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1. Normal Computing

Many hardware proposals have aimed to accelerate inference in AI workloads. Less attention has

been paid to hardware acceleration of training, despite the enormous societal impact of rapid

training of AI models. Physics-based computers, such as thermodynamic computers, offer an

efficient means to solve key primitives in AI training algorithms. Optimizers that normally would be

computationally out-of-reach (e.g., due to expensive matrix inversions) on digital hardware could

be unlocked with physics-based hardware. In this work, we propose a scalable algorithm for

employing thermodynamic computers to accelerate a popular second-order optimizer called

Kronecker-factored approximate curvature (K-FAC). Our asymptotic complexity analysis predicts

increasing advantage with our algorithm as  , the number of neurons per layer, increases.

Numerical experiments show that even under significant quantization noise, the benefits of second-

order optimization can be preserved. Finally, we predict substantial speedups for large-scale vision

and graph problems based on realistic hardware characteristics.

Corresponding author: Kaelan Donatella, kaelan@normalcomputing.ai

1. Introduction

Due to their fast convergence properties[1][2], second-order training methods hold great promise to

train neural networks efficiently. Such methods form a local quadratic approximation to the landscape

and update the parameters by optimizing this approximation within some region[3]. Thus, these

methods should make more progress per iteration than vanilla gradient descent because of their more

detailed modeling of the landscape[1]. Beyond neural network training, second-order methods are also

highly popular in reinforcement learning[4][5].
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Despite these advantages, first-order methods like stochastic gradient descent (SGD) or Adam[6] are

typically used in practical settings. This is largely because of the large computational overhead of

inverting the relevant curvature matrix (e.g., the Fisher matrix) in second-order methods. Methods

that employ block-diagonal approximations to the curvature matrix, such as Kronecker-Factored

Approximate Curvature (K-FAC), have enabled large-scale applications of second-order methods,

including to modern neural network architectures with billions of parameters. Nevertheless, their

computational costs remain substantially higher than those of first-order optimizers, limiting their

practical competitiveness.

Our perspective is that optimizer preference is dictated by the underlying computing hardware that is

running that optimizer. While SGD may be preferable on digital hardware, second-order methods

could be superior if the computational substrate could accelerate the key bottleneck of these methods.

In this work, we investigate the potential for thermodynamic computers to address bottlenecks in

second-order optimizers. These computers are physics-based devices that utilize a physical system’s

tendency to relax to thermodynamic equilibrium as an algorithmic primitive[7][8].

Recent work showed that thermodynamic computers could unlock a linear speedup (linear in the

matrix dimension) when running linear algebraic primitives[9][10]  like solving linear systems,

inverting matrices, and exponentiating matrices. Because Natural Gradient Descent (NGD) involves

solving a linear system (associated with computing the natural gradient from the standard gradient),

running NGD on a thermodynamic computer is predicted to have a linear speedup in the number of

neural network parameters[11]. However, Thermodynamic NGD was restricted to fine-tuning

applications because it is impractical to build a billion-dimensional device that would be required to

fully train all parameters of a large-scale neural network. Thus, it remains an open question for how

to make Thermodynamic NGD scalable and practical for applications beyond fine tuning.

Thermodynamic NGD is nevertheless appealing because its asymptotic complexity is similar to that of

a first-order method, and hence if it could be made practical, one could run second-order methods at

the computational cost of a first-order method. In this work, we address the practicality of

Thermodynamic NGD by considering the K-FAC algorithm. We show how K-FAC, which employs a

block-diagonal approximation to the Fisher matrix, can be turned into a thermodynamic algorithm.

We show that the asymptotic scaling of our Thermodynamic K-FAC algorithm leads to a linear

advantage (i.e., the advantage grows linearly with the width   of the neural network) over standard K-n
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FAC for both the runtime cost and memory cost. Crucially, the block-diagonal nature of K-FAC allows

for practical implementation on thermodynamic hardware, as the matrices involved have dimension

on the order of a thousand rather than a billion. Hence this provides a scalable means to do

(approximate) natural gradient descent with thermodynamic hardware.

To account for the finite precision of thermodynamic hardware, we ran numerical experiments

investigating the impact of quantization noise on the performance. We found that even under

significant quantization noise, the benefits of second-order optimization (e.g., relative to the Adam

optimizer) can be preserved. This suggests some robustness to imprecision for our Thermodynamic

K-FAC algorithm.

Finally, our simulations of large-scale vision and language problems show evidence that

Thermodynamic K-FAC outperforms both standard K-FAC as well as Adam. Moreover, by altering the

hyperparameters of the model (e.g., increasing the width of the network), speedups even larger than

those we show in our numerics can be unlocked.

2. Related work

There is a large body of theoretical research on NGD[1][3][12] arguing that it requires fewer iterations

than SGD to converge to the same value of the loss in specific settings. K-FAC[13] aims to reduce this

complexity and invokes a block-wise approximation of the curvature matrix, which may not always

hold. While first introduced for multi-layer perceptrons, K-FAC has been applied to more complex

architectures, such as recurrent neural networks[14]  and transformers[15], where additional

approximations have to be made and where the associated computational overhead can vary. While

the K-FAC approximation is uncontrolled, there is a large body of empirical evidence showing its

faster convergence per step with respect to Adam and its variants[13][14][15][16][17]. It has also been

shown that K-FAC extends the critical batch size for a variety of tasks[18], decreasing the diminishing

returns usually seen by scaling up the batch size in neural network training.

