled data included in an already-learned approach. HunFlair  [76]  is a
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specialized version of Flair that is designed for embedding in a medical context and has been trained on

the National Center for Biotechnology Information (NCBI-Disease) data. This model was tested and

validated on clinical notes stored in an array. The HunFlair model tags the sequence of words in a disease

entity as either a beginner word with <B-Disease>, an inner word with <I-Disease>, or an ending word

with <E-Disease>. If it is just a single word, then it’s tagged <S-Disease>. Non-relevant sentences were

scanned as having no entities.

array =

['I took Tylinole because my head was throbbing in pain',

'T2 Diabetes 12 years LVF AKI',

'T2 Diabetes Humulin 70/30 24 bd',

'Loss appetite nausea, Polyurea loss of consciousness and dizziness']

We found some limitations in conducting our experiment with HunFlair in the medical learning context.

It is observed in Table 4 that in some sentences where there were spelling errors as in; ‘Diabeets’ at line 6,

it could not be recognised as a DM disease. It misinterpreted some symptoms as a disease, for example,

pain (line 4), loss of appetite nausea (line 16), loss of consciousness (line 17) and dizziness (line 18).

On finding the above limitations in the HunFlair model we trained a custom NER model on the partially

manually annotated dataset using spacy. This model could differentiate ‘condition’ from ‘disease’. We

further trained it on labels; age, gender, family, exam, test, result, medicine, procedure, and ICD-10-CM.

Training of these embeddings would take some more time and effort to reach maximum accuracy.
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Table 4. Results for tagging tokenized array of sentences are depicted as Labels with mentioned

accuracies.

6. TensorFlow.Keras NER Embeddings using proposed Bi-LSTM

Dense Layered Neural Networks Approach

The categorically annotated ‘DM_Comorbid_EHR_ICD10’ corpora was input to understand the sequence of

features to predict diagnosed patients individually for DM and its comorbid diseases with their relative

ICD-10-CM codes. A custom NER model built with Spacy is used for annotation of free text fields; ‘Note’

and ‘PC’ to extract features ‘condition’, ‘disease’, and ‘medicine’. These features relate to the patient’s

current condition with which he/she visited the doctor for consultation. A sequential model [78] based on

the TensorFlow Keras library was used to hold a stack of embedding of bidirectional long short-term

qeios.com doi.org/10.32388/HPAUYJ.2 27

https://www.qeios.com/
https://doi.org/10.32388/HPAUYJ.2


memory (Bi-LSTM)  [79]  and dense layers of varying sizes built on the recurrent neural networks

architecture. TensorFlow.Keras  [77][80]  was adopted as a neural networks interface to preprocess the

finalized sequential columns: ‘test’, ‘examine’, ‘result’, ‘condition’, ‘disease’, ‘medicine’ and ‘diagnosed’ in

our ‘DM_Comorbid_EHR_ICD10’ corpora.

Table 5 shows a dry run of the Python code. The selected feature is denoted as x, and the target feature

diagnosed is denoted as y. We preferred Relu as the activation function for DNN layers and the outer

dense layer is set softmax as its activation function. The optimizer chosen was Nesterov-accelerated

Adaptive Momentum Estimation (NAdam). NAdam is a higher version of Adam and uses Nesterov

momentum.

The hyper-parameters such as vocabulary size, number, and size of layers, learning rate, optimizers and

accuracy metrics, in the sequential analytics model were learned on multiple runs on each corpus where

the f1-score was not found significant.

Table 5. The pseudo-code of TensorFlow.Keras Sequential() model to

predict diagnosed diseases with ICD-10-CM codes.

Figure 8 evaluates the Sequential model with accuracies achieved for the three feature sets selected in the

three corpora. The feature sets are; (i) (‘exam’,’test’,’result’), (ii) (‘exam’, ’test’, ’result’, ‘condition’), (iii)

(‘exam’, ’test’, ’result’, ‘condition’, ‘disease’, ‘medicine’). It is observed that the overall accuracy increases as
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the corpus size grows. The maximum accuracy achieved amongst all feature sets for

Corpus100_DM_pts_2844 is 0.4615 for the selected feature set (‘exam’,’test’,’result’) as other features in the

corpus mostly hold null values and those records get dropped during analysis. The maximum accuracy of

0.6 and 0.9 is achieved in Corpus100_DM_pts_9304 and Corpus14407_DM_pts_33185 respectively with the

maximum number of features selected. This observation reflects the importance of free-text clinical

notes and practitioner comments from which the key attributes; condition, disease and medicine are

extracted for accurate diagnoses. Another observation made is that the number of DNN layers increases

with the size of the corpus being analyzed where the learning rate was set at 0.05.

Figure 8. Sequential Model Accuracies achieved for the three corpora with hyper parameter setting and

selection of features.

