
8 January 2025, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

What’s the Move? Hybrid Imitation

Learning via Salient Points

Priya Sundaresan1, Hengyuan Hu1, Quan Vuong2, Jeannette Bohg1, Dorsa Sadigh1

1. Stanford University, United States; 2. Physical Intelligence

While imitation learning (IL) offers a promising framework for teaching robots various behaviors,

learning complex tasks remains challenging. Existing IL policies struggle to generalize effectively

across visual and spatial variations even for simple tasks. In this work, we introduce SPHINX (Salient

Point-Based Hybrid ImitatioN and eXecution), a flexible IL policy that leverages multimodal

observations (point clouds and wrist images), along with a hybrid action space of low-frequency,

sparse waypoints and high-frequency, dense end effector movements. Given 3D point cloud

observations, SPHINX learns to infer task-relevant points within a point cloud, or salient points, which

support spatial generalization by focusing on semantically meaningful features. These salient points

serve as anchor points to predict waypoints for long-range movement, such as reaching target poses

in free-space. Once near a salient point, SPHINX learns to switch to predicting dense end-effector

movements given close-up wrist images for precise phases of a task. By exploiting the strengths of

different input modalities and action representations for different manipulation phases, SPHINX

tackles complex tasks in a sample-efficient, generalizable manner. Our method achieves 

success across 4 real-world and 2 simulated tasks, outperforming the next best state-of-the-

art IL baseline by   on average across   real world trials. SPHINX additionally generalizes to

novel viewpoints, visual distractors, spatial arrangements, and execution speeds with a   speedup

over the most competitive baseline. Our website contains code for data collection and training code

along with supplementary videos: http://sphinx-manip.github.io.
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1. Introduction

Imitation learning (IL) of visuomotor policies is a widely used framework for teaching robots

manipulation tasks given demonstrations collected by humans[1]. While prior works have shown that IL

policies can learn a range of behaviors with sufficient data, from simple object pick-and-place to more

complex tasks, they typically succeed only in highly controlled settings with low variation. Generalizing

to realistic visual and spatial variations remains a significant challenge. Consider teaching a robot to

make a cup of coffee in the morning, which demands precision, long-horizon reasoning, and tolerance to

environment variations. The robot must first carefully grasp a mug handle, position it under the

machine, insert a pod into a narrow slot, close the lid, and press a button – all with very little margin for

error (Fig. 1). Even after mastering this sequence, the policy might struggle with spatial changes like

moving the machine, or visual changes such as new coffee pods, spilled grounds, a different camera

angle, or varying lighting conditions. This underscores the need for IL policies that can learn complex

tasks from a limited number of demonstrations while effectively generalizing to natural and expected

variations in the real-world.

Conventional IL policies often struggle with both performance and generalization, largely due to

limitations in their input and output representations. First, they tend to rely heavily on visual inputs like

RGB images, treating irrelevant details like the background, lighting, or viewpoint the same as task-

relevant information. This can cause a policy to memorize specific scenes, making it brittle to visual

variations[2][3]. Second, these policies usually predict actions for the next immediate timestep, which

hampers spatial reasoning. Simple spatial movements, like reaching, are predicted through hundreds of

end-effector actions, increasing the risk of veering off course. To address these limitations, recent works

explore 3D scene representations, such as point clouds and voxel grids, to offer better spatial awareness,

and propose predicting actions as end-effector poses (waypoints) reachable through a controller or

motion planner[4][5][6][7][8]. This can drastically shorten the action prediction horizon and enable better

spatial generalization. However, these methods often lack precision, as point clouds typically lack the

necessary resolution to capture small object details preserved in images. On the other hand, recent

image-based IL policies attempt to remedy spatial generalization using hybrid action spaces[9][10]. Here,

the policy has two potential modes of execution: waypoints for long-range motions like reaching, or dense

actions — end-effector movements predicted per-timestep — only when precision or reactivity is

required. These works ultimately consider training policies with a single input modality type, and
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optionally hybrid actions. In reality, different phases of a task may lend themselves more favorably to

different visual inputs or action modes. A policy which can effectively choose and interchange both the

input modality and the underlying action representation during execution remains underexplored.

Our key insight is that by encouraging the policy to attend to salient points—task-relevant 3D points—we

enable it to choose between different input modalities as well as different action modes when

appropriate, improving performance and generalization. Fig. 1 illustrates example salient points in the

coffee-making task in red (i.e. the mug handle, pod, etc.). We introduce SPHINX: Salient Point-based

Hybrid ImitatioN and eXecution, a hybrid IL agent which learns to switch amongst a waypoint policy

which predicts waypoint actions given point clouds, and a dense policy which predicts dense actions

given close-up wrist-camera images. Specifically, the waypoint policy manages long-range movements

by first predicting salient points that narrow the search space of actions around spatially relevant

features, promoting spatial generalization. It then predicts waypoint actions relative to these points. After

reaching a waypoint, SPHINX switches to a dense policy which takes wrist-camera images as input. This

policy captures close-up object details for precise manipulation and supports visual generalization by

staying agnostic to broader scene changes. To support training SPHINX, we develop a flexible data

collection interface that allows demonstrators to specify salient points and switch modes in real-time

during teleoperation.

