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Spectral �ow cytometry provides greater insights into cellular heterogeneity by simultaneous

measurement of up to 50 markers. However, analyzing such high-dimensional (HD) data is complex

through traditional manual gating strategy. To address this gap, we developed CAFE as an open-

source Python-based web application with a graphical user interface. Built with Streamlit, CAFE

incorporates libraries such as Scanpy for single-cell analysis, Pandas and PyArrow for e�cient data

handling, and Matplotlib, Seaborn, Plotly for creating customizable �gures. Its robust toolset

includes density-based down-sampling, dimensionality reduction, batch correction, Leiden-based

clustering, cluster merging and annotation. Using CAFE, we demonstrated analysis of a human

PBMC dataset of 350,000 cells identifying 16 distinct cell clusters. CAFE can generate publication-

ready �gures in real time via interactive slider controls and dropdown menus, eliminating the need

for coding expertise and making HD data analysis accessible to all. CAFE is licensed under MIT and is

freely available at https://github.com/mhbsiam/cafe.

Corresponding author: DanielJ.Tyrrell, danieltyrrell@uabmc.edu

Introduction

Flow cytometry is a widely used technique in immunology to identify and quantify immune cells based

on speci�c surface markers[1]. The development of spectral �ow cytometry (SFCM) has further

expanded immunophenotyping capabilities allowing the simultaneous analysis of a greater number of

parameters through the complete emission spectra of �uorophores[1]. Compared to conventional �ow
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cytometry, SFCM uses spectral unmixing algorithms to deconvolute the overlapping signals and

achieves enhanced resolution and sensitivity to distinguish between di�erent cell populations[2].

SFCM can incorporate broader range of antibodies with up to 50 colors in a single panel improving

upon the conventional FCM where the number of parameters is limited by the instrument

constraints[3]. Incorporating more parameters substantially increases the complexity in gating

strategy which largely relies on established convention and prior knowledge[4][5]. Additional gating

steps and combinations of markers used to subset cells complicate the interpretation of such high-

dimensional data. Several clustering methods are available to identify cell populations such as

FlowSOM[6], xShift[7], SPADE[8]  and Phenograph[9]. SPADE and FlowSOM utilize hierarchical

clustering with the latter employing self-organizing maps (SOMs) to cluster cells, whereas xShift

detects clusters based on shifts in local cell density[6][7][8]. Phenograph, by contrast, constructs a K-

nearest neighbor graph and applies the Louvain algorithm to identify cell clusters, but Louvain can

produce poorly connected or disconnected communities[9][10].

Recently, the Leiden clustering algorithm has emerged as a faster and more accurate alternative to

improve community detection in networks[10]. Single-cell RNA sequencing (scRNA-seq) tools:

Seurat[11]  (R) and Scanpy[12]  (Python) have integrated Leiden algorithms for community detection.

However, running Leiden within Seurat resulted in drawbacks including higher memory usage, longer

calculation time and random crashes in docker containers[13]. Scanpy resolves these issues, and unlike

Seurat, Scanpy improves visualization quality by using consistent KNN and SNN graphs for both

clustering and uniform manifold approximation and projection (UMAP)  [13][14]. In February 2020,

Phenograph version 1.5.3 was released, which incorporated an option to use Leiden for clustering;

however, the default parameter is set to Louvain through the latest release (v.1.5.7). In our previous

work, we showed that the use of Leiden algorithm in community detection for SFCM data provides

superior result to Phenograph (Louvain), FlowSOM, and xShift[15]. Currently, there is a scarcity of

open-source tools to utilize Leiden algorithm for SCFM data analysis[16].

Here we present CAFE, Cell Analyzer for Flow Experiment, a user-friendly web application developed

in Python that works across Windows, MacOS, and Linux. The app is lightweight and can perform

high-dimensional SFCM data analysis using a standard computing machine (i.e., Apple M1 chip with

16gb RAM), and it provides the �exibility to be deployed on HPC clusters for enhanced scalability. Once

installed, the tool runs entirely o�ine and does not require an active internet connection to load �les.
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This also enables users to maintain compliance with data security, especially with protected health

information (PHI) when analyzing patient samples. CAFE can be used to process data, reduce

dimension, batch correction, run Leiden clustering, perform statistics and generate a wide range of

�gures. Figures can be adjusted and viewed within the tool in real time. Additionally, the tool o�ers

Kernel Density Estimation (KDE)-based data downsampling, advanced clustering with prede�ned

markers, cluster quality evaluation, merging subclusters into metaclusters, and cell type annotation.

