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Optimization is a fundamental idea of mathematics, yet it is not that much in

the focus of widespread digital teaching tools. The paper �rst explores the

relevance of optimality and then shows how the idea is supported in the FeliX

dynamic geometry online system. The idea is to include optimality statements

together with equality statements as means to describe geometric scenes.

Some reports from teaching experiences are discussed as well.
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Introduction

Optimization problems are central in mathematics; for

example, there are several scienti�c journals that are

devoted exclusively to optimization, such as

Optimization, Journal of Optimization Theory and

Applications, Applied Mathematics & Optimization,

Open Journal of Mathematical Optimization. However,

in mathematics education, their role is much less

prominent. Of course, there are a lot of high school

problems that can be solved by an application of

differential calculus, and there is also literature on

solving optimality problems by means of inequalities,

e.g. (Schupp, 1992), but many others miss the

connection, e.g., OECD (2016). Some research has

investigated certain cognitive aspects of solving

optimization problems (e.g., Malaspina & Font, 2010).

Moreover, there is some research investigating

optimization with technology, e.g., Bushmeleva et al.

(2018). And, of course, there are lots of GeoGebra applets

showing solutions to speci�c optimization problems.

However, in these approaches, optimization is not used

directly as a modelling tool; i.e., technology does not

mediate between the context and the solution but

between a modi�ed problem description and the

solution. Therefore, in this paper, we show how

optimization can be built directly into a dynamic

geometry environment. It is not meant to say that other

approaches are not sensible, but that the integration

shown here widens the didactical repertoire in teaching

optimization.

Theory

Bruner (1960) put forth the idea of fundamental ideas.

Vohns (2016) has investigated the reception of this idea

in mathematics education and reports that at least

some researchers include optimization in the list of

fundamental ideas of mathematics, e.g., Schreiber

(1979). Of course, there are plenty of arguments to

justify this judgement:

Optimality is used in the characterization of many

concepts, e.g., the integer divisor as the largest

integer making a product not exceed a given

number, the least common multiple, greatest

common divisor, derivative as slope of the locally

best �tting linear function, integration as

approximating functions by step functions, mean

value of numbers as the number with minimal

square distance, regression, line segments as

shortest paths between two points in the Euclidean

plane.

Many fundamental mathematical objects that are

(typically) not characterized by optimality properties

nevertheless have optimal properties, e.g., the

square as the rectangle with the greatest area given a

�xed circumference.

Optimization problems have been around since the

earliest days of mathematics; consider e.g., Dido’s

problem or the problem of the Brachistochrone.
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Optimization is a large domain with many

subdomains, such as constraint optimization, linear

optimization, discrete optimization, and geometric

optimization, and optimization appears in most

disciplines of mathematics and many �elds of

applied mathematics (e.g., operations research).

Optimality is a concept that allows one to coin

concepts in many applied disciplines; e.g., in physics,

one can derive the equations of mechanics,

electrodynamics, general relativity as minimizers of

certain functionals, and the quantum versions of

these theories as variations around this classical

solution, and Mill’s moral theory renders the choice

of the morally adequate action as an optimization

problem.

Regarding school mathematics, one may hold the view

(e.g., Klein) that functions and functional thinking are

central. There are three basic operations one can do

with a single function with values in an ordered set:

�. Evaluation: Given an input, one determines the

value of the function.

�. Solving: Find an input that produces a certain

output, e.g., a zero.

�. Optimization: Find a minimum or maximum.

These three operations can be understood in a wide

sense. Calculation of function values includes e.g., all

formulas calculated in spreadsheets, the determination

of the position of a constructed element in a dynamic

geometry environment (which is, essentially, a

spreadsheet with a different user interface), programs

in a functional programming language. Solving and

optimization in this wider sense can be achieved in

Excel by the plug-in called “Solver” and in dynamic

geometry by guided dragging (Arzarello et al., 2002) to

a position that ful�lls some property. However, the

standard mode of working of these tools is by function

evaluation.

Note that additional operations (additions, composition,

etc.) occur when more than one function comes into

play, but I will ignore this further complexi�cation.

