Draft Model Knows When to Stop:
A Self-Verification Length Policy for Speculative Decoding
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Abstract

Speculative Decoding (SD) has become an im-
portant technique in accelerating the inference
speed of large language models. Conventional
SD methods employ a fixed draft length, which
ignores the token generation difficulty across
tasks. Consequently, in this paper, we address
such an issue and introduce SVIP - a difficulty-
aware dynamic draft length policy for specula-
tive decoding systems. Based on a theoretical
lower bound of draft token acceptance rate and
its inference-time approximation, SVIP adap-
tively determines the lengths of draft sequences
based on the entropy of each draft token distri-
bution. Experimental results on mainstream SD
benchmarks and frameworks demonstrate the
superior performance of SVIP, achieving up
to 20% walltime speedup on SpecBench over
baseline SD methods and 60% speedup on MT-
Bench for long-form generation of up to 8K
tokens. Moreover, SVIP is totally training-free
and compatible with any existing SD methods
that generate draft tokens autoregressively. Ex-
perimental results also show that SVIP yields
consistent walltime improvement on top of
GliDe & CaPE and EAGLE-2.

1 Introduction

Speculative decoding (Leviathan et al., 2023; Chen
et al., 2023) is a novel technique that markedly en-
hances the generation wall-time of large language
models (LLMs). This approach employs a small
and efficient amateur model to draft sequences,
while concurrently utilizing a larger and more pow-
erful expert model to verify the drafts. By avoiding
the autoregressive generation of each token through
the target LLM, speculative decoding achieves im-
proved efficiency while preserving the quality of
the output.

Many variants of speculative decoding have been
proposed. A line of work focuses on developing
“Work done during their internship at Tencent AI Lab.
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Figure 1: The “difficulty” of tokens varies in a sequence,
resulting in different numbers of accepted draft tokens
at different positions.

a stronger and faster draft model (Li et al., 2024b;
Elhoushi et al., 2024; Du et al., 2024). Another line
of work contributes to maximizing the acceptance
probability of draft tokens (Sun et al., 2023; Li
et al., 2024a; Lu et al., 2024). In general, they all
tend to maximize the alignment between the draft
and target model to further maximize the system
acceptance rate.

Though successful, most of these works limit
their settings to a fixed draft length, where the draft
model always generates a fixed number of tokens
(e.g. 4 or5) in each iteration. Such a setting ignores
the fact that some tokens - such as stop words or ci-
vilities - in the generation may be easy for the draft
model to predict, while others - such as knowledge-
intensive or reasoning-intensive tokens - can be
much harder, as shown in Figure 1.

To address this issue, in this work we introduce
SVIP - Self-Verlfication length Policy, a simple,
plug-and-play dynamic draft length policy for spec-
ulative decoding systems, which enhances the wall
time speedup of these systems by adaptively allow-
ing for longer draft sequences for “simple” tokens
(top of Figure 1) and terminating the drafting pro-
cess early upon encountering “hard” tokens (bot-
tom of Figure 1).

Specifically, we first analyze the acceptance rate
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Figure 2: The correlation between draft model entropy and draft token acceptance probability (top) and lengths of

accepted draft seqeunces (bottom).

of speculative decoding systems and derive a lower
bound based on the system’s entropy information.
Further empirical analysis suggests that such a
bound can be approximated by the entropy of the
draft model only, which is naturally available in
the drafting process of any auto-regressive draft
models. Consequently, we develop SVIP which
controls the length of draft sequences dynamically
by determining whether to continue drafting or start
verification upon the generation of each draft token.

With extensive experiments across multiple
model sizes and generation lengths, we demon-
strate the superior performance of SVIP. It yields
more than 20% of improvements over vanilla spec-
ulative decoding for Qwen2.5 14B and LLaMA-3
70B on SpecBench (Xia et al., 2024), and more
than 60% of improvements for Pythia 6.9B on M'T-
Bench (Zheng et al., 2023) when generating long-
form responses of up to 8K tokens.