However, because of the per-step overhead of K-FAC, it remains roughly on-par with first-order

methods[15]  in terms of per-wall clock time performance. In this work we focus on reducing the

runtime per step of the K-FAC optimizer, which directly makes it more competitive.

At the core of our approach are thermodynamic algorithms[9] for solving linear systems and inverting

matrices. We remark that alternative analog methods for solving these kinds of problems can be found
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in Refs.[19][20]. In addition, alternative approaches to thermodynamic computing have been

proposed[21][22][23][24], applications beyond linear algebra have explored such as Bayesian

inference[25]  and quadratic programming[26], and closely related to thermodynamic computing is

probabilistic computing[27][28] and reversible computing[29].

While several approaches have been proposed to accelerate training of AI models using novel

hardware, these efforts typically aim at reducing the constant coefficients appearing in the time cost

of computation. For example, analog computing devices have been proposed to achieve reduced time

and energy costs of training relative to available digital technology[30][31][32][33]. These devices are

generally limited to training a neural network that has a specific architecture (corresponding to the

structure of the analog device).

Figure 1. Overview of the thermodynamic algorithm for K-FAC. On the left is shown a two-layer neural

network with weight matrices   and   and activations   that are stored on a digital device.

From these quantities Kronecker factors   and   are computed and sent to the thermodynamic solver,

which inverts them or solves a linear system where they enter as the positive semi-definite matrix. Then,

the result is sent back to the digital device and the weights are updated. Note that this algorithm is easily

parallelized, e.g., many thermodynamic solvers can be used to compute the K-FAC update rule (Eq. (14))

for one or more layers each.

A strength of our approach is its flexibility with respect to model architecture. Although this same

strength appeared in the Thermodynamic NGD algorithm of Ref.[11], that algorithm would either

require (1) a large-scale hardware (with a number of physical components scaling linearly with the

W1 W2 , ,a1 a2 a3

Aℓ Bℓ
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number of model parameters) for which important scalability challenges have yet to be solved, or (2)

restricting the training tasks only to fine-tuning. In this sense, Ref.[11] did not fully solve the issue of

training large-scale foundational models. Thus, a key insight of the current paper is to make the

training of large-scale AI models practical and scalable for thermodynamic hardware. Moreover, our

complexity analysis (Table 1) suggests that the per-iteration complexity of K-FAC can be made similar

to that of a first-order training method.

Optimizer Runtime Memory

SGD/Adam

K-FAC

Thermodynamic K-FAC

Thermodynamic K-FAC (w/ EMA)

Table 1. Runtime and memory complexity (per layer) of optimizers considered in this paper. Here we

consider an MLP, where   is the number of neurons per layer, hence there are   parameters per layer,

and   is the batch size. We also assume that the Kronecker factors all have condition numbers at most  .

Full complexities that take into account output and weight sharing dimensions for the expand and reduce

techniques[15] can be found in Table 2 in Appendix B.

3. Natural gradient descent and K-FAC

3.1. Natural gradient descent

Let us consider a supervised learning setting, where the goal is to minimize an objective function

defined as:

where    is a loss function and    is the forward function that is parametrized by 

. These functions depend on input data and labels  , with   a given training dataset.

The update rule for Natural Gradient Descent (NGD)[34] is given by

O(b )n2 O( )n2

O(b + )n2 n3 O(bn + )n2

O(b + )n2 n2κ2 O(bn)

O(b + )n2 n2κ2 O(bn + )n2

n n2

b κ

L(θ) = L(y, (x)),
1

|D|
∑

(x,y)∈D

fθ (1)

L(y, (x)) ∈ Rfθ (x)fθ

θ ∈ R
N (x,y) ∈ D D
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where    is the learning rate,    is a pre-conditioning matrix (which can depend on  ), and 

  is the gradient of the objective function. For NGD, the preconditioning matrix is of

size  , with   the total number of parameters of the model. Therefore, the NGD update quickly

becomes impractical for modern neural networks for billions of parameters, as even storing the full

pre-conditioning matrix is too expensive.

3.2. Kronecker-factored approximate curvature (K-FAC)

One possible solution to this impractical scaling was proposed in Ref[13], known as Kronecker-

factored approximate curvature (K-FAC). This method consists of simplifying the computation of the

inverse of the preconditioning matrix   by exploiting its structure.

Let us consider a deep neural network with a layered structure, such that the forward function can be

written as:

with   and   the number of layers;   concatenates vector inputs

to a larger vector. For a multilayer perceptron (MLP), we have:

where    is an activation function,  ,  , and  . The bias vector 

 can be included as a column in the weight matrix (we denote this expanded weight matrix  , and

a constant value of unity may be appended to   (which we denote  ), yielding the right-hand side of

Eq. (4). We also define the pre-activation  . The parameter vector can be written as

where   vectorizes a matrix by concatenating its column vectors. The total number of parameters

in the  th layer (i.e., the length of  ) is  .