Empirically, we show that SPHINX can tackle a range of precise, long-horizon manipulation tasks,

including four real-world scenarios (drawer-opening, cup-stacking, coffee-making, toy train assembly)

and two simulated ones. SPHINX achieves  success and outperforms the next best IL baseline by 

 on average, while generalizing better to visual distractors, viewpoints, spatial arrangements, and

execution speeds. We open-source our web-based data collection interface for specifying salient points

and hybrid teleoperation, alongside code, supplementary material, and videos at: http://sphinx-

manip.github.io.
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Figure 1. SPHINX is a hybrid IL agent which learns to switch amongst different modes ( ) of execution to

tackle complex tasks with visuospatial generalization. In waypoint mode,   takes a point cloud as input,

and predicts a single waypoint   as an offset ( ) to a task-relevant salient point  (i.e. mug handle, coffee

pod, etc. denoted). After reaching a waypoint via a controller, the policy uses learned switching to a dense

policy  , which takes wrist-camera images as input and outputs dense actions ( ) for precise

manipulation around a salient point. On the right, the policy interleaves both modes of execution to complete

a long-horizon coffee-making task guided by salient points (⚫) and mode switches (◼).

2. Related Work

Imitation Learning for Robotics Control

Imitation learning has long been a foundational approach in robotics for teaching robots to replicate

human demonstrations[1][11][12]. Robotic imitation learning policies typically take images as input and

output motor commands, such as joint positions, velocities, or Cartesian end-effector poses. Recent

works of that type[13][3][2] have demonstrated strong performance on tasks in controlled settings with a

limited initial state distribution. However, they struggle to generalize to unseen visual or spatial

variations. To address visual generalization, some works augment vision-based policies with diffusion-

generated image observations[14][15]. While useful and complementary to our approach, these

augmentations do not directly enable spatial generalization. Other works propose replacing image inputs

with 3D scene representations such as point clouds and voxel grids, and outputting actions as waypoints,

6-DoF poses reachable through motion planning[5][8][7]. While this reduces the complexity of action

prediction from hundreds of actions to a single pose, 3D representations such as point clouds often lack

the resolution to enable precise manipulation of small objects. Other recent approaches like
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HYDRA[9]  and AWE[10]  take image inputs but propose a hybrid output action space of waypoints and

denseactions. These distinct action modes are intended for long-range and precise movements,

respectively. Our method builds on these approaches by leveraging salient points to bridge a hybrid input

space of point clouds and wrist-camera images, and a hybrid output action space of waypoints and dense

actions.

Action Representations

Most visual imitation learning works rely on standard 6-DoF action spaces, but recent efforts explore

alternatives for better spatial generalization. One approach involves predicting actions as parameterized

manipulation primitives instead of low-level end-effector movements. This reduces the dimensionality

of the action space and improves sample efficiency, but often requires task-specific engineering[16][5][17]

[18]. Other methods exploit equivariance, ensuring that transformations of visual inputs (e.g., rotations or

scaling) are reflected in output actions[19][6][7]. However, these works often rely on limiting assumptions

like access to object states via segmentation, or single-object tasks. In the grasping domain, many

policies consider point clouds as inputs and an output action space defined as per-point predictions for

the end-effector pose. This has proven effective for learning sample-efficient and generalizable grasping

policies[20][21]. Inspired by this, our method also parameterizes waypoint actions as offsets to salient

points in a point cloud, but we critically learn a hybrid policy which predicts both waypoint and dense

actions to tackle longer-horizon and precise tasks beyond grasping.

Data Collection for Imitation Learning

Despite the advancements in action representations and spatial generalization, the success of visual

imitation learning policies still hinges on the quality of teleoperated demonstrations. Human operators

typically collect robot data using interfaces like virtual reality controllers[22], handheld devices[23],

puppeteering setups[2], or 3D mice (e.g., Spacemouse). However, these interfaces map demonstrator

controls directly to robot actions on a per-timestep basis, which presents two key limitations. First, the

recorded data only captures (observation, dense action) pairs, lacking compatibility with waypoint

actions or useful metadata such as salient points. Second, directly controlling long-range movements can

be inefficient, noisy, and tiring for demonstrators. To address these issues, we design an interface (Fig. 2)

that seamlessly integrates both waypoint and dense action modes. A custom web-based GUI supports

waypoint mode, allowing demonstrators to specify salient points and waypoints with the ease of simple
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clicks and drags. A controller can then reach the specified waypoint automatically, removing the need for

constant teleoperation from the demonstrator. Additionally, the interface is compatible with any external

device for dense actions, allowing for easy switching between the computer mouse and the device, as

long as it is on hand. This provides a flexible and efficient data collection process for high-quality hybrid

datasets, with no post-hoc labeling required.

Figure 2. Data Collection Interface: The demonstrator visualizes a point cloud   in a web GUI, where they

can click a salient point   and specify a waypoint action   by clicking and dragging to rotate or translate a

digital twin of the gripper. After the controller   reaches the waypoint to grasp the train, the process repeats

for a waypoint above the bridge. The demonstrator then switches to providing dense actions   with a 3D

SpaceMouse to carefully place the train on the bridge and tilt it, causing the train to roll.

3. Problem Statement

In standard IL, we are given a dataset   of    trajectories of expert demonstrations  . Each

trajectory is a sequence of observation action pairs  . The goal is to learn a policy 

 that matches the expert distribution using the following loss  . However, this

formulation can easily lead to compounding errors for long-horizon tasks where episodes may span

hundreds of steps. In this paper, we instead consider a hybrid imitation learning setting where the policy

can either output a dense action  as in the standard setting or output a waypoint   that

abstracts a sequence of dense actions into a single prediction for long-range movement. Both waypoint

and dense actions capture the end-effector pose, but a waypoint action    specified at timestep    is

translated to a sequence of    interpolated actions    by a controller 
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 based on the current pose   and the target waypoint   specified at  . In practice,

we use a simple controller that linearly interpolates between current pose and target waypoint. Then, we

can record a timestep in the dataset as    where    is the

mode and   is the optional target waypoint only when  . Each   spans the next   steps

decided by the controller. Our goal is thus to learn a hybrid policy    that first predicts a mode 

 and then predicts either a waypoint from   or a dense action from  .