Moreover, since our method is lightweight and
training-free, it is extremely flexible and can be
adapted to any speculative decoding system with
an auto-regressive draft model. As examples, we
apply SVIP on top of two state-of-the-art specula-
tive decoding methods: GliDe with a CaPE (Du
et al., 2024) and EAGLE-2 (Li et al., 2024a), and
confirm that it brings consistent improvements.
Our code is available at https://github.com/
Geralt-Targaryen/SVIP.

In summary, our contributions are threefold:

1. We derive a low bound of speculative decod-
ing systems, where the acceptance rate of the
draft model could be modeled by its entropy
only.

2. Based on this lower bound, we further develop
an entropy-based dynamic draft length policy
for speculative decoding systems, which is
extremely flexible and can be adapted to any
auto-regressive draft model.

3. Experimental results demonstrate the supe-
rior performance of SVIP over baseline meth-
ods, with up to 20% average speedup on
SpecBench, 60% in long-form generation,
and consistent improvement over state-of-the-
art speculative decoding frameworks such as
GliDe & CaPE and EAGLE-2.

2 Method

The overall objective of SVIP is to dynamically
adapt draft length on-the-fly, stopping early if the
current draft token’s acceptance probability is low
and otherwise continuing drafting. To introduce
our method, we first provide the background on
speculative decoding in Section 2.1. Then, based
on the key observation that the acceptance proba-
bility of a draft token depends on the target model
confidence - which is unavailable in the drafting
phase, we derive a theoretical lower bound for the
acceptance rate based on the draft model’s entropy
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Figure 3: Distribution histograms of the entropy ratio H, ,,/ H,. For most tokens, this ratio falls into a narrow range,
indicating that the cross entropy H, ;, can be approximated by a constant multiplication of the draft entropy H,.

and the cross-entropy between the target and draft
models in Section 2.2. Finally, based on empirical
analysis of the target and draft distributions of more
than 100K tokens across three model families, we
approximate this lower bound using only the en-
tropy information of the draft model in Section 2.3,
making it viable in actual inference.

2.1 Preliminaries on Speculative Decoding

Suppose we have two LLMs p and g, where p is the
larger (target) model, and ¢ is the smaller (draft)
model. Given an input sequence x<; of length ¢,
and a draft length +, the draft model first samples
-y tokens x¢4 1, -, T41~ autoregressive, which are
verified by the target models in parallel to acquire

the confidences p(z41), -+ , p(Te1)'.
Then, each draft token z,,; is accepted with
probability P@nti) and otherwise rejected. In

T i)?
the latter cas(ia(, a+cJ())rrected token is sampled from
max(q(Tn ;) —P(Tnij),0)
> max(g(xy, ;) —p(e;, 1 ;),0)°
which guarantees that the overall output distribu-
tion is exactly the same as p(z,4;) (Leviathan
et al., 2023; Chen et al., 2023). This process is
repeated until a maximum sequence length 7' is

reached.
The complete algorithms for speculative decod-

ing are given in Appendix A.

the residual distribution

2.2 Theoretical Lower Bound of Acceptance
Rate

From Section 2.1, it’s easy to derive that given
an input sequence r; and a draft token xy, its

pm)). Let 3

> q(@1)
denote the expected acceptance probability over

acceptance probability is min <1

"The short hand p(xy,) is used to denote the conditional
probability p(z,|z<n) when there is no ambiguity. Through-
out the work we use subscripts to indicate token indices in a
sequence (e.g. x,, for n-th token), and superscripts to indicate
element indices in a vector (e.g. x;, for i-th element in x,,).

the distribution of x;, and it follows that

= T) - min M
f=2 0 () o
= Z min (p(z), q(x)) . (2)

Chen et al. (2023) has proven that 3 is related to
the total variational distance (TVD) between p and

q:
B=1-TVD(p,q). (3)

According to Pinsker’s inequality - which relates
TVD to Kullback-Leibler divergence - we then

have
B=1—4 %KL(CIHP) “)
_ 1 q(x)
=1- \/QZq(x)logp(x)

§Hq,p —3

Hg, &)

where H, ), is the cross entropy between ¢ and p,
and H, is the entropy of q.

