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Optimization of binding af�nities for antibody-drug conjugates (ADCs) is crucial for their therapeutic

ef�cacy and speci�city, with most ADCs engineered to achieve equilibrium dissociation constants in

the range of 0.1 to 1 nM. However, there is a lack of published data delineating the optimal binding

af�nity range that ensures improved therapeutic outcomes for ADCs. Therefore, this study integrates

structural biophysics within a scalable in silico work�ow to generate antigen-antibody binding

af�nity landscapes, focusing on ENHERTU, a monoclonal antibody employed in the treatment of

HER2-positive breast cancer. Leveraging computational techniques, including homology structural

modeling and structural biophysics-based binding af�nity calculations, this article presents high-

accuracy structural and intermolecular binding af�nity data for the Her2-Trastuzumab-Pertuzumab

complex. Beyond the design of Her2-targeting ADCs with enhanced ef�cacy and speci�city, this

scalable antigen-antibody binding af�nity landscape offers a technically feasible work�ow for the

high-throughput generation of synthetic structural and biophysical data with reasonable accuracy.

Combined with arti�cial intelligence (AI) algorithms, it is conceivable that this scalable in silico

approach constitutes a catalyst for an AI-driven paradigm shift in the discovery and design of

antibodies and ADCs with improved ef�cacy and speci�city.

Signi�cance: This study presents a structural biophysics-based search engine tailored for ranking

antigen-antibody binding af�nities, with a speci�c focus on ENHERTU, a key monoclonal antibody in

HER2-positive breast cancer treatment. By integrating advanced computational techniques like

homology structural modeling and Kd calculations, the research generates accurate structural and

binding af�nity data. This scalable approach not only enhances the design of next-generation

antibody-drug conjugates (ADCs) but also provides a practical method for generating synthetic

structural and biophysical data ef�ciently. Combined with arti�cial intelligence algorithms, this
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scalable in silico approach aims to catalyze a paradigm shift in the discovery and design of antibodies

and ADCs with improved ef�cacy and speci�city.

Corresponding author: Wei Li, wli148@aucklanduni.ac.nz

Introduction

Antibody-drug conjugates (ADCs) represent a rapidly advancing class of targeted cancer therapies that

merge the speci�city of monoclonal antibodies with the potent cytotoxicity of small molecule drugs[1][2].

These biopharmaceuticals are designed to selectively deliver therapeutic agents (i.e., payloads) to cancer

cells, thereby minimizing off-target effects and enhancing treatment ef�cacy[3][4]. To date, drug

discovery and design remain a complex multiparameter optimization challenge[5][6]. For instance, central

to the ef�cacy and speci�city of ADCs is the binding interaction between the antibody and its target

antigen, where the physical strength of this binding is typically quanti�ed as the antigen-antibody

equilibrium dissociation constant (Kd)[7][8]. The Kd of ADCs to their target antigens is a critical

determinant of receptor-mediated endocytosis and, consequently, the therapeutic ef�cacy of ADCs[9].

ADCs with high binding af�nity are more ef�ciently internalized, as strong binding ensures that the ADC

remains attached to the antigen long enough for the endocytic machinery to recognize and internalize

the ADC-antigen complex. This leads to more effective delivery of the cytotoxic payload into tumor cells

and enhanced speci�city, reducing off-target effects and improving the therapeutic index. Conversely,

ADCs with low binding af�nity may dissociate from the antigen before endocytosis occurs, resulting in

reduced internalization and decreased ef�cacy. Lower af�nity might also increase the risk of binding to

non-target molecules, leading to off-target effects. Nonetheless, extremely high antigen-antibody

af�nity can hinder ADC tissue penetration[10], while too low af�nity can result in insuf�cient

internalization[11]. While most ADCs aim for a Kd within the nanomolar range (10-9 to 10-10 M), few

published data have solved the relationship between optimal antigen-antibody Kd and the ef�cacy and

speci�city of ADCs[12][13].

As a result, this study addresses this paucity of data by developing a scalable in silico approach for

structural biophysics-based calculations of antigen-antibody binding af�nities, with trastuzumab as an

example, a monoclonal antibody widely used in the treatment of HER2-positive breast cancer[14][15].