We consider the empirical Fisher as the pre-conditioning matrix and follow Ref.  [13]  (though

everything can be extended to the generalised Gauss-Newton matrix with a block-diagonal

approximation). In what follows all expectation values are taken over mini-batches of data, with a

batchsize  . The empirical Fisher is given by:

= − η ⋅ ( L(y, (x))θ(t+1) θ(t) C(t) )−1∇
θ(t) f

θ(t) (2)

η C(t) ,x,yθ(t)

L(y, (x))∇
θ(t) f

θ(t)

N × N N

C

= ∘ ⋯ ∘ ∘ ,fθ fθL fθ2 fθ1 (3)

θ = concat( , , … , )θ1 θ2 θL L concat(⋅, … , ⋅)

( ) = ϕ( + ) = ϕ( )fθℓ aℓ−1 Wℓaℓ−1 vℓ W
¯ ¯¯̄¯

ℓ ā̄̄ℓ−1 (4)

ϕ ∈aℓ−1 R
nℓ,in ∈Wℓ R

×nℓ,out nℓ,in ∈vℓ R
nℓ,out

vℓ W
¯ ¯¯̄¯

ℓ

aℓ ā̄̄ℓ

:=sℓ W
¯ ¯¯̄¯

ℓ ā̄̄ℓ−1

= vec( ),θℓ W
¯ ¯¯̄¯

ℓ (5)

vec(⋅)

ℓ θℓ = +Pℓ nℓ,outnℓ,in nℓ,out

b

F := E[DθD ]θ⊤ (6)
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where

We can therefore rewrite   as:

Thus, we see that    is a block matrix with the  th block being  . For

an MLP, we have

Using the identity  , we therefore have the blocks  given by

Crucially, the K-FAC approximation consists in first replacing the average of the Kronecker product by

a Kronecker product of averages, as:

which is an empirically motivated approximation (rather than a theoretically motivated one) [13]. We

define the following matrices, called the Kronecker factors, as

and we make the further approximation that the Fisher is block-diagonal. Here, the dimensions of 

 and   are, respectively,   and  . Note that both   and   are

symmetric positive semi-definite (SPSD) matrices.

By exploiting the following relations:

we can then derive the per-layer parameter update from Eq. (2). This results in the K-FAC update rule:

where  . The matrix   is given by

Dθ = [vec(D , vec(D , … , vec(D , D := .θ1)⊤ θ2)⊤ θL)⊤ ]⊤ θℓ
dL(y, (x))fθ

dθℓ
(7)

F

F = E[[vec(D , vec(D , … , vec(D [vec(D , vec(D , … , vec(D )]]θ1)⊤ θ2)⊤ θL)⊤ ]⊤ θ1)⊤ θ2)⊤ θL

=

⎛

⎝

⎜
⎜⎜
⎜⎜

E[vec(D )vec(D ]θ1 θ1)⊤

E[vec(D )vec(D ]θ2 θ1)⊤

⋮
E[vec(D )vec(D ]θL θ1)⊤

E[vec(D )vec(D ]θ1 θ2)⊤

E[vec(D )vec(D ]θ2 θ2)⊤

⋮
E[vec(D )vec(D ]θL θ2)⊤

…

…

⋱
…

E[vec(D )vec(D ]θ1 θL)⊤

E[vec(D )vec(D ]θ2 θL)⊤

⋮
E[vec(D )vec(D ]θL θL)⊤

⎞

⎠

⎟
⎟⎟
⎟⎟

(8)

F (ℓ, )ℓ′ = E[vec(D )vec(D )]Fℓ,ℓ′ θℓ θ⊤
ℓ′

D = ,  where  := D .θℓ gℓ ā̄̄
⊤
ℓ−1 gℓ sℓ (9)

vec(B ) = C ⊗ BC⊤ Fℓ,ℓ′

= E[( ⊗ )( ⊗ )] = E[( ⊗ )( ⊗ )] = E[( ⊗ )].Fℓ,ℓ′ ā̄̄ℓ−1 gℓ ā̄̄ −1ℓ′ g⊤
ℓ′ ā̄̄ℓ−1 gℓ ā̄̄

⊤
−1ℓ′ g⊤

ℓ′ ā̄̄ℓ−1 ā̄̄
⊤

−1ℓ′ gℓg
⊤
ℓ′ (10)

≈ E[ ] ⊗ E[ ],Fℓ,ℓ′ ā̄̄ℓ−1 ā̄̄
⊤

−1ℓ′ gℓg
⊤
ℓ′ (11)

= E[ ] and = E[ ],Aℓ ā̄̄ℓ ā̄̄
⊤
ℓ Gℓ gℓg

⊤
ℓ (12)

Aℓ Gℓ ( + 1) × ( + 1)nℓ,in nℓ,in ( ) × ( )nℓ,out nℓ,out Aℓ Gℓ

(B ⊗ C = ⊗ and (B ⊗ C)vec(X) = vec(CX ),)−1 B−1 C−1 B⊤ (13)

= − α ,θ
(t+1)
ℓ θ

(t)
ℓ u

(t)
ℓ (14)

= vec( )u
(t)
ℓ U

(t)
ℓ U

(t)
ℓ

= (D )U
(t)
ℓ ( )G

(t)
ℓ

−1
Θℓ ( )A

(t)
ℓ−1

−1
(15)
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where   is the matrix satisfying  .

Because the Kronecker factors are estimated with minibatches, it is common to compute exponential

moving averages (EMA) on them in order to aggregate batch information and reduce minibatch noise.

These moving averages, denoted   and  , are defined as:

As will be explained further, using an EMA requires to explicitly construct the Kronecker factors, and

hence modifies the requirements of the thermodynamic hardware used to accelerate K-FAC.

3.3. K-FAC for general weight-sharing neural networks

While the derivation of the K-FAC update shown in Eq. (14) is done for MLPs, a similar treatment may

be done to any weight-sharing neural network[15], which includes convolutional neural networks,

graph neural networks[35], and transformers[36]. This modifies the computation of the Kronecker

factors, as the activations    now are expanded with a weight-sharing dimension of size    (for

sequence to sequence models, the sequence length). The gradients   are also redefined as Jacobians 

. For minibatches of size  , the activations are therefore of size   (denoted

as  ) and the gradients are of size  (denoted as  )[15]. The Kronecker factors

may therefore be computed as:

when the loss has    terms (in the case of language generation or translation, for example, where

tokens have to be compared along the whole sequence when computing the loss). This is the expand

setting, and this form of K-FAC is known as K-FAC-expand[15]. For a layer with  , K-

FAC-expand has a per-layer time complexity    (where the first term comes from

calculating the    and    factors and the second term from the matrix inverse) and memory 

.