4. SPHINX: Salient Point-based Hybrid ImitatioN and eXecution

We introduce SPHINX: Salient Point-based Hybrid ImitatioN and eXecution, a framework for learning

sample-efficient, generalizable imitation policies capable of handling complex, long-horizon

manipulation tasks across diverse initial conditions. SPHINX combines a high-level waypoint policy for

long-range movements and a dense policy for precise manipulation (Fig. 1). The waypoint policy 

  takes point clouds as input and classifies semantically meaningful salient points along with

waypoints relative to them. This guides the robot to a suitable pose for interaction around a salient point,

such as reaching for a mug handle during coffee-making. The dense policy    takes over only for

precise actions around a salient point, like carefully inserting a coffee pod into its slot (Fig. 1). Since the

waypoint policy handles long-range movements, it uses point clouds to provide spatial context. The

dense policy uses wrist camera images as input, capturing detailed object features for precise

manipulation and enabling visual generalization to variations in the surrounding scene. Both policies

also predict the next mode   to decide which policy to use after completing the current movement.

Without loss of generality, we initialize   in waypoint mode.

To train SPHINX, we first need to collect demonstrations using the two modes and annotate salient point

for each waypoint. In Section 4.1, we introduce an intuitive web GUI to easily collect such demonstrations

in the hybrid format and record salient points with no additional overhead. Then, we discuss how to

learn   and   in Section 4.2 and Section 4.3 respectively.

4.1. Data Collection Interface for SPHINX

Without an existing interface that satisfies our need, we design a data collection system to support

waypoint specification, salient point annotation, and mode switching seamlessly. Our hardware setup

includes two third-person cameras to provide RGB-D observations to construct a colorized point cloud 

, and one wrist-mounted camera to provide RGB wrist images  . We develop a custom web-based

= C( , )at o
pose
t wt′ o

pose
t wt′ t′

( , , , [ ])ot at mt wt′ ∈ {waypt, dense, terminate}mt

wt′ = wayptmt wt′ kt′

π( )ot

p( | )mt ot ( | )πwaypt wt ot ( | )πdense at ot

πwaypt

πdense

mt+1

m0

( | )πwaypt wt ot ( | )πdense at ot

o
pcd
t owrist

t

qeios.com doi.org/10.32388/HY137K 7

https://www.qeios.com/
https://doi.org/10.32388/HY137K


GUI for specifying waypoints and salient points in waypoint mode. To provide dense actions instead, a

demonstrator can seamlessly switch from the computer mouse to any dense teleoperation device like a

VR/game console controller or a 3D mouse (Spacemouse) as in this work.

The top row of Fig. 2 visualizes the web-based GUI and the process of recording a waypoint action. The

GUI streams the point cloud of   points   to the browser in real time and allows a

demonstrator to select a salient point    for each waypoint by clicking within the point

cloud, (e.g. the small red dot on the toy car next to the mouse cursor.) After clicking on the salient point, a

digital twin of the gripper appears near the salient point to facilitate waypoint specification. The

demonstrator can set waypoints relative to these salient points with simple click and drag interactions on

the virtual gripper. The salient point specifies the region of interest for interaction while the waypoint

captures how to interact with it by specifying 7 DoF target end-effector pose. After specifying a waypoint,

the linear controller   defined above interpolates and executes actions to reach the waypoint. Critically,

this removes the need for the demonstrator to manually teleoperate long-range movements. The entire

waypoint motion is recorded as a sequence   where   is the timestep

when the waypoint is specified and    is the number of steps that the controller takes to complete the

waypoint  .

Once the controller finishes executing a waypoint, the demonstrator may specify another waypoint or

switch to dense mode for precise manipulation. To take over with dense mode, the demonstrator simply

operates the teleoperation device, such as pressing or twisting the joysticks on a controller, and its

movements are automatically detected and mapped to delta movements on the end-effector of the robot.

This is illustrated by the bottom row of Fig. 2, where the operator uses the teleoperation device

(Spacemouse in this case) to precisely align and place the toy car onto the narrow bridge. Each step in

dense mode is recorded as  . Note that regardless of the mode, we record the full set of

observations   which includes all camera views as well as proprioception to facilitate data augmentation

and to make datasets compatible with any IL policy.

4.2. The Waypoint Policy of SPHINX

The waypoint policy   in SPHINX takes a point cloud   as input and outputs a 7-DoF end-effector

pose   for the robot to reach via a controller. We utilize point clouds as input to cast part of the action

prediction problem to learning a salient map over the points. This encourages the policy to attend to the
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important spatial features (i.e. the handle on a mug) rather than memorize exact locations (i.e. the 

 target grasp location).

The detailed design of the waypoint architecture is illustrated in Fig. 3. At a high level, we would like to

have per-point predictions, such as the probability of a point to be salient and the translational offset

between the point and the target location of the end-effector, as well as other predictions whose targets

are not expressed relative to the points, such as rotation, gripper state, and mode. We use a transformer to

process the points and add additional tokens for point-agnostic predictions. We first use farthest-point-

sampling (FPS)[24]  to downsamples a raw point cloud to   points, and then convert the points 

 to tokens   via a shared linear projection layer. Then we feed the entire set of tokens into a

transformer[25][26]  to get output embeddings. Since the points in a point cloud are unordered, the

transformer has no positional embedding and does not use a causal mask. We pass each point

embedding through a shared linear layer to get two predictions per point: one for the probability of the

point being a salient point   and the other for the offset   between the point position and

target waypoint position, illustrated by the middle “Prediction” panel of Fig. 3.