Designed as an open-source interactive data analysis platform, CAFE enables biologists with no-

coding experience to analyze SFCM data and create publication quality visualization with

customizable parameters. CAFE is freely available to download at: https://github.com/mhbsiam/cafe.

Methods

Implementation

The CAFE webtool was developed using Python programming language due to its compatibility with

Scanpy library[12]. Figure 1 illustrates the components and work�ows of CAFE. Streamlit (streamlit.io)

library was used to develop the web interface that provides dynamic updates based on user inputs in

the graphical user interface (GUI) without writing or editing code directly. Streamlit was chosen due to

its simplicity in development and compatibility with other Python libraries across operating systems.

Streamlit v1.39.0 is compatible with any modern HTML5 web browser. For data loading and

processing, we relied on Pandas v2.2.3 with PyArrow v18.0.0 which achieves faster data loading and

processing compared to Pandas alone. We used NumPy v1.26.4 for data type and range selection, RGB

array creation for color handling, and grid setup for subplots. Seaborn v0.13.2, Matplotlib v3.9.2, and

Plotly v4.24.1 libraries were used for data visualization and users are provided with options to adjust

parameters: plot size, color pro�le, and output formats in PNG, JPG, SVG, or PDF. CAFE integrates

AnnData[12], a widely used framework in single-cell RNA sequencing analysis that allows for e�cient

storage and manipulation of both sparse and dense matrices along with metadata. CAFE outputs an

AnnData object which can be used outside of CAFE if users wish to deposit their data with analysis or

perform custom analyses using other tools.
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Figure 1. The �owchart outlines steps and components of CAFE’s work�ow. Preprocessing includes

compensation, data scaling/transformation using a standard FCM software and scaled CSV �les are then

exported and renamed as Sample_Group.csv. Data processing performs error checks and concatenation of

CSV �les into an AnnData object/H5AD �le. Major steps requiring user input include dimension reduction,

batch correction, UMAP (UMAP Uniform Manifold Approximation and Projection) and community

detection. Outputs are downloadable as CSV, H5AD, PNG, JPG, SVG and PDF �les.

The Scanpy library was used to perform key analyses including dimension reduction, batch correction,

and Leiden clustering. The user has the option to reduce dimension (sc.tl.pca) of the data through

Principal Component Analysis (PCA) or skip it. PCA is a linear dimensionality reduction technique that

retains the global structure of the data by capturing the variances across all dimensions. Because the

app performs PCA through Scanpy library, by default, the number of components retained is limited to

the lesser of the two values: the number of cells or the number of markers. Also, the Singular Value

Decomposition (SVD) solver was set to “auto” that chooses the most appropriate solver based on the

size of the dataset; however, users have options to set a percentage of variances they want to retain,
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and the type of solver used. The reduced dataset is stored and can be further processed for batch

correction (sc.pp.combat) using ComBat (Combined Batch)[17]. This is particularly useful if a user has

collected samples in di�erent batches as the algorithm standardizes the data by making it comparable

and removing unwanted variability.

To group cells into distinct clusters based on marker expression pro�les, Leiden clustering is run

(sc.tl.leiden) and users can select either ‘iGraph’ or ‘leidenalg’ algorithm �avor[10][18]. To de�ne

clustering resolution, a user can choose from 0.01 to 2.0 where the lowest value provides the lowest

number of clusters. The user can �ne tune Leiden calculation by altering the number of neighbors and

minimum distance values in Uniform Manifold Approximation and Projection (UMAP) calculation

within the app. CAFE generates AnnData object (H5AD) �le, CSV outputs, and visual outputs including

UMAP plots, dot-heatmaps, expression pots, and barplots as high-resolution images and provides

download buttons to save them to a desired folder. The app allows various visualization settings, with

changes made and displayed immediately within the app. The generated AnnData object can be further

used to perform a range of statistical analyses.