When the loss has    terms (in the case of classification), the summation over the weight-sharing

dimension may in fact be performed before computing the model output  . This results in

DΘℓ vec(D ) = DΘℓ θℓ

A
~(t+1)

ℓ G
~(t+1)

ℓ

A
~(t+1)

ℓ

G
~(t+1)

ℓ

= + (1 − )βAA
~(t)

ℓ βA A(t+1)
ℓ

= + (1 − ) .βGG
~(t)

ℓ βG G(t+1)
ℓ

(16)

(17)

aℓ R

gℓ

=gℓ,r,r′
dL(y, (x)fθ )r

dsl,r′
b × b × Rnin

aℓ,k,r × b × R × Rnout gℓ,k,j,r

Aℓ

Gℓ

=
1
bR

∑
k,r

b,R

aℓ,k,ra
⊤
ℓ,k,r

= ∑
k,j,r

b,R,R

gℓ,k,j,rg
⊤
ℓ,k,j,r

(18)

(19)

bR

= = nnin nout

O(bR + )n2 n3

Aℓ Bℓ

O(bRn + )n2

b

(x)fθ
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gradients being defined as   (thus having one less dimension of size  ). This is known

as the reduce setting, in which the Kronecker factors then become:

This is known as K-FAC-reduce, and has better computational complexity (due to less sums being

performed over the sequence length dimension) while yielding similar results[15] hence is preferred in

the reduce setting. K-FAC-reduce has a per-layer time complexity   (dominated by

computing the   factors) and memory  .

4. Accelerating K-FAC with thermodynamic hardware

4.1. Potential bottleneck due to matrix inversion

Mathematically, K-FAC amounts to estimating the natural gradient for each layer, which involves

computing the matrix   in Eq. (15), repeated here for convenience:

Under certain conditions, the computation of these   matrices could potentially be a computational

bottleneck (for standard digital hardware), due to the matrix inversions required. Specifically, once

the Kronecker factors   and   have been constructed, the computation of   can be performed

with either of the following two methods:

Method 1 (Inversion method) Invert   and  , then multiply the inverses with  .

Method 2 (Linear systems method) For each column   of the matrix  , solve the linear systems 

  to obtain the matrix  . Then solve the linear systems 

 for each column   of  .

These two methods both have cubic complexities, as for the inversion a Cholesky decomposition or

singular value decomposition would be used and in the second case    linear systems are solved

with a complexity    if the conjugate gradient method is used, with    the condition number of

the matrices involved. For our experiments presented below (in Section  5), Method  1 was used and

only the inversion was profiled and replaced with another solver due to easier implementation.

=gℓ,r
dL(y, (x))fθ

dsl,r
R

= ( )( )Aℓ
1

bR2
∑
k

b

∑
r

R

aℓ,k,r ∑
r′

R

a⊤
ℓ,k,r′ (20)

= ( )( )Gℓ ∑
k

b

∑
r

R

gℓ,k,r ∑
r′

R

g⊤
ℓ,k,r′ (21)

O(bn(n + R) + )n3

Gℓ O(bn + )n2

U
(t)
ℓ

= (D )U
(t)
ℓ ( )G

(t)
ℓ

−1
Θℓ ( )A

(t)
ℓ−1

−1

U
(t)
ℓ

G
(t)
ℓ A

(t)
ℓ−1 U

(t)
ℓ

G
(t)
ℓ , ∀ℓA

(t)
ℓ−1 (D )Θℓ

j DΘl

x = (DG
(t)
ℓ Θl)j = (D )Q

(t)
ℓ ( )G

(t)
ℓ

−1
Θℓ

( = xQ
(t)
ℓ )k A

(t)
ℓ−1 k Q

(t)
ℓ

O(n)

O( κ)n2 κ
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However, we expect Method 2 to be more efficient when using the thermodynamic algorithm

presented below as it does not require one to construct the inverse explicitly in memory (and has less

operations overall).

4.2. Thermodynamic linear algebra framework

Both of the methods given above for computing    can be accelerated with thermodynamic

hardware[9]. Here we briefly review the thermodynamic linear algebra framework.

Suppose that one is given a positive semi-definite matrix  , and the goal is to either to compute the

inverse,  , or to solve a linear system   for some vector  . In either case, one can upload the

matrix   to the coupling matrix for a system of coupled harmonic oscillators. This system of coupled

harmonic oscillators can, e.g., take the form of RC circuits coupled through capacitive or resistive

coupling as discussed in Refs.[8][9][37]  (in which case    would be mapped to either the capacitive

couplings or the resistive couplings). For more details, see Appendix E. Moreover, we assume that each

oscillator in this system has a stochastic noise source (with inverse temperature  ), and hence the

overall system can be viewed as a thermodynamic computer that is called the stochastic processing

unit (SPU).

To solve the relevant linear algebra problem, one allows the SPU to evolve over time according to its

natural physical dynamics, which are described by an Ornstein–Uhlenbeck (OU) process. Namely, the

dynamics are given by the following stochastic differential equation (SDE):

where the vector    is only relevant to the linear systems case and it can be set to zero if only matrix

inversion is desired. (Note that, physically, the   vector corresponds to a local force on each oscillator

and hence could corresponds to a locally applied DC voltage in a circuit implementation of an SPU.)