Equation (5) provides a theoretical lower bound
for the acceptance rate of a draft token using the
entropy information of the speculative decoding
system?. To provide an intuitive motivation for
using entropy to construct the lower bound, we
plot the relation between draft model entropy and
draft token acceptance probability as well as ac-
cepted draft seqeunce lengths in Figure 2, which
are collected from more than 1M tokens generated
by three different target models with temperature
set to 1 and maximum draft length set to 40. The
first subfigure indicates a strong negative correla-
tion between draft model entropy and draft token

%An alternative way to construct the lower bound is dis-
cussed in Appendix B.
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Figure 4: Comparison between the actual acceptance probability from Equation (2), the acceptance probability
lower bound from Equation (5), and the estimated lower bound after approximating the cross entropy H, , with a
constant multiplication of H,. Each position on the x-axis corresponds to a token, which has been sorted according

to the actual acceptance probability.

acceptance probability, while the second subfig-
ure shows that when the entropy is low, dozens of
consecutive draft tokens could be accepted, which
highlights the drawback of setting draft length to
a constant, small value, as is the common practice
in speculative decoding literature. Another ver-
sion of Figure 2 in the greedy setting is given in
Appendix D.

2.3 Empirical Estimation of Acceptance Rate

So far in this section, we have been assuming ac-
cess to the target distribution p(x) of the next to-
ken, which is unavailable in the drafting phase at
inference time. Thus, to apply Equation (5) for
actual acceptance rate estimation, we must approxi-
mate the cross entropy H, , with information from
only the draft model.

To tackle this issue, we first plot the relation-
ship between H,, and H, in Figure 3. For all
three model families, the entropy ratio H,,/H,
are concentrated in a narrow range between 1.0 and
1.3. Thus, we choose to approximate H,j, with
a constant multiplication of H,. Plugging it into
Equation (5), we now have

B 2 1 -~V Can (6)

where c is a constant controlling the approximation
ratio between H, ;, and H,. In Figure 4, we visual-
ize the values derived from Equation (2), (5), and
(6).

With Equation (6) providing a way to estimate
acceptance probability using only the draft model’s
entropy, we can now adapt the draft length on-the-
fly. After generating each draft token, we compute
the estimated acceptance probability lower bound,
and stop the draft process if it’s lower than a certain
threshold h. We note that since both c and & are

Algorithm 1 SVIP

Input: target model p, draft model ¢, input sequence z«¢,
maximum length 7', threshold h

1: Initialize n <t

2: whilen < T do

3 ji=0

4 while True do

5: Sample nt; ~ q(|T<ny;)
6: j—3+1

7 if \/H( ) > h then
8: Exit while loop

9: end if

10: end while

11: Y

12: Compute p(z|T<n+j), 7 =1,--+,v+ 1in parallel
13: n<n

14: for j = 1to~y do

G|z <ny;

15: ifVerify(pm‘gg@ﬂ.7 qz|z<n+j,$n+j) then
16: n+n+1

17: else

18: ZTn4j; < Correct (pm‘x<n+j, qz‘k"ﬂ.)
19: Exit for loop

20: end if

21: end for

22: if » == n + v then

23: Sample zy4~41 from p(z|z<nty)

24: end if

25: n+<n+1
26: end while

Output: z,

constant hyperparameters, we can remove +/c from
Equation 6 and absorb it into the threshold .

We formalize SVIP in Algorithm 1. The de-
tails of the methods Verify and Correct are given
in Appendix A, for which different versions are
available for sampling (Algorithm 2, 4) and greedy
decoding (Algorithm 3, 5).



3 Experiments

3.1 Experiments on SpecBench
3.1.1 Settings

We validate the effectiveness of SVIP on Spec-
Bench (Xia et al., 2024) using three distinct tar-
get models: Pythia 6.9B (Biderman et al., 2023),
Qwen2.5 14B (Yang et al., 2024), and LLaMA-
3 70B (Dubey et al., 2024), with Pythia-160M,
Qwen2.5 0.5B, and LLaMA-3 8B as the draft mod-
els respectively.