The app includes advanced functionalities for clustering and cluster evaluation. Because setting up

appropriate values for Leiden resolution and UMAP parameters is central to obtaining quality

clustering results, a user can leverage CAFE’s Cluster Evaluation tab to generate multiple AnnData

�les with various combinations of these parameters and compare UMAP plots as well as Silhouette

score, Calinski-Harabasz score, Davies-Bouldin score, and Elbow method to assess clustering results.

Besides, CAFE provides clustering with pre-selected markers, merging subclusters into metaclusters,

and annotation of clusters directly within the app. The advanced Downsampling tab o�ers to

downsample (e.g. 20,000 events per sample) data using a PCA-KDE based method. This approach

combines PCA and KDE (Kernel Density Estimation) based algorithm from scipy.stats using Gaussian

kernel function and silverman bandwidth[19]. KDE is applied to the PCA-transformed data to estimate

the density of data points. Based on these density estimates, the code probabilistically downsamples

data, thus reducing sampling bias and preserving original data distribution. This method o�ers an

informed approach compared to simple random downsampling, and it can be used to �lter out noise

while retaining meaningful biological information in a smaller dataset.
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Statistical analysis

In the visualization tab under statistical analyses section, users can perform di�erent statistical tests

and generate plots. The Shapiro-Wilk test from “scipy.stats” is used to determine if marker

expression within each group or cluster follows a normal distribution. Based on these results, the app

recommends either parametric (T-test) or non-parametric (Mann-Whitney U test) tests using

“scipy.stats”. For comparing multiple clusters, the app allows users to perform ANOVA

(scipy.stats.f_oneway) or Kruskal-Wallis (scipy.stats.kruskal) tests. To reduce statistical artifacts,

multiple testing correction is applied using the Benjamini-Hochberg False Discovery Rate (FDR)

through “statsmodels.stats.multitest”. Additionally, e�ect size measures are computed to

complement statistical p-values, with users able to choose between parametric tests (Cohen’s d) or

non-parametric tests (Cli�’s Delta). Cohen’s d is calculated using basic functions from Numpy, while

Cli�’s Delta is computed with the “cli�s_delta” package. To assess associations between clusters and

groups, we used Chi-square testing from “scipy.stats.chi2_contingency” and contingency tables with

“pandas.crosstab”. Residual calculations were displayed in Streamlit as tables to help users

understand which clusters are more prevalent within certain groups.

Performance and reproducibility

We have set a global setting for Scanpy (sc.settings.n_jobs = −1) to use all available CPU cores. For

advanced clustering, multi-threading was achieved using Python’s joblib library. Two other libraries

were used, watchdog v5.0.2 and iGraph v0.10.8[18]. Watchdog helps in monitoring �le change events

and improves performance of Streamlit by providing real-time feedback. iGraph is designed to handle

complex networks and graph operations and is used by Scanpy as part of the Leiden clustering to

perform graph operations. We recommend ‘iGraph’ over ‘leidenalg’ as iGraph is implemented in C and

achieves advantages in performance compared to high-level interpreted languages such as Python. To

export Plotly �gures, we have used Kaleido engine v0.2.1. We have tested the app with various datasets

using an Apple M3 Pro System with 18GB of random-access memory (RAM). CAFE is primarily

intended to be used using local computer; however, it can be scaled up using any High-Performance

Computing (HPC) system that supports an HTML5 web browser. We also provided scripts in our

GitHub page to generate AnnData with dimension reduction and Leiden clustering through command-

line interface (CLI) based HPC systems.

qeios.com doi.org/10.32388/I17PPM 6

https://www.qeios.com/
https://doi.org/10.32388/I17PPM


Results

To demonstrate the functionality of the app, we have analyzed 35-color spectral �ow cytometry data

(Publicly available at FlowRepository: FR-FCM-Z3WR) of human peripheral blood mononuclear cells

(PBMC) obtained from COVID-19 hospitalized patients and healthy controls[20]. A total of 10 samples

were analyzed with 5 from each group. For best practices, we installed and ran CAFE through Pixi

package manager. Users can also install and run the app using Anaconda package manager as

described in our Github documentation. Once initiated through a terminal (pixi run cafe, or python

cafe.py), a web browser opens with the CAFE app at localhost on port 8501. The default data loading

limit is set to 3GB, but a user can change the value from the cafe.py script if necessary.