Figure 3. SPHINX-Waypoint Architecture & Training Objectives: SPHINX takes downsampled point clouds

as input, generating per-point tokens  , and uses a Transformer-style architecture to predict salient points

and waypoint actions (position, orientation, gripper state). Specifically, SPHINX predicts the waypoint’s

positional component as an offset from a salient point. The model outputs a per-point translational offset  ,

but we only penalize the offset loss on salient points (shaded) during training. Salient point prediction is

supervised using cross-entropy loss ( ) between predicted   and ground truth   salient probabilities.

Instead of using a hard one-hot target for salient point prediction, we construct a soft salient map over

points where the probability of each point is given by:

x,y, z
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Here,   is the index of the point selected by the user and   is a hyperparameter defining a neighborhood

of points that are salient. Within this radius, the probability of saliency decreases with distance to the

ground-truth point. In practice, we set to   to 5cm in all of our experiments. This target distribution of

salient points is illustrated by the red points on the right-most panel in Fig. 3, where different shades of

red represent the magnitudes of the probability  . We train saliency prediction using cross entropy loss

on the predicted salient probability   :

The goal for the offset prediction is to recover the target end-effector location relative to a predicted

salient point, which intuitively aims to ground the waypoint prediction in task-relevant features. This can

potentially provide more spatial grounding and awareness that can help with the policy more effectively

generalizing. Since we only care about the predicted offset from points with high saliency at inference

time, we only penalize the offset loss on the points that matter, whose ground-truth salient probabilities 

 are nonzero. Assuming   is the position of the target end-effector location,   is the location of the  -th

point, the loss for offset prediction   is:

The prediction targets for rotation, gripper state and next mode are the same regardless of which point is

selected. Therefore, we predict them from the output embedding of their respective tokens. We use the

mean squared error (MSE) loss for rotation on euler angles  , binary cross entropy (BCE) loss for the

binary gripper state  , and negative log-likelihood (NLL) loss for next mode classification  .

Since these losses are standard, we move them to Appendix A for conciseness. Finally, the full waypoint

loss is the sum of all terms, and we find that a simple unweighted sum works well in practice, eliminating

the need of additional hyperparameters:

By default, the waypoint dataset only consists of    for timesteps    where the

demonstrator explicitly specified a waypoint. However, because we use a controller to move the end-

effector between its current pose and the waypoint via   interpolated actions, we can treat interpolated

steps as additional data points to train on with the same target waypoint action label. We can expand each

observation-action pair to a sequence:
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where   is a hyperparameter specifying how much of the interpolated data to train on.

4.3. The Dense Policy of SPHINX

The waypoint policy    guides the robot to reach objects in a desired pose. However, long

horizon tasks often contain sub-tasks like insertion or alignment that require finer-grained actions.

These parts of the task would be easier to accomplish through direct, per-time-step teleoperation, rather

than using a series of short waypoints. To address this, we train a dense policy,  , which

takes over near a salient point to perform precise manipulation before handing control back to the

waypoint policy. Note that this policy uses the wrist camera instead of the point cloud  , as the dense

policy requires high-resolution views that capture close-up object details. Ignoring global observations

also helps it to better generalize to different scene arrangements since it only needs to operate locally.

We instantiate the dense policy of SPHINX with diffusion policy[3] which has been shown to work well in

a wide range of manipulation tasks. To allow the dense policy to switch back to waypoint mode, we

augment its action with an additional mode prediction dimension that predicts the next mode 

  corresponding to {waypt, dense, or terminate} modes. Fig. 1 illustrates how the dense

policy fits into the entire SPHINX framework. We train the dense policy using the entire dataset and use

the interpolated steps to augment our data. This provides the policy with more data and encourages it to

be robust to slightly early or late mode switches.

5. Experiments

In this section, we evaluate how SPHINX’s attention to salient points and hybrid policy architecture

impacts its performance and generalization on a suite of four challenging real-world tasks and two

simulated manipulation tasks. In all experiments, we assume access to two external camera viewpoints

and a wrist-mounted camera on the Franka Panda robot arm. See B for the implementation details.

5.1. Evaluation on Precise and Long-Horizon Tasks

We first evaluate SPHINX’s performance on complex, long-horizon tasks that demand precision. We

hypothesize that by interleaving waypoint actions predicted from point clouds, and dense actions

predicted from close-up wrist-camera images once near a salient point, SPHINX will more effectively be

able to complete this class of tasks compared to baselines which do not exploit salient points or a hybrid

{( , , waypt, , )| ≤ t ≤ + α }ot at wt′ zt′ t′ t′ kt′ (5)
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mode-switching policy. To assess this, we consider 3 challenging real-world tasks which we found to be

infeasible to teleoperate in waypoint-mode alone due to the required degree of precision and reactivity:

Cup Stack (30 demonstrations), Train Track (30 demonstrations), and Coffee Making (60 demonstrations).

See 5 for visualizations of each task and example rollouts. For each task, we consider a large and diverse

space of initial configurations (6), varying the relative locations of objects (cups, mugs, coffee pods,

machine, train track).