7. Comparative Study of Results for Evaluation of Analytics

Performance

7.1. Evaluation and Validation Results for ML Diagnostic Algorithms

Accuracy results are stored for each input corpus and the selected classifier models. Results are compared

based on the algorithmic performance and size of the corpus. The decision Tree algorithm in Table 6 is

seen as outperforming but there is a significant decrease in validation accuracy where there are

maximum numbers of diagnostic classes equal to 65 in 9304 instances of 100 patients. Maximum
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accuracy results are observed where there are larger numbers of classes equal to 32 but to balance it

number of instances has also increased to 33185 from 14407 DM patients.

7.2. Evaluation and Validation Results for NLP embedded ML Diagnostic Algorithms

The resultant embedding is evaluated before as intrinsic or extrinsic  [25]. Intrinsic evaluation of

embedding for encoding similar/related contextual information is done using nearest neighbor search

(NNS), clustering and similarity measures. Extrinsic evaluation is done by testing the model accuracy for

input text for an expected output for name entity recognition (NER), medical text classification, medical

concept normalization, etc. Known NLP methods are listed for clinical predictions; word2vec and stacked

de-noising auto-encoders, for medical coding; Glove, fasttext and word2vec have been preferred before,

for NER in the clinical domain; word2vec and fasttext were chosen, for patient de-identification; Glove or

RNN encoder/decoder are used and for patient similarity word2vec. Word2vec is considered a popular

technique for NER embedding therefore we chose it for experimentation on our corpora.

Table 6. Logistic Regression, Decision Tree and AdaBoost performance are recorded with relative accuracies

with time. Decision Tree is seen outperforming.
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Table 7. Base Accuracy results for different ML algorithms with embedded NLP techniques for original sized

corpora.

1. Base Results on Original Corpora: The results of traditional ML algorithms shown in Table 6 change

with the use of NLP techniques and logistic regression outshines decision tree algorithm as shown

in Table 7. It is seen that maximum accuracy is achieved with logistic regression with word

embedding on Corpus14407_DM_pts_33185 where there are maximum instances of 33185 having 30

diagnostic classes. On smaller Corpus100_DM_pts_2844, the accuracy is 0.89 which is not bad.

Accuracy for Corpus100_DM_pts_9304 having maximum classes and maximum mean sentence

length falls to 0.7. It is understood that large or multiple datasets would have a skewed class

distribution that may affect the accuracy. Therefore, undersampling and oversampling methods

were used to balance the distribution of classes in corpora [81][82][83].

2. Undersampling using Naïve Approach: Undersampling is done with the assumption that any

random sample taken from a majority class would balance the distribution of data while discarding

the remaining. It is understood that the information that is lost is not significant for model training.

This approach is called the naïve approach. We observed that overall accuracy decreases for all

corpora but there is a significant decrease in accuracy in the smallest Corpus100_DM_pts_2844

having 2844 instances with three classes only. Therefore we can say that with a decrease in sample

size, the accuracy deteriorates for the trained ML models.
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3. Oversampling using SMOTE: The Synthetic Minority Oversampling Technique (SMOTE) duplicates

the samples from the minority class to balance the distribution. The majority of classes remain

untouched. The SMOTE oversampling technique is used with naïve Bayes, logistic regression and

light GBM in this diagnostic problem. The accuracy results with oversampling are also not very

significant. Therefore, the original corpora prove best to train our classification models.

4. Results Analysis of Best Model: Logistic Regression gave the best accuracy results and confusion

matrices (Figure 9) depict the comparison between its predictions on corpora with original sample

size and oversampled sample size. It is seen that with oversampled corpora the rate of predicted

classes increases.
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Figure 9. Resultant Confusion Matrix from analytics applied on two of the Corpora with original sample and

oversampled SMOTE.

7.3. Evaluation for Sequential NER Embedding

We implemented sequential NER embedding using three separate annotation tools namely spaCy  [9],

HunFlair [75][76] and the Keras sequential model [77]. These tools were compared in terms of the support

they provide for the annotation process and the amount of tagging required, the accuracy achieved and
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their limitations. These details are shown in Table 8. It can be seen in the first column manual annotation

was conducted using spaCy and a custom NER model was built and trained to tag the phenotypes

‘condition’, ‘disease’ and ‘medicine’. Manual annotation is time-consuming requiring increased man-

hours and effort to reach maximum accuracy with precision. The next column shows that the pre-trained

HunFlair model in flair on Anaconda Jupyter Notebook was used to annotate free text in clinical notes

and practitioner comments present in the tabular datasets that only labeled diseases with probabilistic

accuracy. Tagging the complete dataset needed high computational memory. Finally, the third column is

used to depict the performance of our proposed DNN Bi-LSTM sequential model for NER embedding.

Table 8. Comparison of three Sequential NER Embedding Techniques experimented with in

this paper.