Data processing

The uploaded public data were available as doublets-debris removed and CD45+ gated; so we obtained

the CSV �les just by exporting scaled values from FlowJo v10.10.0. Data scaling is generally

recommended for high resolution clustering but there may be instances where users may use raw

values. Data can be similarly exported from other �ow cytometry software such as FCS Express. It is

required that �ow cytometry data have proper compensation. We recommend manual inspection of

�ow cytometry data and removal of debris, dead cells, and doublets prior to exporting the scaled �les.

A user can also gate on appropriate cell type and export the data to obtain more focused clustering

results. To streamline downstream analysis, we have implemented a naming convention for the CSV

�les. Each CSV �le name must begin with a unique “SampleName” followed by “GroupName”,

separated by an underscore; for instance, “Sample01_Control.csv” and “Sample02_Treatment.csv”.

After loading the data, the app will import the required libraries and perform initial checks for data

structure and incorporate SampleID and GroupName into the dataframe based on the CSV �le names.

Within the dataframe, rows containing any missing values are skipped and anomalies in data structure

are reported. In this study, we used the advanced KDE-based downsampling option in CAFE to

downsample data to 35,000 cells per sample for a total of 350,000 cells and 12.25M data points

(number of cells multiplied by number of markers). This is an optional step prior to data processing.

After loading the �les, the app processed (7.8 sec) and combined the expression data and metadata

without errors to create an AnnData object.
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Dimension reduction and batch e�ects

After generating the AnnData object (H5AD �le), we selected dimension reduction using PCA with SVD

solver set to auto and retained components with 95% variance. The app ran PCA (2.16 sec), kept 12

components and generated (PC1 x PC2) graphs by Groups. Depending on the data size, a user can

choose from auto, full, arpack, and randomized SVD solver. Randomized, for example, is better suited

for larger datasets as it provides a balance between speed and accuracy. For batch correction, we

applied ComBat (1.06 sec) and proceeded to Leiden clustering.

Leiden clustering and metaclustering

For the dataset, we applied Leiden resolution of 1.0 with �avor set to iGraph, UMAP n_neighbors to 15,

min_dist to 0.1 and distance calculation method as Euclidean. A user has the option to use a slider

control to choose from resolution values 0.01 to 2.0. To �nd the optimal resolution, we initially made

use of Advanced Cluster Evaluation option in CAFE to generate a series of AnnData �les with varied

Leiden resolution and n_neighbor values and observed the UMAPs to �nd distinct clusters that are

biologically meaningful for the dataset. With Leiden resolution of 1.0, we initially obtained a total of 30

clusters for the PBMC dataset which took 11.5 minutes for calculation. Once clustering was completed,

CAFE generated a frequency table of each sample by Leiden cluster for the number of cells, frequency

of cells, and median �uorescence intensity of each marker for each cluster. Using these 3 tables, users

can perform statistical analyses to compare cluster count and frequency by groups and expression of

marker proteins within clusters by group. Using the Advanced Cluster Merging option, we merged the

subclusters with similar pro�le into corresponding metaclusters resulting in a new total of 16 clusters.

Characterization of PBMC Subpopulations

To characterize the phenotypic properties, we examined the expression of surface markers for each

identi�ed cluster by protein expression UMAP plots (Figure 2a). We found high CD3 expression in T

cells clusters with CD4 and CD8 expression showing corresponding T cell subtypes. CD8+ e�ector

memory (Tem) and central memory (Tcm) subsets were di�erentiated by high CCR7 and CD27

expression in Tcm. We used CD45RA expression to identify terminally di�erentiated Tem cells

(Temra). Monocyte clusters were identi�ed by CD14 and CD16 expression, distinguishing classical

monocytes (cMO) from other monocyte subsets, while natural killer (NK) cells showed high levels of

CD56, corresponding with CD56Bright NK cells. Based on shared marker pro�les and hierarchical
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ranking, T cell subsets (Tem, Tcm, and Temra) formed a distinct grouping separate from B cells and

myeloid-derived cells, re�ecting the di�erential expression of lineage-speci�c markers.