Experimentally determining this for ADCs poses signi�cant challenges, as tools such as surface plasmon
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resonance and isothermal titration calorimetry necessitate meticulous control of experimental

conditions and the use of puri�ed components, making these approaches rather resource- and labor-

intensive[16][17][18][19]. On the other hand, computational tools offer a useful alternative approach to

explore the antigen-antibody sequence space and chart out the entire territories of antigen-antibody

binding af�nity landscapes[20]. Thus, this study employs computational tools such as structural

modeling[21]  and physics-based Kd calculations[22][23]  to de�ne and build a scalable antigen-antibody

binding af�nity (Kd) landscape for the design of antibodies and ADCs with improved ef�cacy and

speci�city.

Materials and Methods

Trastuzumab deruxtecan (ENHERTU) is a HER2-directed antibody and DNA topoisomerase I inhibitor

conjugate developed for the treatment of HER2-expressing solid tumours[24][25][26]. As the monoclonal

antibody in ENHERTU, trastuzumab binds directly to the extracellular domain of the HER2 receptor,

inhibiting its downstream signaling pathways and mediating antibody-dependent cellular

cytotoxicity[14][15]. As of 2025-05-02, there is a total of 22 trastuzumab-related structures in the Protein

Data Bank (PDB)[27][28], as listed in Table 1.
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PDB ID Structure Title (release date from newest to oldest)

8PWH Atomic structure and conformational variability of the HER2-Trastuzumab-Pertuzumab complex

8Q6J Atomic structure and conformational variability of the HER2-Trastuzumab-Pertuzumab complex

7PKL Mechanistic understanding of antibody masking with anti-idiotypic antibody fragments

7MN8 Structure of the HER2/HER3/NRG1b Heterodimer Extracellular Domain bound to Trastuzumab Fab

6OGE Cryo-EM structure of Her2 extracellular domain-Trastuzumab Fab-Pertuzumab Fab complex

6BGT Structure of Trastuzumab Fab mutant in complex with Her2 extracellular domain

6BAH Trastuzumab Fab v3 with 5-diphenyl meditope variant

6BAE Trastuzumab Fab v3 in complex with CQFDLSTRRLKC

6B9Z Trastuzumab Fab v3

6B9Y Trastuzumab Fab v3 in complex with 5-phenyl meditope variant

5U6A Crystal structure of I83E meditope-enabled trastuzumab with azido-peg3-meditope

5U5M Crystal structure of I83E meditope-enabled trastuzumab with azido-meditope

5U5F Meditope enabled trastuzumab I83E variant in complex with Ac) CQFDA(PH)2STRRLRCGGSK

5U3D Structure of meditope enabled trastuzumab I83E variant

6BI2 Trastuzumab Fab D185A (Light Chain) Mutant Biotin Conjugation

6BI0 Trastuzumab Fab N158A, D185A, K190A (Light Chain) Triple Mutant

6BHZ Trastuzumab Fab D185A (Light Chain) Mutant

5XHG Crystal structure of Trastuzumab Fab fragment bearing Ne-(o-azidobenzyloxycarbonyl)-L-lysine

5XHF Crystal structure of Trastuzumab Fab fragment bearing p-azido-L-phenylalanine

4IOI Meditope-enabled trastuzumab in complex with CQFDLSTRRLKC

4HKZ Trastuzumab Fab complexed with Protein L and Protein A fragments

4HJG Meditope-enabled trastuzumab

Table 1. Experimentally determined trastuzumab-related structures (released newest to oldest) in PDB as of

2025-05-02, QUERY code: QUERY: Full Text = "Trastuzumab".
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Among the 22, there are a total of three HER2-Trastuzumab-Pertuzumab complex structures with PDB

IDs 6OGE[14]), 8PWH[15]  and 8Q6J[15]. In light of the standardized PDB data format for biomolecular

structures, it does not really matter which one of the three is chosen here for subsequent structural

modeling[21]  and physics-based Kd calculations[22][23], as all three HER2-Trastuzumab-Pertuzumab

complex structures are determined experimentally with Cryo-EM[14][15]. Moreover, while only

trastuzumab is used in ENHERTU, a synergistic anticancer effect of the two antibodies is also likely,

according to a detailed CryoEM study of the ternary complex[15]. Thus, this study here chooses PDB entry

6OGE[14]) as an example to de�ne and build a scalable antigen-antibody binding af�nity (Kd) landscape.