Baselines

We compare against three baselines, the first being Diffusion Policy (DP) from[3] with images from all

three cameras as input. We intend for this baseline to demonstrate the benefit of waypoint modes (or lack

thereof) for challenging manipulation tasks. The second baseline is HYDRA[9], a hybrid IL policy which

takes images from all three views as input and outputs waypoint and dense actions. Given that it is

image-based, HYDRA uses a multiheaded policy with a shared image encoder as input to waypoint, dense,

and mode prediction heads. Its waypoint prediction head outputs a waypoint without any intermediate

salient representation. We choose this baseline to demonstrate the effects of separate input modalities

(point cloud vs. wrist image) for waypoint and dense modes, as well as the benefit of using salient points

to ground waypoint actions. The original HYDRA implementation used a simple MLP for the dense head,

but we update it to a diffusion policy for fair comparison. The last baseline is Fine-tuned OpenVLA,

where we fine-tune the recent OpenVLA model[27], pretrained on large robotics datasets, on our single-

task datasets. We use it as an independent baseline given the recent trend of leveraging large prior

datasets towards generalizable robotic manipulation. Due to its design restrictions, this model can only

take a single third-person image as input.

In Fig. 4 (left), SPHINX achieves the best performance across all three challenging tasks. Fine-tuned

OpenVLA struggles to achieve the required precision, lacking mode switches and close-up wrist images.

HYDRA shows nonzero performance but suffers from inaccurate waypoint predictions without salient

point attention and point clouds. Diffusion policy performs the best among the baselines but struggles to

generalize across initial configurations without the waypoint mode. As shown in Fig. 6, SPHINX

generalizes better across various object placements, while baselines tend to memorize a few

arrangements. Overall, these tasks are highly unforgiving of grasping failures and imprecision. Baseline

methods particularly struggle to make progress in the train and coffee tasks where early mistakes

(missed grasps or placements with the mug, coffee pod, train) derail an entire rollout. SPHINX’s use of
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salient point attention and close-up wrist images allows the policy to carefully proceed through difficult

task phases, leading to higher success across scenes.

Figure 4. Success Rates Across Tasks: Left: SPHINX outperforms image-only dense baselines (OpenVLA,

diffusion policy) as well as a hybrid baseline (HYDRA) across 3 challenging real-world tasks (5) collected with

hybrid mode teleoperation. Train Track requires a degree of precision that baselines lack, while SPHINX's use

of salient points and hybrid actions enables precise, long-horizon manipulation. Right: Sphinx performs 

 better than the SoTA image or point-cloud based diffusion policies across tasks teleoperated in only

waypoint mode. Comparisons with the two vanilla waypoint baselines also show that both saliency prediction

and the relative waypoint action representation contribute to SPHINX's strong performance.

1.6×
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Figure 5. SPHINX Rollouts: We evaluate SPHINX across a suite of challenging real-world tasks subject to wide

initial state variations. SPHINX’s waypoint mode alone is precise enough to handle tasks like drawer opening,

while the full hybrid policy leverages different action modes to tackle complex tasks such as cup stacking,

building and playing with a toy train set, and making coffee.

qeios.com doi.org/10.32388/HY137K 14

https://www.qeios.com/
https://doi.org/10.32388/HY137K


Figure 6. Distribution of Successful Rollouts: Across 4 real-world tasks, we visualize the initial state

distribution for successful trials across methods by overlaying segmented initial images. Notably, SPHINX

handles the widest degree of spatial variety, while achieving a much higher task success rate compared to the

most competitive baseline. For particularly difficult tasks like Train Track and Coffee, the baselines tend to

memorize motions for particular object arrangements (i.e. mug behind pods) rather than generalize to spatial

variations.

5.2. Waypoint Policy Ablations

Although SPHINX’s performance in challenging real-world tasks relies on the dense policy, the waypoint

policy is crucial for its strong performance and generalization as it reliably guides the robot to task-

relevant locations. In this section, we validate the design choices behind Sphinx’s waypoint policy

through ablations and comparisons against state-of-the-art (SoTA) IL policies. To isolate the impact of

the waypoint policy from that of the dense policy, we conduct these experiments exclusively on tasks

that can be teleoperated solely in waypoint mode, without the use of dense mode.

We posit that SPHINX can achieve a higher task success rate across a wide range of initial spatial

configurations by effectively using waypoints (via salient points and offsets) to reduce the action

prediction horizon and maintain higher precision and better spatial awareness than alternatives. We

consider three tasks, one real task of opening an articulated drawer (Drawer, 20 demonstrations) and two

simulated environments in Robomimic[28] (Can, 20 demonstrations, and Square, 50 demonstrations).
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Baselines

We compare SPHINX against four baselines. The first two are SoTA IL policies in robotics — dense-only

image-based Diffusion Policy[3] and its point-cloud based extension 3D Diffusion Policy (3D DP)[29]. We

train them on the interpolated data  . In addition to RGB images from the same external cameras

used by the point cloud-based methods, the image-based DP also incorporates wrist camera inputs to

ensure optimal performance.

Additionally, we consider two waypoint baselines that can also be seen as ablations. Vanilla Waypoint

uses the same input and Transformer backbone as SPHINX but it removes the salient point prediction

and offset prediction. It instead adds a Translation Token, similar to the Rotation Token, to the

Transformer and predicts the target translation from the output of that token using MSE loss. Vanilla

Waypoint + Auxiliary Salient Points predicts the translation the same way as vanilla waypoint but adds

the salient point prediction of SPHINX as an auxiliary task. It can also be viewed as SPHINX without

offset prediction. We choose the two waypoint baselines to ablate over the importance of salient point

and offset prediction separately.