The phenotype fields contained in DM_Comorbid_EHR_ICD10 corpora in .csv format were used to

annotate the corresponding ‘condition’, ‘disease’, ‘medicine’, ‘Examination’, ‘Test’, ‘Result’ in NER format

associated with the diagnoses of DM and its comorbidities. The sequential DNN model was run on three

cloud platforms; Anaconda, Google Colab and Paperspace. It is notable in Figure 10 that Google Colab

speeds up the processing with the increase in corpus size and the model learns fast. This model gave

maximum accuracies of 0.4615, 0.6, and 0.9 where validation accuracies were 1, 1 and 0.8462 with respect

to the features taken as input (Figure 8 in section 6) in relation to the size of three EHR corpuses to form

diagnosis of several endocrine diseases defined in Table 1 in section 3. A single patient in a 100-patient

qeios.com doi.org/10.32388/HPAUYJ.2 34

https://www.qeios.com/
https://doi.org/10.32388/HPAUYJ.2


corpus (named Corpus100_DM_pts_2844 having 2844 instances with CSV columns) is classified for

multiple classes of diagnoses having DM and coexisting Hormonal and Thyroid diseases referred to as

comorbidities. In Corpus100_DM_pts_9304 of 65 diagnosed classes, it classified eight endocrine diseases.

In Corpus14407_DM_pts_33185 having 32 classes of diagnosed endocrine diseases it successfully

diagnosed 17 classes with a learning rate set to 0.05 in Google Colab (Figure 11).

Figure 10. Performance Comparison of three cloud platforms on different size Big EHR data. Anaconda,

Google Colab and Gradient Paperspace Learning Rate (LR) with Time per iteration are shown for predicted

classes in each dataset.
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Figure 11. Multi-class classification for the patients’ medical profiles led to diagnoses of primary disease DM

and its comorbidities.

8. Conclusion and Future Work

This paper has initiated the extraction, preparation and maintenance of unified clinical knowledge base

in the form of ‘DM_Comorbid_EHR_ICD10’. The high-level architecture is proposed for diagnostic

framework that incorporates advanced ML integrated with NER embedding tools and techniques to learn

semantics on the corpora as illustrated in Figure 1. The sequential NER embedding on these corpora let

us deduce intelligent semantics to diagnose DM patient and their comorbidity diseases. The corpora

would grow to maintain data for diagnoses of other diseases in the future and fill all the entities

mentioned in Figure 2.

In the paper, proposed mechanism (Figure 1) in section 3 is for NER tagging of unified medical corpora

for standardized medical context learning. Specifically Spacy is applied for manual annotation of a single

patient profile extracted from Corpus100_DM_pts_2844. HunFlair’s pre-trained NER model was reused

and tested on raw medical data that only tagged diseases. A custom NER model is later trained to extract

attributes like ‘condition’, ‘disease’ and ‘medicine’ from free text fields; ‘Note’ and ‘PC’. Proposed DNN

model had Bi-LSTM integrated with dense layers to be trained on TensorFlow.Keras with

Corpus100_DM_pts_2844, Corpus100_DM_pts_9304 and Corpus14407_DM_pts_33185 taking key diagnostic

features as inputs. The diagnosis problem was solved for DM as well as other comorbidity diseases in

patients (Figure 11) using sequence embedding or tagging. The final features selected were ‘exam, ‘test’,
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‘result’, ‘condition’, ‘disease’ and ‘medicine’. It was observed that running the Sequential DNN model on

Corpus100_DM_pts_2844, Corpus100_DM_pts_9304 and Corpus14407_DM_pts_33185 gave us the validation

accuracies of 1, 1 and 0.8462 respectively. These accuracies signal the good quality of this corpora having

real-time datasets. The differences in the validation accuracy results relate to the size of each corpus and

the features that were the input. Model accuracy increased with added features and an increase in corpus

size (Figure 8).

This research explored some NER tagging schemes and also identified some high-performance tools and

techniques that would fasten the process of NER tagging and embedding for intelligent medical

semantics in the future. It is already mentioned earlier that the contributed unified knowledge base is

only the initiation and would grow. Currently, it is manually labeled with ICD-10-CM codes but the

labeling would be automated later with indepth study of its challanges and applications as in  [12].

Automated ICD-10 coding scheme is a new venue for research that is being worked upon using deep

learning neural nets [84][85]. In the future, we need to do more experimentation using other mechanisms

like Auto ML, BERT or ELMo to solve multi-label and multiclass problems for diagnostics. These domain-

specific medical corpora are structured on HL7 FHIR schema with labeled fields having

untagged/unlabeled text values like clinical notes or practitioner comments. We extracted the selected

feature set from raw corpora named ‘DM_Comorbid_EHR_ICD10’ as stated in representation learning.

These extracted raw corpora would enable us to tag the medical vocabulary used for active learning in the

future. Active deep learning would train these unified medical corpora using semi-supervised or

reinforced learning techniques. Advanced learning techniques like; active deep learning through

representation learning  [37]  have gained our interest. Active learning is semi-supervised where initial

input is labeled dataset to train the model. Final evaluation would be done on unlabeled or undiagnosed

classes (that were pruned in this paper) to get an efficient learning model after multiple iterations.
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