Brie�y, the relationships between chain IDs and molecular entities of PDB entry 6OGE are listed in

Table  2, which is to be used in describing the results of the subsequent structural modeling[21]  and

physics-based Kd calculations[22][23].

Chain ID Molecular entity Length

A Receptor tyrosine-protein kinase erbB-2 (Homo sapiens, 9606) 622

B Pertuzumab FAB LIGHT CHAIN (Homo sapiens, 9606) 214

C Pertuzumab FAB HEAVY CHAIN (Homo sapiens, 9606) 222

D Trastuzumab FAB LIGHT CHAIN (Homo sapiens, 9606) 214

E Trastuzumab FAB HEAVY CHAIN (Homo sapiens, 9606) 220

BC Pertuzumab FAB (Homo sapiens, 9606) 436

DE Trastuzumab FAB (Homo sapiens, 9606) 434

Total PDB entry 6OGE[14] 1492

Table 2. Relationships between chain IDs and molecular entities of PDB entry 6OGE. In this table, length

represents the number of amino acid residues, and total means the entire PDB entry 6OGE[14]), i.e.,

A+B+C+D+E.
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With PDB entry 6OGE[14]  (Table  1) as an initial input, subsequent structural modeling[21]  and physics-

based Kd calculations[22][23] consist of an automated in silico generation of synthetic homology structural

and Kd data, as illustrated in Figure  1 and described previously in detail[29]. Brie�y, Modeller[21]  was

employed to build a total of 29,840 ( ) homology structural models with one site-speci�c

missense mutation introduced to PDB entry 6OGE[14]. Afterwards, the binding af�nities were calculated

using Prodigy[22][23]  for all 29,840 structural models of Her2-Trastuzumab-Pertuzumab analogues,

including the Kd values between chains A and B, chains A and C, chains A and D, chains A and E, chains A

and BC, and chains A and DE (Table  2). With PDB entry 6OGE[14]  as a template, all structural

modeling[21]  and physics-based Kd calculations[22][23]  were repeated three times on Wuxi Taihu Lake

High Performance Computing platforms.

Figure 1. Automated in silico generation ([29]) of synthetic structural (Modeller [21]) and Kd (Prodigy [22][23])

data.

Of further note, among the twenty natural amino acids, cysteine is a special one from a structural point of

view, in the sense that removal of cysteine residue(s) or introduction of new cysteine residue(s) might

induce a perturbation of the disul�de bonding network towards a major structural rearrangement of a

protein. Yet, engineering cysteines at speci�c sites in antibodies has proven to be a promising approach

to create well-de�ned ADCs for the treatment of cancer[30][31]. This study, therefore, reports a

computational systematic amino acid (including cysteine) scanning[13][32][33][34][35]  of the entire PDB

1, 492 × 20
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entry 6OGE (1492 amino acid residues, Table 2)[14] to incorporate structural biophysics (e.g., Kd)[8] into the

property-based design of cysteine-linked ADCs[5][6].

Results

Since this study used PDB entry 6OGE[14] as the structural template, Prodigy[22][23] was used to calculate

the inter-chain binding af�nities for the native experimental Her2-Trastuzumab-Pertuzumab complex

structure. These physics-based calculations were performed between chains A and B, chains A and C,

chains A and D, chains A and E, chains A and BC, and chains A and DE, as listed in Table 3 below.

Binding partners Inter-chain binding af�nity (M) at 37  C of PDB entry 6OGE

A + B 1.4   10-5

A + C 9.5   10-8

A + D 8.6   10-6

A + E 3.8   10-6

A + BC 1.9   10-8

A + DE 4.9   10-7

Table 3. Inter-chain binding af�nities calculated by Prodigy for the native experimental Her2-Trastuzumab-

Pertuzumab complex structure PDB entry 6OGE. In this table, the codes (A, B, C, etc.) for binding partners are

de�ned in Table 2.

∘

×

×

×

×

×

×
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Figure 2. Histogram depicting the distribution pattern of the Her2-Pertuzumab binding af�nities between

chain A and chain BC (Table 2) of PDB entry 6OGE with one site-speci�c missense mutation. The vertical red

line indicates the Kd between chain A (Her2) and chain BC (Pertuzumab FAB), representing the native

complex structure of Her2-Trastuzumab-Pertuzumab (PDB entry 6OGE).