Results

In Fig. 4 (right), we find that SPHINX achieves   better performance than the best baseline between

SoTA image-based or 3D diffusion policies. By carefully inspecting the two vanilla waypoint variants, we

can see that vanilla waypoint is only slightly better in the simplest Can task but notably worse than the

diffusion policies on the more complex simulation task of Square as well as the real world Drawer task.

This is interesting as it suggests that the shorter prediction horizon of waypoint policies alone is not

necessarily a benefit without predicting salient points. Adding the salient point prediction as an auxiliary

task improves the performance of vanilla waypoint without changing the action representation,

especially in Square which requires highly precise maneuvers like grasping and hanging a small tool

handle where attention to specific object parts is crucial. This suggests the utility of salient points for

encouraging better action prediction. SPHINX’s dominant performance over the two waypoint baselines

suggests the effectiveness of anchoring waypoint action prediction relative to salient points.

5.3. Visual Generalization

We next evaluate SPHINX’s ability to handle visual rather than only spatial generalization on Drawer and

Cup Stack. As seen in Table 1, SPHINX demonstrates a promising degree of generalization to visual

{ , }ot at

1.6×
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distractors during execution, and unseen third-person camera viewpoints (Fig. 7), retaining high

performance. This is likely enabled by using viewpoint-agnostic point clouds (assuming calibration),

salient points encouraging the policy to ignore distractors, and wrist-camera images in dense mode

which are largely unaffected by changes in the surrounding scene. Diffusion policy heavily overfits to the

training scenes and suffers a noticeable performance drop.

Method Drawer Drawer Cup Stack Cup Stack

Unseen height Novel viewpoint Visual distraction Novel viewpoint

Diffusion Policy 4/10 1/10 1/10 0/10

SPHINX 9/10 9/10 8/10 9/10

Table 1. OOD Results: We compare SPHINX to DP on Drawer and Cup Stack across various unseen scenarios. In

Drawer, SPHINX successfully opens the drawer at unseen heights by attending to the handle as a salient

point, while DP struggles. In Cup Stack, SPHINX maintains strong performance despite visual distractors, as

its salient points focus on the cups, and the wrist-only dense policy ignores surrounding scene changes.

Finally, Sphinx generalizes to unseen camera viewpoints in both tasks, whereas DP’s image-based approach

suffers.

Figure 7. Generalization Capabilities:SPHINX generalizes across multiple axes on Cup Stack, handling static

(e.g., office supplies) and dynamic (e.g., moving toy train) distractors (see website). Using calibrated point

clouds as input further allows for generalization to unseen camera viewpoints at test time, and the waypoint

controller enables   execution speeds, completing Cup Stack in 9.2 s. on average.accelerated

qeios.com doi.org/10.32388/HY137K 17

http://sphinx-manip.github.io/
https://www.qeios.com/
https://doi.org/10.32388/HY137K


5.4. Execution Speed

A key advantage of SPHINX over dense-only methods is its decoupled waypoint and dense policies.

While dense methods are tied to the speed of actions recorded during data collection, SPHINX uses a

waypoint controller that allows flexible execution speeds at test time. We specifically collect all data

across all tasks using a controller limited to a maximum delta of 1 cm at 10Hz. After training SPHINX and

dense-only diffusion policy on Cup Stack, we perform 10 trials of the task, where we compare SPHINX

implemented with a    sped-up controller (2 cm maximum delta at test-time) to DP trained on the 

 data. SPHINX completes the task in an average of   seconds, a   speedup over diffusion policy (

 seconds). While further speed increases led to controller imprecision, SPHINX has potential for even

faster execution on more capable hardware.

6. Limitations and Conclusion

SPHINX demonstrates strong performance and generalization across a range of tasks, but our policy is

not without failures. The majority of SPHINX's failures stem from the dense policy being slightly

imprecise for grasping or manipulation. Although we mitigate this by using the dense policy only for

short horizons near salient points, performing the “last mile” of precise insertion or alignment remains

challenging for some tasks. Additionally, our data collection interface uses a linear controller to reach

waypoints. This currently limits SPHINX to fairly quasistatic tasks without fast, dynamic movements.

Finally, the performance of our waypoint policy is limited by the quality of the input point cloud. We

currently perform a one-time calibration procedure to obtain multi-view extrinsics and point clouds, but

sensor noise and calibration error is not completely avoidable.

To summarize, we present SPHINX, a visuomotor IL policy which learns to perform complex

manipulation tasks from a limited amount of demonstrations while generalizing across many axes: novel

spatial arrangements, visual distractors, novel viewpoints, and even customizable execution speeds (Fig.

7). SPHINX achieves this using a hybrid policy architecture that takes point clouds and wrist-images as

input, and outputs waypoints and dense actions guided by salient points. SPHINX achieves an average

success rate of   across 2 simulated and 4 real-world high-precision, long-horizon tasks, including

making coffee and assembling a train set with several pieces. Our policy outperforms state-of-the-art IL

baselines by    on average across    real world robot trials. Avenues for future work include

improving dense mode manipulation with additional sensing modalities such as tactile sensors,

2×
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extending our data collection interface to support dynamic manipulation tasks, and deploying SPHINX in

the wild across a range of real-world environments.