As baselines, we consider two simple policies
for draft length: 1) a constant draft length of 5,
which is commonly used in the literature, and 2)
the heuristics implemented in Hugging Face Trans-
formers library (Wolf et al., 2019), where the draft
length for the next draft iteration is increased by 2 if
all draft tokens in the current iteration are accepted,
and otherwise decreased by 1.

We set the sampling temperature to 0 on
SpecBench (the alternatives are discussed in Ap-
pendix C). For each model, the entropy thresh-
old ¢ in SVIP is chosen from {0.2,0.3,0.4,0.5}
based on performance on 8 samples held out from
MT-Bench (Zheng et al., 2023), which are 0.4 for
Pythia, and 0.3 for Qwen2.5 and LLaMA-3. All
experiments with Pythia and Qwen are conducted
on a single 40GB A100, while experiments with
LLaMA are conducted on 5 40GB A100s. To miti-
gate the impact of system performance varitations,
we repeat all experiments with Pythia and Qwen
for three times (using different random seeds when
they are used) and report the average speedup over
target-model-only autoregressive decoding. Also,
since the memory consumption of verifying n draft
tokens is quadratic in n, we limit the maximum
draft length to 40 in both heuristics and SVIP sce-
narios, beyond which we start to encounter out-of-
memory issues.

3.1.2 Results

The results on SpecBench are shown in Table 1.
Compared with the constant approach, SVIP yields
an average speedup of 15% for Pythia and 20% for
Qwen and LLaMA. Compared with the heuristic
approach, SVIP also gives a consistent improve-
ment on all domains for Pythia and Qwen, and
outperforms the latter on 4 out of 6 domains for
LLaMA.

In Figure 5, we plot the average draft length
and accepted draft length of Qwen and LLaMA
(the results for Pythia are similar, and are given in

Appendix C). From the figure, we observe that by
terminating the draft process when the draft model
entropy is high, SVIP leads to shorter draft lengths
and a much higher acceptance rate (close to or more
than 80% on all domains for Qwen, and more than
90% for LLaMA). Notably, the acceptance rate of
LLaMA-3 even reaches 99% on the summarization
domain, which contributes to the highest speedup
(3.48) in Table 1.

3.2 Long-form Generation

Most existing works on speculative decoding (Chen
et al., 2023; Du et al., 2024) limit their experi-
ments to generating short sequences of 128 tokens.
To verify the wide applicability of SVIP, we also
conduct experiments on long-form generation with
up to 8K context. For this purpose, we use MT-
Bench (Zheng et al., 2023) as the dataset and set
the sampling temperature to 1, as we found that
when using greedy decoding in long-form genera-
tion, both the draft and the target models are prone
to repeat themselves, resulting in very low informa-
tion entropy (see Appendix D for details). Other
settings follow Section 3.1.

The results are given in Table 2. Interestingly,
we find that in the sampling setting, the two base-
line methods (constant and heuristics) perform even
worse than target-model-only auto-regressive de-
coding for Pythia and Qwen, while SVIP consis-
tently yields a positive speedup. For LLaMA, while
constant draft length performs better with contexts
shorter than 1K tokens, SVIP exceeds it for gen-
erating longer sequences. Another observation is
that the speedup ratio of all three methods gener-
ally increases with the context length, which could
be possibly attributed to the longer contexts giving
the draft model more information, aligning it at
test time to the target model. However, we note
that the absolute values of token throughput (which
are not discussed in this paper, since they heavily
depend on the underlying machines) stay at the
same level from 1K to 8K context for Qwen2.5
and LLaMA-3 when using speculative decoding,
and decrease slowly when not using speculative
decoding. For Pythia, which does not use any opti-
mized attention such as MQA (Shazeer, 2019) or
GQA (Shazeer, 2019), the throughput decreases
notably with context length in both cases - with or
without specualtive decoding.