Afterwards, with PDB entry 6OGE[14]  as the structural template, this study conducted three sets of

structural modeling[21] and physics-based Kd calculations[22][23]. These calculations were also performed

to determine Kd values for interactions between chains A and B, chains A and C, chains A and D, chains A

and E, chains A and BC, and chains A and DE, as detailed in Table 2. The resulting Kd values and their

corresponding analyses are comprehensively summarized in Table 4, with additional data presented in

six supplementary tables and six �gures contained in the supplementary �le supps.pdf.
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Figure 3. Histogram showing the distribution pattern of the Her2-Trastuzumab binding af�nities between

chain A and chain DE (listed in Table 2) of PDB entry 6OGE with one site-speci�c missense mutation. The

vertical red line marks the Kd between chain A (Her2) and chain DE (Trastuzumab FAB), representing the

native complex structure of Her2-Trastuzumab-Pertuzumab (PDB entry 6OGE).

According to Table 3, the Kd between Her2 and pertuzumab Fab is located at 1.9   10-8 M (vertical red line

in Figure 2) for the native complex structure of Her2-Trastuzumab-Pertuzumab (PDB entry 6OGE), while

the Kd values between Her2 and pertuzumab Fab possess a much wider distribution, ranging from 1.9 

  10-7 M to 2.9    10-10 M, according to the Prodigy[22][23]  calculations of the 3    29,840 homology

structural models of the Her2-Trastuzumab-Pertuzumab complex (PDB entry 6OGE) with one site-

speci�c missense mutation. Similarly, according to Table 3, the Kd between Her2 and trastuzumab Fab is

located at 4.9    10-7 M (vertical red line in Figure  3) for the native complex structure of Her2-

Trastuzumab-Pertuzumab (PDB entry 6OGE), while the Kd values between Her2 and trastuzumab Fab

also possess a much wider distribution, ranging from 2.5    10-6 M to 1.7    10-8 M, according to the

Prodigy[22][23]  calculations of the 3    29,840 homology structural models of the Her2-Trastuzumab-

Pertuzumab complex (PDB entry 6OGE[14]) with one site-speci�c missense mutation.

×

× × ×

×

× ×

×
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Binding partners Scalable Kd landscapes Histograms of Kd distributions

A + B Table 3 (supplementary �le) Figure 1 (supplementary �le)

A + C Table 4 (supplementary �le) Figure 2 (supplementary �le)

A + D Table 5 (supplementary �le) Figure 3 (supplementary �le)

A + E Table 6 (supplementary �le) Figure 4 (supplementary �le)

A + BC Table 7 (supplementary �le) Figure 5 (supplementary �le)

A + DE Table 8 (supplementary �le) Figure 6 (supplementary �le)

Table 4. A summary of scalable Her2-Trastuzumab-Pertuzumab binding af�nity landscapes and their

distribution patterns. In this table, the supplementary �le represents supps.pdf, and the codes (A, B, C, etc.) for

binding partners are de�ned in Table 2.

Taken together, for both pertuzumab Fab and trastuzumab Fab, there is room for both increase and

decrease in their antigen-antibody Kd values, as shown in Figures  2 and 3. The two scalable antigen-

antibody binding af�nity landscapes (Figures  2 and 3) are like two guiding maps for antigen-antibody

binding af�nities, which is one inextricable factor in the equation of  , where    stands for the

optimal Kd or a range of it, while    stands for the optimal ef�cacy and speci�city of antibodies and

ADCs[12][13]. Of interesting note, the HER2-Trastuzumab-Pertuzumab binding af�nity landscapes

(Figures 2 and 3) elucidate the binding af�nity variations caused by site-speci�c mutations, such as the

S911F mutation in chain C of the pertuzumab heavy chain, as demonstrated in the supplementary �le

�n.pdb and Figure 7 of the supplementary �le supps.pdf. After the computational analysis on Wuxi Taihu

Lake High Performance Computing platforms, this particular mutation S911F was also assessed using the

Prodigy server[22][23], which returned an identical Kd between chain A (Her2) and chain BC (Pertuzumab