Figure 2. Pro�ling of Human PBMCs Reveals Distinct Immune Subpopulations and Marker Expression

Patterns. (a) UMAP plots showing selected marker expression intensities across all cells in the UMAP

space to highlight lineage-speci�c marker distribution. (b) Dot plot of all marker expression across all

identi�ed PBMC cell types. Dendrogram highlighted distinct marker-based groupings. (c) UMAP

visualization showing 16 distinct clusters with annotated cell types including Naive CD4 and CD8 T cells,

central memory CD4 and CD8 T cells (Tcm), e�ector memory CD8 T cells (Tem), terminally di�erentiated

e�ector memory CD8 T cells (Temra), mucosal-associated invariant (MAIT) T cells, classical monocytes

(cMO), intermediate monocytes (iMO), B cells, NK cells, gamma delta (γδ) T cells (Tgd), conventional

dendritic cell (cDC) and plasmacytoid dendritic cell (pDC).

Based on the expression pro�les of marker proteins, we annotated the clusters using CAFE’s Advanced

Annotation tab and classi�ed them into 16 distinct cell types. We also used the dotplot to con�rm
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annotations of the cell types (Figure 2b). For instance, the B cell-speci�c marker CD19 and CD20 were

used to identify the B cell cluster, the CD14 marker to identify monocytes, and the CD16 marker to

identify NK cells. High CD20 expression in B cell cluster indicated their mature stage in immune

response. Our annotated UMAP (Figure 2c) shows well-de�ned clusters that correspond to PBMC

lineages, including Naive CD4+ and CD8+ T cell and Tcm for both CD4+ and CD8+ subsets. We also

identi�ed Tem and Temra cells, as well as mucosal associated invariant CD8+ T cell (MAIT). We also

identi�ed cMO, intermediate monocytes (iMO), B cells, NK cells, Gamma delta (γδ) T cells (Tgd) and

dendritic cell (DC) types (cDC and pDC).

Distinct Cellular and Molecular Signatures Observed in COVID-19 Compared to Healthy

Controls

UMAP analysis of COVID-19 hospitalized patients compared to healthy controls revealed distinct

clustering patterns between groups, particularly among monocytes, NK cells, and CD8 T cells (Figure

3a). To understand changes between the two groups, CAFE o�ers varied visualization options, for

instance, we used a Sankey diagram to demonstrate that MAIT cells and Tgd are much less abundant

in COVID-19 patients compared to healthy controls (Figure 3b). We also found that CD8 Tcm and B

cells were signi�cantly expanded in COVID-19 patients. A composite bar-strip plot also demonstrates

the distribution of cells in frequency where each dot represented each sample colored by speci�c

group (Figure 3c). The total number of cells in iMO were largely reduced in COVID-19 patients

compared to healthy controls (Figure 3d). These data may indicate a possible shift from an innate

response towards an adaptive response. To quantify the e�ect size of changes observed, we compared

cell types within the COVID-19 group to healthy controls as a reference and found changes in naive

CD8, TMAIT, and iMO cells have a larger e�ect size, demonstrating a bigger di�erence between the

two groups (Figure 3e). We further compared these cell types by plotting box plots for individual cell

types (Figure 3f) which demonstrated a non-statistically signi�cant increase in Tcm CD8 (p=0.0777)

and statistically signi�cant decrease in naive CD8 cells (p=0.0372) in COVID-19 patients compared to

healthy controls.
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Figure 3. Comparative Analysis of Immune Cell Subpopulations in Healthy and COVID-19 Individuals. (a)