Methods MT-Bench Trans. Sum. QA Math RAG Avg.
Const. 1.45 1.47 1.24 143 152 1.42 1.42
Pythia (.98, 160M) Heuristics 1.51 1.58 1.34 158 1.64 1.51 1.53
SVIP 1.63 1.62 145 1.67 1.72  1.66 1.63(,148%)
Const. 1.08 0.87 1.11 092 143 099 1.07
Qwen2.5 (148,0.58) Heuristics 1.10 0.91 1.10 092 1.34 1.03  1.07
SVIP 1.33 1.12 137 114 1.57 123 1.29(,306%)
Const. 2.04 2.48 256 234 232 228 234
LLaMA-3 (708,88) Heuristics 2.30 3.13 333 261 252 263 276
SVIP 2.31 3.04 348 2.63 289 259 2.83(209%)
Table 1: Speedup over target-model-only autoregressive decoding on SpecBench.
Methods Generation Length
128 256 512 1K 2K 4K 6K 8K
Const. 0.68 0.69 0.69 0.70 0.72 090 0.89 0.87
Pythia (6,98, 160M) Heuristics 0.88 0.88 0.88 088 090 1.21 125 1.23
SVIP 1.07 1.08 1.08 1.07 1.08 143 144 141
Const. 098 097 095 09 098 1.00 1.02 1.04
Qwen2.5 (148,058) Heuristics 1.01 0.99 098 1.00 1.02 1.03 1.04 1.06
SVIP 1.29 129 130 131 132 133 133 1.35
Const. 1.74 174 177 178 182 190 193 194
LLaMA-3 (70B,sp) Heuristics 1.53 156 1.61 1.63 168 177 183 1.84
SVIP 1.69 1.72 1.75 1.78 1.86 196 2.01 2.02

Table 2: Speedup on MT-Bench with different generation length.

3.3 Applying SVIP to Other Draft Methods

In Section 3.1 and 3.2, we evaluated SVIP on
vanilla speculative decoding, where a standard pre-
trained Transformer decoder model from the target
model’s family is used as the draft model. How-
ever, in the past years many works on speculative
decoding have proposed other stronger or more
efficient draft models (Cai et al., 2024; Du et al.,
2024; Li et al., 2024b). Since most of these works
assume a constant draft length, SVIP is orthogonal
to them and can be applied on top of them without
any additional training.

Specifically, we consider GliDe with a CaPE (Du
et al., 2024), where the draft model - named GliDe -
is a small transformer decoder with cross-attention
to the target model’s hidden representations, while
CaPE is a complementary tree expansion method
to increase the acceptance rate of the draft token at
each position. Following the settings of Du et al.
(2024), we use Vicuna 7B, 13B, and 33B (Chiang
et al., 2023) as the base models (for which the draft

models are publicly available) and set the sampling
temperature to 0. However, we distribute the 33B
model across two GPUs due to memory constraint.
Similar to the previous experiments, we set the
threshold ¢ to 0.5 based on pilot experiments on 8
samples held out from MT-Bench using GliDe only
(without CaPE).

We also apply SVIP to EAGLE-2 (Li et al.,
2024a), the state-of-the-art speculative decoding
system which utilizes the target model’s language
modeling head on top of the draft model’s features
to predict the next draft token, and dynamically con-
structs a draft tree at each draft position. Following
Li et al. (2024a), we use LLaMA-2 7B, 13B (Tou-
vron et al., 2023) and Vicuna 7B, 13B (Chiang
et al., 2023) as the base models, and set the sam-
pling temperature to 1. As Brown et al. (2024)
suggest, adding a conditional clause (that decides
whether or not to stop drafting) after the genera-
tion of each draft token in EAGLE-2 may interrupt
the otherwise input-independent control flow of
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Figure 5: The average generated draft length, accepted draft length, and acceptance rate of Qwen2.5 (top) and
LLaMA-3 (bottom) on SpecBench. Compared with the two baselines, SVIP leads to a shorter draft length and a

much higher acceptance rate.

EALGE-2, reducing the effects of low-level inter-
preter and system optimizations. Thus, in EAGLE-
2 we calculate the draft entropy and decide whether
or not to stop drafting after every two draft tokens
instead of after every draft token, as used in previ-
ous experiments.