FAB, Table 2) of 2.9   10-10 M (mutation No. 18214 in Table 7 of the supplementary �le supps.pdf). This Kd

of 2.9   10-10 M indicates an   two orders of magnitude enhanced antigen-antibody binding af�nity due

to this particular mutation S911F, compared to the Kd of 1.9   10-8 M between Her2 and pertuzumab Fab

in the native experimental Her2-Trastuzumab-Pertuzumab complex structure (PDB entry 6OGE[14]).

y = f(x) x

y

×

× ∼

×
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Conclusion and Discussion

This study employs a scalable in silico work�ow[29], integrating structural modeling[21]  and physics-

based Kd calculations[22][23], to construct two scalable antigen-antibody binding af�nity landscapes

(Figures  2 and 3) using Her2-Trastuzumab-Pertuzumab (PDB entry 6OGE[14]) as a model system. This

approach introduces one site-speci�c missense mutation, ensuring reasonable accuracy in de�ning these

binding af�nity landscapes (Figures  2 and 3)[21][22][23]. Of further interest, these scalable antigen-

antibody binding af�nity landscapes (Figures  2, 3, and supplementary information in Table  4) can be

used the other way around, i.e., as a structural biophysics-based target-speci�c search engine[8]  which

takes as input a desired Kd value or a range of it, and returns a list of Kd-ranked Trastuzumab or

Pertuzumab analogues with potentially improved ef�cacy and/or speci�city for Her2, offering a hopeful

tool for the discovery and design of next-generation Her2-targeting ADCs[12][13]. In addition, the scalable

work�ow[29]  described here presents a technically feasible method for generating synthetic structural

and biophysical data, which is useful for enhancing the speci�city and ef�cacy of therapeutic antibodies

and ADCs[8][36]. Finally, incorporating databases such as PDB[27] and AFDB[37][38][39][40], this scalable in

silico approach also supports the continued accumulation of synthetic structural and biophysical data for

the development of AI models in drug discovery and design[5][6][41].

Figure 4. A �owchart depicting the generation of a scalable antigen-antibody binding af�nity landscape for

designing antibodies and small molecule compounds with improved ef�cacy and speci�city. In this �gure,

Modigy represents the method approach combining Modeller and Prodigy for in silico generation of

structural and intermolecular binding af�nity data, as described in the Methods section.
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Speci�cally, this study starts from an experimental Her2-Trastuzumab-Pertuzumab complex structure

(PDB entry 6OGE[14]) to build two scalable antigen-antibody binding af�nity landscapes (Figures 2 and 3),

which are scalable because:

�. this Modigy (Figure 4) work�ow[29]  is broadly applicable to biomolecular structure databases such

as PDB[27] and AFDB[37][38][39][40].

�. this Modigy (Figure  4) work�ow[29]  introduced only one site-speci�c missense mutation to the

Her2-Trastuzumab-Pertuzumab complex structure (PDB entry 6OGE[14]), where the number could

be larger, provided that the overall accuracy is reasonable for the synthetic structural and

biophysical data[29].

�. the Her2-Trastuzumab-Pertuzumab binding af�nity landscape (Figures 2 and 3) includes not only

site-speci�c mutants of the two antibodies but also site-speci�c mutants of the target, i.e., Her2 as

the antigen, highlighting the use of this in silico work�ow[29] in the high-throughput generation of

synthetic structural and biophysical data for other drug targets (GPCRs[42], ion channels[43], etc.) to

train AI models for the discovery and design[8] of not just therapeutic antibodies and ADC, but also

of small molecule compounds[44][45].

�. method-wise, in addition to the structural modeling[21]  and physics-based Kd calculations[22]

[23] employed here, this Modigy (Figure 4) work�ow[29] is also able to integrate molecular dynamics

simulations[46][47]  to further enhance the accuracy of the structural biophysics-based Kd

calculations in drug discovery and design[48][49].

To sum up, this scalable synthetic structural and biophysics data serve two purposes: (1) this scalable

Modigy (Figure  4) work�ow[29]  creates a scalable antigen-antibody binding af�nity landscape, which

acts like a map to guide the design of monoclonal antibodies or ADCs with optimal binding af�nities[12]

[13]; (2) this scalable Modigy (Figure  4) work�ow[29]  generates useful training data[50][51]  for AI-driven

drug design (AIDD, Figure 4) models[5][6][8] towards the design of both monoclonal antibodies, ADCs[12]

[13] and small molecule compounds (Figure 4) with improved ef�cacy and speci�city.
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