Instead, I will cross these operations with Kieran’s

activities in algebra (Kieran, 2004). She distinguished

generational activities, transformational activities, and

global/meta-level activities. Crossing relations with the

three operations given above are displayed in Table 1.
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Evaluating Solving Optimization

Generational Setting up an expression Setting up an equation
Setting up an

optimization problem

Transformational
Equivalent expressions, e.g.,

simpli�cation

Equivalent transformation of

equations

Global/meta
e.g., structural investigations (being

symmetric in variables)

e.g., classi�cation by types of

solutions (algebraic)

Table 1. Kieran’s activities and operations with functions

The two cells left blank in Table 1 indicate that the

relevant topics are usually not taught in school. It is not

meant to say that there is nothing to �ll into these cells

– quite to the contrary. Transformational activities for

optimization include the following: An extremum is not

affected by applying a strictly monotonic increasing

function. This includes the special cases of adding a

constant, multiplying by a positive constant, taking

squares, square roots, or logarithms. Applying a

decreasing function exchanges minima and maxima. Or

the composition rule:   has a maximum in    if 

 has a maximum in   and . All these

could be dealt with in school, including the discovery

and justi�cation of these transformation rules. Global

and meta-activities could center around the number of

maxima or the question under which conditions one

may conclude that between two maxima there exists a

minimum. Moreover, the relevance of convexity for

optimization could be re�ected.

By now, it should be clear that in typical math curricula,

operations with optimization are neglected in

comparison to the other two operations.

Correspondingly, most digital tools used in school

mathematics do not support optimization very well. For

optimization problems in one variable, GeoGebra can,

of course, plot graphs and automatically �nd minima

and maxima. More advanced computer algebra systems

offer implementations of numerical (and sometimes

symbolic) optimization algorithms that can often also

include constraints set by equations or inequalities. For

example, the classical problem of what cylinder with

1000cm3 volume has the least surface area (and thus –

up to some idealization – least use of material) can be

solved in Mathematica by the command

FindMinimum[{2*Pi*r^2+2*Pi*r*h,
Pi*r^2*h==1000}, {{r,1}, {h,1}}]

and in Maxima by:

fmin_cobyla(2*%pi*r^2+2*%pi*r*h, [r, h],
[1,1], 
 constraints= [%pi*r^2*h=1000]);

These tools are very �exible and powerful, and teaching

should aim to educate students who are both competent

in using them and in understanding them (e.g.,

knowing how their way of working implies certain

limitations). However, to develop a more intuitive

understanding of the meaning and properties of

optimization, it seems desirable to have tools at hand

that allow for a more direct interaction with the

optimization problem. The current paper presents a

possible implementation of optimization within a

relational dynamic geometry environment.

The FeliX-Systems

FeliX is an algebraic relational dynamic geometry

environment that exists in various versions (Oldenburg,

2007; Oldenburg, 2022). There are versions built on top

of Mathematica, and they provide some advanced

symbolic analysis tools, but here I restrict to two

versions that are available online. The �rst is a

realization in JavaScript that is available online via

https://myweb.rz.uni-

augsburg.de/~oldenbre/jsfelix/F2d/jxfelix.html. Its user

interface consists of three main components (see Figure

1): A geometry view of the Euclidean plane with a

Cartesian coordinate system, a table that shows all

points and their current coordinates, and an equation

table that may, in fact, take equations, inequalities, and

expressions that are built up from the coordinate

variables of the points.

f(g(x)) x0

f y0 ∃ : = g( )x0 y0 x0
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Figure 1. The FeliX window

For a point P, the variables Px and Py refer to its

Cartesian coordinates. The equations and inequalities

that are entered into the equation list are respected

while dragging. For example, if one has three points A,

B, C and enters the equations 2*Bx=Ax+Cx and

2*By=Ay+Cy, then B will be the midpoint of A and C.

Still, all three points can be dragged with the mouse.

There is no distinction between free points and

constructed points, and neither the order of object

creation nor the order of equations has an effect on the

dragging behavior: There is just a set of objects and a

set of equations. For convenience, there are functions to

calculate the length of segments and angles between

them, but of course, all this could be achieved by using

the standard formulas learned in high school explicitly.

The same holds for the green buttons that automate the

process of entering equations that let certain lines be

parallel or orthogonal. Besides equations and

inequations, the equation editor can also hold

expressions. By default, they have no in�uence on the

dragging behavior; their value is calculated and

displayed in the table. If, however, one activates the

checkbox “valid” for an expression, then this

expression will be minimized. Applications will be

shown later.

The second realization, GGBFeliX, of FeliX that shall be

discussed here is built on top of GeoGebra and is

available under https://myweb.rz.uni-

augsburg.de/~oldenbre/GGB/ggbFelix.html. Its user

interface (see �g. 2) consists of an unmodi�ed

GeoGebra applet that is controlled by a JavaScript layer.