The results for these two methods are presented
in Table 3 and 4, respectively. For GliDe, SVIP
yields a consistent speedup both with and without
CaPE, with a 5% improvement for the 7B and 33B
models. For EAGLE-2, the speedup is also par-
ticularly notable for the Vicuna models, with 5%
improvement for both the 7B and 13B models.

4 Related Work

Since Leviathan et al. (2023) and Chen et al. (2023)
introduced speculative decoding into large lan-
guage models, numerous works have followed their
tracks in pursuit of more efficient LLM inference.
We broadly categorize these works into three types:
better draft models, draft tree expansion, and draft
length control, which are orthogonal to each other.
A more comprehensive review of speculative de-

coding is provided by Xia et al. (2024).

Better draft models. As Xia et al. (2024) sug-
gest, draft models in speculative decoding can be
either based on self-drafting or based on an inde-
pendent draft model. For the first type, one may use
a quantized (Zhao et al., 2024), early-exiting (El-
houshi et al., 2024), or forward-padded (Monea
et al., 2023) version of the target model to produce
draft tokens, while the second type is represented
by the vanilla speculative decoding (Leviathan
et al., 2023). Some works also take the best of
both worlds and introduce extra layers on top of the
target model’s hidden representations to construct
draft models, represented by EAGLE (Li et al.,
2024b), GliDe (Du et al., 2024), and Medusa (Cai
et al., 2024).

Draft tree expansion. Given a draft model, one
may verify multiple draft tokens for the same posi-
tion in parallel to increase the probability of find-
ing an accepted draft token, and we use ‘““draft
tree expansion” as an umbrella term for such tech-
niques. Li et al. (2024a) introduce EAGLE-2,



Methods MT-Bench Code Finance GSM Spider Avg.

GliDe 1.95 2.04 1.91 1.98 1.69 195

7B +SVIP 2.00 2.12 2.03 2.01 1.63  2.02
GliDe + CaPE 2.36 2.57 2.29 2.51 1.97 240
+SVIP 2.56 2.65 2.49 2.54 2.08 252

GliDe 222 241 2.15 2.31 1.85 224

13B +SVIP 2.31 243 2.17 2.35 1.85 2.28
GliDe + CaPE 2.73 2.86 2.66 2.80 224 273
+SVIP 2.72 2.93 2.66 2.85 227 276

GliDe 2.12 2.25 2.09 2.29 1.99 218

338 +SVIP 2.29 2.40 2.20 242 2.03 230
GliDe + CaPE 2.08 1.98 2.10 2.13 1.76  2.03
+SVIP 2.13 2.02 2.15 2.16 1.82  2.08

Table 3: Speedup comparison with GliDe & CaPE, using Vicuna as the base model.

Methods MT-Bench H-Eval GSMS8K Alpaca CNN/DM QA Avg.
EAGLE-2 3.10 361 315 3.10 276 284 3.10
LLaMA-27B +SVIP 3.16 3.66 3.18 3.13 282 3.2 3.16
EAGLE-2 338 4.12 341 325 301 298 341
LLaMA-213B - qyip 341 409 345 334 305 317 346
Vieuna 7B EAGLE-2 2.66 2.84 2.77 2.48 231 213 258
feuna +SVIP 2.84 2.97 275 2.66 242 230 273
Viewna 135 FAGLE2 2.85 331 2.93 274 248 230 283
feuna +SVIP 2.94 3.49 3.19 2.89 260 253 298

Table 4: Speedup comparison with EAGLE-2, using LLaMA-2-Chat and Vicuna as the base models.

which reranks draft tokens in EAGLE’s draft tree to
select tokens with the highest confidence for verifi-
cation. Similarly, CaPE (Du et al., 2024) improves
GliDe by expanding the token set chosen for verifi-
cation at each position based on top-1 confidence.
Other works have also addressed the problem of
multi-draft verification from a theoretic perspec-
tive (Sun et al., 2023; Yin et al., 2024).