Allowing the SPU to evolve over time according to Eq. (22) corresponds to allowing the system to relax

to thermodynamic equilibrium. Once it reaches equilibrium,    is Boltzmann distributed, where the

Boltzmann distribution is a Gaussian (since the potential is a quadratic form). Specifically,    is

distributed according to:

One can see that the first moment of this distribution is the solution to the linear system  , and

hence the linear system is solved by sampling    and estimating the mean value. Moreover, second

U
(t)
ℓ

M

M −1 Mx = b b

M

M

β

dx = −(Mx − b)dt +N [0, 2 dt],β−1 (22)

b

b

x

x

x ∼ N [ b, ].M −1 β−1M −1 (23)

Mx = b

x
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moment of this distribution is proportional to  , and hence the inverse is computed by estimating

the covariances of the samples of  .

4.3. Thermodynamic K-FAC algorithm

Thermodynamic linear algebra routines can be directly applied to the K-FAC updates in Eq.  (15). In

particular, a thermodynamic solver can handle an  -dimensional linear system in    time1,

where   is the matrix condition number. By solving one system per column, we can effectively invert

an   matrix in   time, or   time if the systems are solved in parallel. In the K-FAC

setting, this applies directly to the matrix inversions appearing in Method 1, or the linear systems

appearing in Method 2 (see Sec. 4.1 for discussion of these two methods). We also note that the matrix

inverses may be directly obtained by estimating the covariance of the stationary distribution given in

Eq.  (23). However, Method 2 could be more efficient as it completely avoids matrix-matrix

multiplications to compute Eq.  (14). Thus the thermodynamic K-FAC algorithm using Method 2 has

runtime complexity   as it involves solving   linear systems.

Furthermore, one may embed the necessary Kronecker factors (e.g.,  ) onto thermodynamic

hardware for direct, on-device computation of solutions to the corresponding linear systems to

reduce the digital memory footprint. This can be done in two ways:

Compute and store the Kronecker factors digitally, then transfer them to thermodynamic hardware

to perform the linear solves. This is straightforward to parallelize across different thermodynamic

solvers, each handling one or more layers.

Port activations and gradients directly into hardware, implementing the sums over indices (as in

Refs.  [11]  and shown in Appendix  E) on rectangular resistor arrays. This method will be most

efficient for small batch sizes and sequence lengths, as the number of physical components scales

linearly with these two quantities. For large batches or sequence lengths, it may be more practical

to pre-compute the factors rather than porting high-dimensional data to the thermodynamic

solver.

Finally, note that even if the linear solves or inversions are performed directly on thermodynamic

hardware, one still needs explicit Kronecker factors when using an exponential moving average on 

 and  , since one needs to average previously calculated estimates with current values, and this

cannot be done by updating activations or gradients directly. Thus, digital computation of these

M −1

x

n O(n )κ2

κ

n × n O( )n2κ2 O(n )κ2

O( )n2κ2 2n

,G
(t)
ℓ A

(t)
ℓ−1

Gℓ Aℓ−1
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factors remains necessary in this case, leading to a worse runtime and memory complexity when

using moving averages.

4.4. Computational complexity

The layerwise block diagonal K-FAC approximation allows the optimizer to scale to very deep neural

networks thus avoiding a key limitation of natural gradient descent[1][11]. However, the scaling for

wide networks with many neurons per layer remains expensive due to the matrix inversions required

in (15). Here, the matrices    and  (dropping the layer    subscript and iteration    superscript for

brevity) have dimension    where    is the number of neurons or width of the layer. Thus the

matrix inversion represents the key computational bottleneck for reasonable wide layers, with

complexity scaling as   in general implementations.

Figure 2. Profiling of the K-FAC update for different architectures. Panel (a): K-FAC update time

contributions for an MLP with a fixed depth of 50, with varying number of neurons   on each layer. Panel

(b): K-FAC update time contributions for a GPT architecture (based on Ref. [38]). with varying embedding

dimension, which is the number of neurons   in the linear layers. Panel (c): GPT architecture with varying

vocabulary size with a fixed embedding dimension. For all plots the reported times are averaged over 10

repetitions and measured on an Nvidia A100 GPU.

In Fig. 2, the total K-FAC update times is shown for an MLP (panel (a)) and a transformer (GPT)[38],

for varying widths, in Figs. 2(a)-(b) and vocabulary sizes, in Fig. 2(c). For all panels the update time is

broken into four components: calculating gradients (through auto-differentiation), constructing the

curvature matrices, inverting matrices and computing the final update   (Eq.(14)). Throughout this

work we consider that the gradient calculation must be performed on a digital device, as it uses auto-

differentiation. We observe that as expected in panels (a) and (b), the inversion time and the

A G ℓ t

n × n n

O( )n3

n

n

Uℓ
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computation of   (which contains matrix multiplication) approach cubic scaling as   increases (and

is not exactly cubic for low dimensions thanks to parallelization). We also observe that inversion is the

main bottleneck across all values of   and for large vocabulary sizes. In the case of large vocabulary

sizes, the inversion completely dominates over other contributions, as vocabulary size directly

impacts the Kronecker factors of the embedding layers. These measurements are all performed on an

Nvidia A100 GPU.

As described in Section  4.2, thermodynamic hardware[8]  utilizes the physical equilibration of an

analog system to efficiently solve linear systems and matrix inversions faster than digital

counterparts[9]. In both the inversion and linear systems methods described in Section  4.1, the

thermodynamic solver described in[9] costs   for a single layer and matrix condition number  .