Equations are entered into a single text �eld with

multiple equations separated by semicolons. Simple test

cases are to enter Ax=Bx or Ax>2*By or the like. While

coordinates of points, equations, and inequalities work

exactly as in FeliX, there is a difference regarding

segments and angles. If there is a segment named x,

then the variable Sgx represents the segment's length,

and Sgxang represents the segment's angle with

respect to the x-axis. Thus, one can make right angles

either by using the expression for dot products or by

setting e.g. Sgeang= Sgfang+pi/2 to set segments e and f

orthogonal. Expressions to be minimized have to be

given inside a mini(…) function. Figure 2 shows an

example: First, a quadrilateral has been drawn from

four segments, and this has been turned into a

parallelogram by setting opposite sides to have the

same length. This parallelogram is restricted to become

a rectangle by setting one of the angles to 90°. Finally,

its area is �xed to 25 by Sgf*Sgi=25, and it is asked to

minimize the circumference by adding

mini(Sgf+Sgi+Sgg+Sgh). This gives, of course, a rigid

square that can still be dragged around.

Figure 2. The GGBFeliX window. The full text in the

box is:

Sgi=Sgg; Sgf=Sgh; Sgiang=Sghang+pi/2; Sgf*Sgi=25;

mini(Sgf+Sgi+Sgg+Sgh)

Examples of optimizations

The example from Fig. 2 showed already a �rst use case.

Here, some further easy examples shall demonstrate

how the tool can be used to investigate optimality

conditions. In Fig. 3 (left), three points A, B, C have been

created and set to be �xed. The segments to a fourth

point D are constructed, and by dragging D around and

watching the sum of the lengths of these segments, one

may get the idea that there is a unique point that

minimizes this sum of distances. This is, in fact, true (it

is the Fermat-Torricelli point), and the command

mini(Sgf+Sgg+Sgh) moves D directly to the optimal

position. In the FeliX versions not based on GeoGebra,

one may still drag the points A, B, C and observe where

the point lies, and this might also give support to the

hypothesis that the angles between the three segments

are always 120°. Minimizing the sum of squared
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lengths, i.e., by mini(Sgf̂ 2+Sgg^2+Sgh^2), one gets the

center of the triangle.

Figure 3. The Fermat-Point of a triangle (left) and the

center (right) of a triangle

Figure 4 (left) gives a physical application: A swing

consisting of two massless strings f, h of length 4 that

are �xed at two points A, B and a wooden beam g of

length 2. At rest, the swing will hang in such a way that

the potential energy of the beam is minimized. This

potential energy is minimal if the center of mass, which

lies in the point  , is as low

as possible, thus it suf�ces to minimize Cy+Dy. The

whole model is given by Ax=1;Ay=5;Bx=6;By=5; Sgg=2;

Sgf=4; Sgh=4; mini(Cy+Dy).

Another physical example shows the refraction of light:

Points A and C are �xed, and the time required for a ray

to travel from A to C is to be minimized, assuming that

the speed in the part below the x-axis is only half as

high as above. This situation can be modelled by the

description Ax=1;Ay=3; By=0; Cx=3;Cy=-3;

mini(Sgf+2*Sgg), which results in the con�guration of

Fig. 4 (right). Again, in versions other than that based

on GeoGebra, the points A and C can be moved to see

the dynamics of the solution.

Figure 5 shows a discrete hanging chain. Points A and E

are �xed (recall that they still can be moved explicitly

with the mouse), and B, C, D are unrestricted points.

The segments s1, s2, s3, s4 between AB, BC, CD, DE are

all set to have length 3. Their midpoints F, G, H, I are

constructed, and the expression Fy+Gy+Hy+Iy that

corresponds to the potential energy of the chain is

minimized. It is interesting how natural the chain

behaves when, e.g., E is raised further or moved

horizontally.

Figure 4. A swing and light refraction

Figure 5. Discrete hanging chain

Teaching experiences

So far, the FeliX versions with built-in optimization

have only been used with teacher students at the

university. Students were introduced to the possibilities

of optimization, and they had to solve certain problems

such as �nding the Fermat-Torricelli point. It turned

out that no speci�c problems occurred: Specifying an

optimality condition seemed as natural to students as

constraining a construction by equations or

inequations. However, occasionally students got stuck

when they entered an expression to be minimized that

was not bounded from below, and hence the

minimization process did not converge. However, such

situations can be used to discuss questions of existence

and uniqueness of optimizers, and this can give

insights that are valuable beyond the use of this speci�c

tool.

Conclusion

The position of points in Euclidean geometry can be

�xed by calculating their coordinates from certain

functions (that may correspond to classical geometric

rules-compass-constructions), as is done in dynamic

geometry systems, by solutions of certain equations, as

is done in relational geometry systems such as

( + , + )1
2

Cx
1
2

Dx
1
2

Cy
1
2

Dy
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parametric CAD programs, or, last but not least, by

optimality conditions. This work has shown that it is

indeed possible to realize a dynamic geometry system

that allows optimality conditions as means to specify

con�gurations. It is yet an open question if this can be

successfully used by younger students, and thus further

research is necessary. However, experience with

students suggests that this might be an adequate way to

enrich the possibilities to interact with mathematical

concepts.
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