Appendix A. Additional Losses for the Waypoint Policy in SPHINX

In 4.2 we define the salient point prediction loss and offset loss for SPHINX. Here we complete the full

loss definitions for the waypoint policy. Recall that the waypoint policy needs to predict translation  ,

rotation  , binary gripper state    and next mode  . As described in the main paper, the translation

prediction is decomposed to first predict salient points (Eq. 2) and then predict offset   w.r.t. the salient

point (Eq. 3). We represent rotations in Euler angles and loss is mean squared error (MSE) between the

prediction   and target  :

Although MSE on Euler angle ignores the wrap-around effect, i.e.   and   represent the same rotation

but the loss is not 0, we choose it for its simplicity and find it to work well in practice. Other

representations for rotation and their corresponding losses, such as quaternion, should work similarly.

The gripper state is binary with   for open and   for close. Assuming   is the ground-truth gripper state

and    is the predicted probability of the gripper being open, then the gripper loss is a binary cross

entropy loss:

The waypoint policy also need to predict the next mode, which is a three-way classification among

candidates  . We train it via negative log-likelihood:

where   is the predicted probability for ground-truth mode  . Finally, the full waypoint loss is the sum

of all terms, and we find that a simple unweighted sum works well in practice, eliminating the need of

additional hyperparameters:

ξ̂

α̂ ĝ m̂

ϕ̂

α̂ α

= ∥α − .Lrot α̂∥2 (6)

−π π

1 0 g

ĝ

= g log + (1 − g) log(1 − ).Lgripper ĝ ĝ (7)

{waypt, dense, terminate}

= − logLmode m̂ (8)

m̂ m

= + + + +Lwaypoint Lsalient Loffset Lrot Lgripper Lmode (9)
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Appendix B. Implementation Details of SPHINX

B.1. Waypoint Policy

The waypoint policy in SPHINX is using a Transformer to predict salient probability and offset per point,

as well as to predict rotation, gripper and mode using additional tokens similar to the [CLS] token in

visual classification. The Transformer has   layers and each layer has   embedding dimensions over 

 attention heads. We remove positional embeddings from Transformer as the point cloud input has no

ordering. We set dropout to   for all Transformer blocks to avoid overfitting. We optimize the waypoint

policy with Adam[30] optimizer with base learning rate   and cosine learning decay over the entire

training process, i.e. decaying to   at the end of training. We clip the gradient with maximum norm  . We

set batch size to 64. We also maintain an exponential moving average (EMA) of the policy with the decay

rate annealing from 0 to 0.9999. We use the final EMA policy in all evaluations without any further model

selection. All waypoint policies are trained for 2000 epochs.

As mentioned in the Section 4.2, we use observations from interpolated steps as data augmentation for

waypoint training, a technique we refer to as temporal augmentation:

where   is the initial step when the demonstrator specified the current waypoint,   is the total number

of steps it takes for the controller    to execute this waypoint. Essentially we train   on the

initial    as well as the intermediate observations  . Here    means no temporal

augmentation and    means training on the entire waypoint segment. In practice, we find that

setting    strikes a balance between sufficient augmentation while avoiding interpolated

observations that occur too late in a waypoint segment, which can cause the policy to confuse the current

target waypoint with the next one. As a concrete example, the waypoint dataset for the Robomimic

Square task contains 50 demonstrations, each containing 6 waypoints. The raw dataset for training the

waypoint policy contains 300 examples. With the temporal augmentation, the dataset now contains

roughly 1800 examples, increasing the amount of data by    times. All the waypoint policies, including

vanilla waypoint baselines in Section 5.2 are trained with temporal augmentation   as it improves

the performance for all of them. The performance of each waypoint policy with and without temporal

augmentation is listed in Table 2. We can see that temporal augmentation improves the performance of

waypoint policies in five out of six scenarios and achieves similar performance in the remaining one.
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SPHINX benefits the most from the augmentation technique, with    average improvement across

the two environments.

Apart from the temporal augmentation, we also apply random translation augmentation to the point

cloud input and target action. The amount of random translation is sampled uniformly from 

 along  -axes. We follow the common practice to crop the point cloud to remove points

outside of the workspace but do not apply any other vision pipelines (i.e. no object detection nor

segmentation) to preprocess the point cloud.

Env Can (20 demos) Square (50 demos)

Waypoint Method Vanilla Vanilla (+ Aux SP) SPHINX Vanilla Vanilla (+ Aux SP) SPHINX

w/o Temp. Aug. 68% 70% 77.5% 8% 68% 75.5%

w/ Temp. Aug. 70% 78% 93.5% 13% 65.5% 86.5%

Table 2. Waypoint Policy Ablations

B.2. Dense Policy

The dense policy in SPHINX is a diffusion policy. We closely follow the original implementation of  [3].

Specifically, we use ResNet-18 [31] encoder to process the wrist image and append the proprioceptional to

the image embedding before feeding it to a 1-D convolutional UNet for action denoising. The diffusion

policy is trained with DDPM to predict the noise given the noisy action as input and observation as

context. We follow the best practices of training it using Adam [30] with weight decay, cosine learning rate

schedule and take the exponential moving average of the policy as final policy for evaluation. Our

implementation is able to reproduce the results on Robomimic from the original paper.

Appendix C. Extended Related Work

Relationship between Salient Point and Affordance.

Affordance learning is a common concept in robotics manipulation. It can refer to classifying the nature

of interaction for certain object points (e.g., a tool handle is ”graspable,” a button is ”pressable”) [32], or

13.5%

[−5cm, 5cm] x,y, z
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more broad action candidates or success possibilities associated with objects  [33]. Salient points in

SPHINX can be thought of as a form of per-point affordance, but must be combined with offsets to

specify how the end-effector should interact with a given point. Critically, we demonstrate that the per-

point affordances in SPHINX allow the policy to focus on task-relevant features and avoid paying

attention to arbitrary objects, leading to robust execution in the presence of visual distractors.