We also note that in practice, the time constant of the hardware’s dynamics enters as a constant factor

in the runtime, which can be engineered to be extremely small (on the order of a microsecond[37][19]).

Table  1 compares the computational single-iteration, single-layer complexities of the introduced

thermodynamic K-FAC optimizers (using the linear systems solves to avoid matrix multiplications

when computing  ) with SGD and digital K-FAC[14]. SGD and variants such as Adam use a diagonal

approximation to the Fisher information and are therefore very cheap to run per iteration, however

for practical neural networks, the diagonal approximation to the Fisher is a poor one and leads to

many more iterations to reach convergence[13][39][15]. In the simpler case where we do not use the

moving average Kronecker factors in Equations (16-17), the rectangular components of the matrices

in (12) can be sent directly to the thermodynamic hardware at a memory cost of    avoiding the 

 memory cost of constructing the full Kronecker factors. However, to apply the moving averages

(which smooth out the noise from mini-batching), the Kronecker factors need to be constructed. More

extensive details on computational complexities for the weight-sharing K-FAC techniques for more

general models[15] can be found in Table 2 in Appendix B.

4.5. Sources of error

The Thermodynamic K-FAC algorithm is intended for thermodynamic hardware, an inherently noisy

analog platform. The dominant sources of error in this setting include device mismatch, input

quantization, and output quantization. Device mismatch arises from fabrication inconsistencies and is

thus outside the scope of this paper. Instead, we focus on how quantization errors affect the stability

and performance of the optimizer. Quantization noise is general (readout noise with analog-to-digital

Uℓ n

n

O( )n2κ2 κ

Uℓ

O(n)

O( )n2
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converters is essentially output quantization) and common to both analog and digital accelerators,

making our analysis broadly relevant. In subsequent sections, we strategies to reduce these errors

through better quantization schemes. Note that error mitigation methods may also be employed to

reduce such errors[40], and that the thermodynamic nature of our algorithm makes it inherently

robust to thermal noise.

4.5.1. Input quantization

Given a positive semi-definite input matrix  , the thermodynamic hardware stores an approximate

quantized version,  , up to a certain level of bit-precision in integer format. This quantization can

make    no longer positive semi-definite, thus creating instabilities in the thermodynamic system.

This would have catastrophic effect on the solver and the algorithm would simply fail. The traditional

method to overcome this issue is to ensure that the hardware has more bits of precision for each

element of the matrix, such as 32 or 64 bits[39], in order to not have the quantization error make the

matrix non-definite. This approach works well, but is quite costly in terms of resources. An alternative

method to overcome the problem is to modify how we quantize and store the input matrix using a

conservative quantizer, that is, a quantizer that conserves the definiteness of the input matrix. In our

numerical experiments (presented below), we use a diagonal-dominant quantization method[41]:

Round each off-diagonal matrix element to the nearest value available in the hardware.

Calculate the sum of off-diagonal rounding errors in each row of the matrix.

Add the sum of rounding errors to the diagonal.

Round all the shifted diagonal elements up.

While this method ensures the definiteness of the quantized matrix, it increases the error significantly

in some cases since it adds an error term proportional to the dimension of the matrix. We note that

alternative approaches can be used to make the diagonal shift smaller and thus reduce the error, but

these are either more computationally demanding[41]  or are based on empirically determined

constants that are application-specific[42].

4.5.2. Output quantization

An additional source of quantization error one can expect from a dedicated linear algebra accelerator

is the output quantization. This quantization comes from the conversion of the precision of the

M

M
~

M
~
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accelerator and the precision of the rest of the computation. For example, if the accelerator is analog,

then the output quantization comes from the analog to digital conversion.

5. Experiments

5.1. AlgoPerf experiments

In this section we present numerical results of simulating the thermodynamic K-FAC method on

AlgoPerf workloads[43]. These workloads provide strong baselines and fixed model architectures,

enabling direct comparisons of training algorithms without confounding factors such as architecture

changes. We consider two workloads: training a vision transformer (ViT) on ImageNet, and training a

graph neural network (GNN) on the ogbg-molpcba data set, a popular property prediction dataset for

small molecules. We note that these datasets were also used for benchmarking in Ref.[15], which

introduced K-FAC-reduce and K-FAC-expand.
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Figure 3. Results on ImageNet and OGBG. Panels (a-b): validation loss and validation accuracy for the

NAdamW (the baseline given by AlgoPerf), K-FAC and Thermodynamic K-FAC (estimated) optimizers as a

function of the wall-clock time for training a ViT on ImageNet. Panels (c-d): validation loss and validation

mean-average precision (mAP) for the Nesterov (baseline), K-FAC and Thermodynamic K-FAC

(estimated) optimizers as a function of the wall-clock time for training a GNN on ogbg-molpcba. For the

baselines, the hyperparameters are directly taken from the AlgoPerf benchmark and were tuned for the K-

FAC optimizers (see Appendix C).

5.1.1. ViT on ImageNet

The first workload that we consider is training a ViT on ImageNet. This task involves a state-of-the-

art vision model, on a challenging image classification dataset. The baseline optimizer for this

workload is Nesterov-accelerated Adam with weight-decay (NAdamW)[44]. For these experiments as

with others in this work, the baselines use the hyperparameters from the AlgoPerf paper, thus setting

a robust baseline to beat that was found externally after extensive tuning and benchmarking. In

Fig. 3(a-b), the achieved validation loss and the validation accuracy are shown as a function of wall-

clock time, that is measured for the baseline and the K-FAC optimizer, and estimated for
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Thermodynamic K-FAC. This estimation is done by measuring the fraction of the computation time

spent on the inverse, which in this case is  , and estimating a speedup on the matrix inversion for

the dimensions considered based on numerics for the matrix inversion primitive, with assumptions

detailed in the Appendix and in related work such as Refs.[37][9][11].