UMAP plots displaying distinct clustering patterns and di�erential distribution of cell types in PBMC

across healthy and COVID-19 group. (b) Sankey diagram illustrates the distribution of cells across groups,

with thicker �ow indicating more cells. (c) Composite bar-strip plot summarizing cell count distribution

across cell subpopulations. Dots represent each individual samples colored by group. (d) Stacked bar chat

showing distribution of cells in percentage across two groups. (e) E�ect size calculated using Cohen’s d

indicating changes in the number of cells in COVID-19 compared to reference healthy control. (f)

Comparison of individual cell type frequencies between healthy and COVID-19 groups with p-values for

statistical signi�cance. N=9/group.
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Altered Marker Expression Pro�les in COVID-19 Patients

CAFE outputs a �le with expression data for all markers on each cluster by sample for use in external

plotting and statistical software. In addition, further exploration of speci�c markers within clusters

can be performed within CAFE. We used this approach to identify that MAIT cells have the greatest

expression of CD161, as shown by violin plot (Figure 4a). We also examined marker distribution in CD8

T cell populations and found that more cells within the Tem CD8 population appeared activated based

on greater HLA-DR, CXCR3, and CCR5 expression compared to other CD8 T cell subsets (Figure 4b).

We found that median expression of CD8, CD14, CD11b, IgG were increased in COVID-19 patients

compared to healthy controls across all clusters (Figure 4c). These re�ect the overall di�erences in

some of the cell populations we observed between groups. We examined marker expression within the

B cell cluster and found that more B cells expressed IgG in COVID-19 samples compared to healthy

controls although the di�erence was not statistically signi�cant (p=0.1631), while IgD expression was

statistically signi�cantly reduced (p=0.0162) in COVID-19 samples compared to healthy controls

(Figure 4d). We also examined activation markers in CD8+ T cells and found that COVID-19 patients

had more CD8+ T cells that expressed CD25 and HLA-DR than healthy controls (Figure 4e).
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Figure 4. Marker expression and distribution di�erences between COVID-19 and healthy individuals. (a)

Violin plot showed the median expression levels of CD161 across immune cell subtypes. (b) Sankey

diagram illustrated marker expression in CD8+ T cells, with thicker �ows indicating more cells expressing

that marker. (c) Bar chart showed median expression of markers across all cell types between COVID-19

and healthy individuals where positive values indicated upregulation. Box plots displayed (d) the number

of cells expressing IgG, IgM and IgD in B cells, and (e) the number of CD8+ T cells expressing CD25, HLA-

DR, and CD38.

Discussion

As research in immunology increasingly relies on high-dimensional cytometric data, there is a

growing need for a user-friendly analysis tools for everyday use. Here, we present CAFE as a free and

open-source tool designed to address the analytical and accessibility issues posed by SFCM data. CAFE

uses a GUI and interactive controls to enable immunologists to analyze complex data without needing

specialized coding knowledge.

Using a jupyter notebook, we have previously shown the ability of Scanpy’s Leiden function

(scanpy.tl.leiden) to analyze a 50-color human PBMC dataset[15]. CAFE acts as a wrapper combining

packages within Streamlit to provide a web interface, o�ering more accessible and extensive
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functionality than Jupyter notebooks’ CLI. We demonstrated analysis of a 35-color human PBMC

dataset using CAFE in this study with 350,000 cells and 12.25M data points. Major steps including data

processing, dimension reduction, batch correction and Leiden clustering were completed in under 12

minutes using an Apple M3 Pro laptop. In our analysis, we observed COVID-19 patients with altered

immune cell distributions and marker expression pro�les, consistent with prior �ndings, as well as

MAIT cells expressing high CD161 and B cells expressing high CD20[20].