Action Representation in Robotics. Several works have also considered using classification instead of

regression for action prediction in imitation learning setting. PerAct[34] divides the entire 3D workspace

into voxels and convert the end-effector pose prediction problem into classification over the fixed set of

voxels. The precision of prediction depends on the granularity of the voxel, and the number of action

candidates grows cubically in the number of voxels, making it challenging for tasks that requires high-

precision. Act3D[35] performs coarse-to-fine scoring for “ghost points”, which addresses the granularity

issue of PerAct, but still lacks any kind of explicit intermediate representation such as salient points. In

comparison, SPHINX first predicts the salient point, a point that physically exists in the input point cloud,

through classification and then predicts offset w.r.t. the salient to recover the full action. This allows

SPHINX to be arbitrarily precise without incurring the high cost of having fine-grained voxels.

SGRv2[36]  is a recent work that uses per-point offset prediction for robotics manipulation. It predicts

actions as per-point offset for all points, and uses a weighted average to get the final action output. In

contrast, SPHINX utilizes salient point learned from human labels as the anchor for offset prediction. Due

to the existence of salient points, SPHINX applies the offset loss only to the proximal points of the

“demonstrator-specified salient point”, i.e. the red points in Fig. 3 and Eq. (3). This is an easier task for the

neural network since it does not need to allocate capacity to predict offset for points far from the salient

points. Additionally, the salient point learning objective is one of the main strength of SPHINX . The

ablation in the right panel of Fig. 4 shows that the classification loss is helpful, that even just having it as

an auxiliary task significantly improves performance of the “vanilla waypoint”. On the implementation

side, Sphinx uses a GPT-2 style Transformer while SGRv2 uses PointNeXt as backbone. Although both

methods should work well with either architecture choices but we think it is interesting to see a generic

architecture not specialized for point cloud to perform quite well in these tasks.

Appendix D. Implementation and Performance of Baselines

In this section we discuss the steps we have taken to ensure that the performance of our baselines is valid

and discuss potential reasons for the low performance for baselines like Hydra and OpenVLA.
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Diffusion policy (DP): Our DP implementation is able to reproduce the reported results from the original

paper and it achieves the reported performance on Robomimic Can and Square with 200 demonstrations

from the original Robomimic dataset. It uses the same set of cameras (3rd person and wrist) as SPHINX.

In the SPHINX experiment we collected 50 demonstrations for the Square and we have verified that the

DP trained on the SPHINX dataset ( , 50 demonstrations) is similar to the one trained on 50

demonstrations from the Robomimic dataset ( , 50 demonstrations).

3D diffusion policy (DP3): Our implementation closely follows the one from their original codebase. In

their original paper, DP3 is not evaluated on the Robomimic benchmark. We find it to perform similarly

as DP on the real world Drawer task but perform slightly worse than DP on Robomimic benchmarks and

other more complicated real world tasks. This is reasonable given that DP3 purely conditions point clouds

constructed from 3rd person cameras and does not use wrist camera images. The close-up information

from the wrist camera images is crucial for Robomimic tasks as well as our real world tasks. In

comparison, SPHINX switches to a wrist-view image based diffusion policy for fine-manipulation,

resolving the lack-of-detail issue of point cloud inputs.

Hydra: We modernize Hydra by using the diffusion policy as its dense policy while keep the rest of the

implementation as close to the original design as possible. The low performance of Hydra seems

unreasonable at first glance, but it can be explained via a close look at their original results and our

ablations. Our coffee-making task is similar to the one in Hydra. However, the original Hydra paper

collected 100 demonstrations with little variation on the location of the coffee machine, and put the cup

and coffee pod on a shelf to make them easier to pick up. In our case, we randomize the initial location

and orientation of the cup, pod and coffee machine, and only use 60 demonstrations. Therefore, it is

reasonable to expect a much lower performance for Hydra on this task. Hydra’s waypoint branch is

similar to our “vanilla waypoint”, i.e. directly predicting target pose via regression, but uses images

instead of point clouds. From the ablation (Fig. 4, right panel), we see that this vanilla waypoint policy is

noticeably worse than plain diffusion policy on the hard task (Square) that requires precision. Therefore,

considering that Hydra’s waypoint policy is worse than diffusion policy, it is not surprising to see that the

full Hydra policy (vanilla waypoint + diffusion policy) performs worse than diffusion policy in the real

world tasks.

OpenVLA: We follow the instructions and code provided by the OpenVLA authors and apply everything as

in their fine-tuning script (which does use image augmentation). We believe the poor performance of

OpenVLA is not surprising for a few reasons. From Fig. 5 (left half) of the OpenVLA paper, we see that

44%
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fine-tuned OpenVLA is **worse** than Diffusion Policy in 2 out of the 3 cases in single-task setting on

Franka Panda hardware. In general, OpenVLA’s distribution of pre-training data relies heavily on the

Bridge Dataset, which has a major embodiment gap compared to our Franka dataset. OpenVLA is only

compatible with a single 3rd person view, and cannot leverage a close-up wrist image view. On all of the

real world tasks we did, the wrist camera view is crucial to sensing end-effector object alignment for

precise manipulation. For example, for cup stack (the easiest of the hybrid tasks), even being off by a

centimeter can lead to knocking over one or both of the cups. Thus, OpenVLA’s poor performance is

unsurprising given its limited observation space. Other recent work[37]  reports similar trends on

OpenVLA where a fine-tuned OpenVLA performs poorly, achieving   success rate on 4 out of 5 settings

and   on 1 setting.
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