5.1.2. GNN on ogbg-molpcba

Another workload we consider is training a GNN on ogbg-molpcba, with our results plotted in

Fig.  3(c-d). The baseline optimizer for this workload is Nesterov[45]. For the K-FAC optimizer, here

the fraction of the computation time spent on the inversions is  , meaning a larger speedup can be

unlocked, reaching an overall speedup to reach the same validation metrics than the baseline by about 

.

5.2. Quantization experiments

To assess the effect of the input and output quantization on a real task, we ran an image classification

task on a ResNet using K-FAC with input or output integer quantization. The results are plotted in

Fig.  4. According to these results, the input quantization does not seem to have a large impact on

accuracy. We believe that this is partly due to an effective conditioning of the matrix (similar to

damping) brought on by the specific diagonally dominant quantization scheme used. The impact of

output quantization on training accuracy is more pronounced as compared to input quantization. This

provides guidance for how to build a potential hardware architecture for this application, highlighting

the need for an output resolution of at least 8 bits while being much less sensitive to input

quantization. The broader message of Fig.  4 is a general robustness to quantization that K-FAC

appears to have, as even an 8-bit K-FAC optimizer is competitive against a full precision Adam

optimizer. This lends hope that a moderate precision hardware architecture could be employed to

accelerate K-FAC, with good performance expected.

11%

27%

50%

qeios.com doi.org/10.32388/I4KTH3 17

https://www.qeios.com/
https://doi.org/10.32388/I4KTH3


Figure 4. Effect of quantization on K-FAC training accuracy. Validation accuracy from training a ResNet

on image classification with either the Adam optimizer or with the K-FAC optimizer for various levels of

precision (integer 6, 8, 12 and 16 bits, and floating-point 32 bits at full precision). The left panel shows the

effects of input quantization while the right panel shows the effect of output quantization. The lines

correspond to the mean values over 5 runs, while the shaded areas represent one standard deviation away

from the mean. Brighter colours indicate higher precision.

Moreover, we remark that error mitigation methods have been developed for thermodynamic

computing that effectively boost the input precision by several bits[40]. Similar methods could likely

be developed for output precision. These error mitigation methods could be incorporated into our

Thermodynamic K-FAC optimizer to further enhance performance.

6. Conclusion

This work introduces a scalable approach to second-order optimization by leveraging thermodynamic

hardware to accelerate the K-FAC optimizer. By offloading operations to a physical system that

efficiently solves linear algebraic primitives, we achieve a significant reduction in per-iteration

asymptotic runtime complexity. This enables K-FAC to approach the efficiency of first-order methods

while preserving the convergence benefits of second-order optimization on AlgoPerf benchmarks.

Experimental results suggest that our method is robust to quantization noise, making it a viable

candidate for low-precision analog or mixed-signal implementations. Additionally, our complexity

analysis highlights a growing advantage over digital K-FAC as the network width increases.
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Extensions of this approach include integrating thermodynamic solvers into large-scale deep learning

pipelines and investigating alternative hardware accelerators for second-order methods. Additionally,

optimizing the interaction between digital and thermodynamic components could further improve the

practicality of our method for real-world training workloads. Finally, this approach could be extended

to various other local approximations to the objective function, which may be accurate over a larger

region. This could potentially further reduce the number of optimization iterations necessary over

first and second-order methods and remains an important direction for future work.

Appendix A. Energy-based viewpoint

Consider the following energy-based viewpoint of our work. Training a machine learning model can

be formulated as the task of minimizing an energy function; it is therefore a natural application for

thermodynamic computing devices, where the damped stochastic dynamics of a system minimizes its

physical free energy.

Second-order training methods like NGD employ a local quadratic approximation to the loss

landscape and then optimize that approximate landscape[3]. Given a thermodynamic device with

quadratic potential energy (e.g., the coupled harmonic oscillator hardware discussed in our work), the

local approximation to the objective function can be mapped to the device’s potential energy, allowing

the optimization problem to be solved via the physical dissipation of energy. This highlights the deep

connection between NGD and dissipative harmonic oscillator systems.

Assuming a thermodynamic device with a non-quadratic potential energy, this approach could be

extended to various other local approximations to the objective function, which may be accurate over

a larger region. This could potentially further reduce the number of optimization iterations necessary

over first and second-order methods, and remains an important direction for future work.

Appendix B. Computational Complexities

Table 2 expands on Table 1 for the reduce and expand versions of K-FAC[15]. These versions of K-FAC

extend to more general weight-sharing architectures such as CNNs and transformers and when using

the generalised Gauss-Newton matrix as the curvature matrix. The complexities are more subtle due

to the additional complexity added to extend to general weight-sharing architectures - in particular

added dependence on the output and weight-sharing dimensions. However the cubic to quadratic
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runtime speedup via the thermodynamic hardware in terms of the width of the network (i.e., the

number of neurons per layer) remains.