Draft length control. Works in this category are
few, but most relevant to ours. Liu et al. (2024)
introduce PEARL, which lets the target model per-
form verification in parallel to draft generation,
stopping the draft process when a mismatch is
found. Huang et al. (2024) propose SpecDec++,
which trains an acceptance prediction head on top
of the draft model to predict the acceptance proba-
bility of the current draft token, stopping the draft
round when the predicted acceptance probability
falls below a constant threshold. Brown et al.
(2024) propose Dynamic Depth Decoding on top

of EAGLE-2, which uses the sum of all tokens’
confidences in one level of its draft tree as an in-
dicator to predict whether or not to continue draft
generation.

5 Conclusion

We propose SVIP, a flexible, training-free, and
plug-and-play dynamic draft length policy for spec-
ulative decoding systems. Based on a theoretical
lower bound of acceptance probability and its em-
pirical approximation, SVIP determines whether to
continue draft generation or to quit drafting based
on the draft model’s entropy after the generation
of each draft token. With extensive experiments
spanning various base models, draft methods, test
domains, and generation length, we validated the
effectiveness of SVIP, sparking new insights on
speculative decoding and more efficient large lan-
guage models.
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A The Complete Speculative Decoding Algorithms

In Algorithm 2 to 6, we present the complete algorithms of the vanilla speculative decoding in both
the greedy decoding and the sampling scenarios. For the sampling scenario, the Verify and Correct
methods in Algorithm 6 resolve to Algorithm 2 and 4. For greedy decoding, they resolve to Algorithm 3
and 5.

Algorithm 5 Correct (Greedy)
Algorithm 2 Verify (Sampling) Input: target distribution p(z), draft distribution ¢(z)

Input: target distribution p(x), draft distribution ¢(z), Output: argmax p(z)
draft token x¢

1: accept < False Algorithm 6 Speculative Decoding
2: r~Ul0,1 B -
. [p(z f]> Input: target model p, draft model g, input sequence x<;, maxi-
3. if r < 222 then =
q(wt) mum length 7', draft length
4: accept < True .
: . 1: Initialize n < ¢
5: end if .
Output: accept 2: while n < T do
’ 3: for j = 1to~y do
i : 4: Sample zp4; ~ q(z|T<n+tj)
Algorithm 3 Verity (Greedy) 5. end for
6:  Comput nii)y G=1,,y+1i llel
Input: target distribution p(z), draft distribution ¢(z), ﬁo:lp;: ep(@lents), J 7+ 1 inparafle
draft token x¢ 8: for j = 1 to v do
1: accept < False 9: if Verify (p(z|x <n+j), ¢(®|T<n+j), Tn+j) then
2: if argmax p(xz) == x, then 10: n«n+1
3: accept < True 11: else
4: end if 12: Zn+j + Correct (p(z|T<ntj), ¢(x]|T<nty))
Output: accept 13: Exit for loop
14: end if
n : 15: end for
Algorithm 4 Correct (Sampling) 16©  iffi == n +  then
Input: target distribution p(z), draft distribution g(x) 17: Tyl ~ P(T]|T<niry)
. - _ max(q(z)—p(x),0) 18:  endif
I Samplf’ T = max(a(@)—p(a?), 0) 190 nea+l
Output: 2 20: end while

Output: =<,

B Alternatives for Acceptance Rate Lower Bound Computation

In Section 2, we used Pinsker’s inequality to compute a lower bound for the expected acceptance
probability:

B=> min(p(z),q(x)) @)

1
> 1[5 KL(gllp)- ®)

Another way to compute the lower bound of acceptance probability can be derived from Bretagnolle-
Huber inequality (Bretagnolle and Huber, 1978):

B>1—1+1—e KLUllp), )

Compared with the Pinsker’s bound, it’s trivial to see that this bound is guaranteed to be always larger
than 0. However, in practice we find that the Pinsker’s bound is 11% tighter for Qwen2.5, 20% tighter for
Pythia, and 43% tighter for LLaMA-3.