While developing CAFE, we have balanced compatibility and performance and included many options

for customization of how the code processes and analyzes data while integrating default options and

tooltips to help guide users. Our implementation of Pandas with PyArrow signi�cantly improves

processing speed over Pandas alone. However, transitioning to Polars’ lazy evaluation framework

could further speed up processing once compatibility issues between ARM and x86 machines are

resolved. CAFE’s web app design and functionality also revolved around simplicity as we de-

emphasized features that are not commonly used in order to streamline user-experience. For data

dimension reduction, we adhered to a convention of using PCA as the primary method and using PCA-

reduced representations for constructing UMAP neighbor graphs, as opposed to utilizing UMAP

directly for primary dimensionality reduction. Although PCA is designed for linear data, it e�ectively

reduces noise and enhances clustering performance. Users have the choice to skip PCA to perform

Leiden clustering on the raw data or use UMAP embeddings (i.e., X_umap) to use UMAP reduced data

for clustering. One viable alternative to PCA for non-linear data structure is Kernel PCA, but we have

skipped adding the kernel PCA option in the CAFE work�ow because it may not be practical since it is

computationally taxing.

UMAP parameters and Leiden resolution largely in�uence the number of clusters for community

detection. Leiden clustering is performed on the graph structure, so evaluation of clustering quality

solely based on methods such as elbow or silhouette score is not ideal. Rather a combined approach

with prior biological knowledge can inform the most correct clustering resolution. We recommend

using CAFE’s advanced clustering evaluation tab to generate plots with a range of varied UMAP

parameters and Leiden resolutions for visual inspection. Using this approach, users can select the

most appropriate clustering resolution for each dataset. Since this is an unsupervised algorithm,

setting up an incorrect resolution can heavily skew the interpretation of data.

Manual gating continues to be the gold standard in �ow cytometry analysis, but it is limited by

sequentially drilling down into subsets of cells with 2-dimensional bi-axial gating. Thus, our goal was
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to complement this hypothesis-driven approach with the unsupervised computational algorithms. In

this way, users can perform hypothesis-driven analysis with manual gating and hypothesis-

generating analysis with unsupervised clustering. Compared to other open-source tools, CAFE

provides a wide range of publication-ready visualization options. Due to its underlying code in

python, CAFE is highly scalable to datasets of millions of cells and takes advantage of multi-threading

to obtain higher performance. Previously, python-based Pytometry and CRUSTY integrated unbiased

clustering algorithms within their tools[21][22]. Pytometry incorporates the Leiden algorithm[10],

which has been shown to be an improvement over the predecessor Louvain algorithm[23]; however,

Pytometry requires coding using Python. CRUSTY incorporates an easy-to-use GUI but it does not

o�er the Leiden algorithm and relies on FlowSOM and Phenograph. Another limitation of CRUSTY is

that the cloud-based service limits users to analyzing 100,000 total events. There are also limited

visualization and analysis options in CRUSTY and they rely on most of the Phenograph and FlowSOM

default settings which cannot be customized. Cloud-based solutions may face limitations in

availability, scalability, and data security. Users may be prohibited from uploading data to cloud-

based systems that have protected health information due to HIPAA. Among a few other GUI based

tools, Cyto�ow[24], Floreada (�oreada.io), EasyFlow[25] allow for �ow cytometry data analysis but do

not o�er clustering. FlowPy (�owpy.wikidot.com) allows for clustering but uses k-mean clustering

rather than the most advanced algorithms currently in use (i.e. Leiden). Additional tools like

terraFlow[26]  and CellEngine (CellCarta, Montreal, Canada) are for-pro�t spectral �ow cytometry

analysis softwares and the price of these may be restrictive for many users. Finally, FlowJo is a staple

for many immunologists and has some native clustering capabilities. It also supports plugins for

additional clustering algorithms, but these add-ons do not o�er much customization in the clustering

parameters.

CAFE, while addressing many of these limitations as an open-source alternative, has its own practical

considerations. CAFE is intended to be run locally which requires installing a package manager such as

Pixi or Anaconda/Miniconda3 through terminal. Performance is also dependent on the user’s machine.

For larger datasets, we recommend utilizing our provided scripts in Github to run data processing step

through an HPC cluster by allocating more RAM. Once the user has Anndata �le generated with cluster

information, all the downstream analysis and �gure generation steps become signi�cantly less

computationally demanding. Ultimately, CAFE’s aim is to become a secure, scalable, and open-source
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platform accessible to a broad range of researchers to run complex analyses through a simple intuitive

graphical user interface.
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