Optimizer Runtime Memory

SGD/Adam

K-FAC-reduce

Thermodynamic K-FAC-reduce

Thermodynamic K-FAC-reduce (w/ EMA)

K-FAC-expand

Thermodynamic K-FAC-expand

Thermodynamic K-FAC-expand (w/ EMA)

Table 2. Runtime and memory complexity (per layer) of optimizers considered in this paper. Here   is the

number of neurons per layer, hence there are   parameters per layer, and   is the batch size.   is the

output dimension, and   is the weight-sharing dimension. We assume that the Kronecker factors have

condition number at most  . Expand and reduce refer to the weight-sharing techniques described in

Section 3.3 and Ref. [15].

Appendix C. Code implementation and hyperparameters

Our code implementation is based on asdl[46]  with an addition of K-FAC-reduce and K-FAC-

expand[15] for linear and convolutional layers. For the experiments reported in Fig 2(a), an MLP with 

  layers was used, with inputs being CIFAR-10 images and a batch size  . For the GPT in

Fig 2(b), the vocabulary size is fixed to  , with a sequence length  , a batch size   and 3

transformer layers. (this was necessary for the model to fit in memory on a single GPU). The GPT

results in Fig 2(c) were obtained with  , 12 layers and  .
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For the K-FAC training experiments, Table 3 shows the relevant hyperparameters for the experiments

we performed. All were performed with the conservative quantization method explained in

Section 4.5.

Experiment Inv. I/O resolution Machine Optimizer LR Damping EMA decay

CIFAR-10 (varying) 1xA100 SGD 0.1

ImageNet-ViT 12/12 4xV100 NAdamW 0.0012

OGBG-GNN 12/12 4xV100 Nesterov 10

Table 3. Hyperparameters and configurations for experiments. For the AlgoPerf experiments, we

combined K-FAC with other optimizers as in Ref. [15] as it showed superior performance over the

configurations we tested. We leave the exploration of why this leads to superior performance to future

work.

Appendix D. Inversion time for AlgoPerf workloads in a multi-GPU

setting

We profiled the time spent on matrix inversion in multi-GPU environments, where additional

synchronization and communication overhead reduces the fraction of total compute time devoted to

inversion. To validate this, we measured the same workloads on an NVIDIA 4×V100 system and on an

NVIDIA 8×A100 system with NVLink (providing better communication bandwidth). Table 4 shows that

higher communication bandwidth shifts the bottleneck back to compute, increasing the fraction of

time spent on inversion. We also note that the current asdl K-FAC implementation is not heavily

optimized for further offloading of inversions; thus, inversion cost may still not dominate overall

runtime. Similarly, the linear-systems approach (Method 2) described in the main text should

increase this computational load.

0.001 0.9999

0.001 0.999

0.005 0.999
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Workload 4xV100 8xA100

ImageNet-ViT

OGBG-GNN

Table 4. Total time spent on inversion for AlgoPerf workloads. Shown are the percentages for 4xV100 and

8xA100 systems. The 8xA100’s improved communication bandwidth reduces overhead elsewhere,

increasing the share of total runtime spent on inversion.

Appendix E. Potential hardware architecture

The thermodynamic K-FAC algorithm can be implemented via a similar hardware architecture to what

is presented in Refs.[9][37][11]. The Kronecker factors can be digitally constructed and sent onto a

system whose evolution is described by the differential equation (we take here   but it is equally valid

for the  ’s):

where   is the noise variance and   is a vector of voltages.

One may only consider the activations    and gradients    that enter the construction of    and 

  respectively and send them directly onto similar hardware. This alternative implementation is

comprised of two arrays of resistors of size   for encoding   and  , respectively. These

arrays of resistors enable one to implement the following differential equation in hardware:

This system may be implemented with the circuit diagram shown in Fig. 5, where  ,  . We

assume the capacitors all have the same value  , and the resistors with no labels all have the same

value  . By Kirchhoff’s current law, we obtain the equation of motion for the voltage vector 

 as:

with  ,  ,  . We have

11% 16%

27% 35%

Aℓ

Gℓ

dV = −( + λI)V dt − bdt +N (0, 2 dt)Aℓ κ0 (24)
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where we therefore have a set of resistors    representing the    tensor and its transpose. At steady

state the average voltage vector corresponds to the natural gradient estimate, since for  , the

average voltage vector is  , which corresponds to the solution of the linear system 

 with  ,  ,  .

The resistor values    can directly be calculated as    (or    for the transpose), and the total

number of resistors in the circuit is    (12 in the schematic shown). One may operate the

thermodynamic linear solver by setting the voltage values    to the rows of the gradient matrix 

 with a digital-to-analog converter, and set the values of the programmable resistors thanks to

a digital controller. The time for the system to relax to equlibrium (and therefore for the linear system

to be solved) is:

where    is a resistance scale (which means that all resistances    are a multiple of this),    is the

capacitance (assuming all the capacitances are the same), and    is the smallest eigenvalue of the

(unitless)   matrix. After this time, all the modes of the system will have relaxed, which may be too

conservative (for example, in the case where there is only one slow mode, and all other modes are

fast). With regularization,    is lower-bounded by the regularization factor    (which is between 

 and   for all experiments). For timing purposes,   is kept as the relaxation time, because of

the problem-dependence of  . The estimated speedups on the matrix inverse primitive (see also

Refs. [9][37]) are based on the following assumptions:

16 bits of precision (less bits of precision will lead to weaker encoding requirements, therefore a

larger speedup).

A digital transfer speed of   Gb/s.

,  , which means   is the characteristic timescale of the system.
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Figure 5. Circuit diagram of a possible implementation of the thermodynamic solver.
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Footnotes

2 This time complexity emerges from a worst-case upper bound, and there is some evidence that the

quadratic dependence on    can be improved in the average-case, which will be published in

forthcoming work.
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