C Additional Results on SpecBench

In Figure 6, we plot the draft length and acceptance rate of Pythia (which complements Figure 5 in
Section 3.1), and in Figure 7 we also give the results of the three models when using sampling instead of
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Methods MT-Bench Trans. Sum. QA Math RAG Avg.
Pythia Const. 0.65 0.63 0.65 066 065 0.64 0.65
y Heuristics 0.82 0.83 0.85 0.83 0.83 0.83 0.83
698, 160M  gy1p 1.05 .02 103 1.01 1.03 100 1.02(, 5609
Qwen2.5 Const. 1.01 0.85 0.87 085 1.32 0.86 0.96
wens. Heuristics 1.02 0.94 093 0.88 122 091 0.99
148,058 gyIp 1.24 108 119 111 147 110  1.200,50%)
Const. 1.62 1.56 1.65 153 173 154 1.60
LLaMA-3 Heuristics 1.56 1.55 1.76 149 1.61 1.55 1.58
70888 svIp 1.53 153 169 151 171 156 15839
Table 5: Speedup on SpecBench using temperature sampling.
Average accepted/generated draft length
N Constant
Heuristics
71 SVIP
6 o 70.9%
5] 66.7% 68.9%
° MT—éenCh Transiation Summa'rization QA Mgith RAG

Figure 6: The average generated draft length, accepted draft length, and acceptance rate of Pythia on SpecBench.

greedy decoding’. Across the different models and sampling methods, the same observation as discussed
in Section 3 holds: SVIP results in short draft lengths and a much higher acceptance rate.

D Additional Results on Long-form Generation

In Table 6, we present the results of long-form generation with greedy decoding. Compared with Table 2,
the speedup ratio of greedy decoding is much higher (even more than 4 times for LLaMA-3 after 4K
context). This is due to the fact that these models tend to repeat themselves in greedy long-form generation,
making it very easy for the draft models to predict the next tokens. In Figure 8, we also plot the relation
between draft model entropy and accepted draft sequence lengths in this setting, which shows a much

stronger correlation compared with the sampling setting in Figure 2.

3We note that in the “constant” scenario, the draft length is always set to 5. However, if an EOS token is sampled from the
draft model, the draft process will terminate. So the overall draft length might be slightly lower than 5, as can be seen from

Figure 7.
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Average accepted/generated draft length

== Constant
== Heuristics
== SVIP
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56.6% 50.0%

50.2%
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Figure 7: The average generated draft length, accepted draft length, and acceptance rate of Qwen2.5 (top), Pythia
(middle), and LLaMA-3 (bottom) on SpecBench, using temperature sampling instead of greedy decoding.
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Generation Length

Methods
128 256 512 1K 2K 4K 6K 8K
Const. 1.10 1.30 150 1.66 1.82 120 1.11 1.04
Pythia (6.9B, 160M) Heuristics  1.25 145 1.65 181 202 150 146 1.41
SVIP 141 1.62 183 201 221 171 1.60 1.52
Const. 1.05 1.08 1.15 129 144 154 1.60 1.67
Qwen2.5 (148,058) Heuristics 1.04 1.06 1.13 132 154 172 1.85 197
SVIP 1.30 134 142 157 174 187 198 2.10
Const. 206 2.18 231 245 258 272 277 2.78
LLaMA-3 708,88y Heuristics 2.26 2.46 273 3.07 348 390 4.15 4.26
SVIP 231 256 286 321 359 4.00 4.23 433

Table 6: Speedup on MT-Bench with different generation length using greedy decoding.

Pythia 6.9B / 160M Qwen2.5 14B/0.5B LLaMA-3 70B / 8B

accepted draft length
accepted draft length
accepted draft length

draft entropy draft entropy draft entropy )

Figure 8: The correlation between draft model entropy and lengths of accepted draft seqeunces in the greedy setting.

15



	Introduction
	Method
	Preliminaries on Speculative Decoding
	Theoretical Lower Bound of Acceptance Rate
	Empirical Estimation of Acceptance Rate

	Experiments
	Experiments on SpecBench
	Settings
	Results

	Long-form Generation
	Applying SVIP to Other Draft Methods

	Related Work
	Conclusion
	The Complete Speculative Decoding Algorithms
	Alternatives for Acceptance Rate Lower Bound Computation
	Additional Results on SpecBench
	Additional Results on Long-form Generation

