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Abstract

Modeling and forecasting the prices of cryptocurrencies and measuring the volatility with the GARCH specification

(Engle, 1982) has become standard among researchers. Several applications and extensions of GARCH model is

proposed by Bollerslev (1986). Later, an integrated GARCH model (Engle & Bollerslev, 1986) states that the

persistence parameter is equal to one. A combination of short and long memory conditional models for the mean and

the volatility to analyze crypto returns is done with the help of ARFIMA (Autoregressive Fractionally Integrated Moving

Average) and FIGARCH (Fractionally Integrated Generalized Autoregressive Conditionally Heteroskedastic) Model.

This paper intended to understand various mathematical models for volatility of crypto currencies and also to contribute

to existing literature by making an analytical study of application of these models.
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Objectives:

1. To understand various models of measuring the volatility of cryptocurrencies.

2. To make aware of application of volatility models in empirical studies.

 

1. Introduction

The concept of an open-source currency (i.e. digital asset/ crypto currency) without a central point of trust, such as a

significant distribution agency or state lead control, is new (King & Nadal, 2012). Investors who acquire digital assets in

the form of "cryptocurrencies" should consider about volatile market conditions. Sometimes there is a possibility of a loss

of the entire investment due to volatility of prices in cryptocurrency. The results reveal that Bitcoin has shown a successful

path since its inception, despite volatile market conditions (Caporale et al., 2018). It should be noted that the
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cryptocurrencies cannot replace the fiat currency, and they could change how inter-connected global markets interact,

clearing away barriers surrounding normative currencies and foreign exchange rates (Peter D. DeVries, 2016).

Several mathematical models are used to measure the volatility behavior of cryptocurrencies like: i) Autoregressive

Distributed Lag (ARDL) Model, ii) Heterogeneous Autoregressive (HAR) Model, iii) Autoregressive Conditional

Heteroskedasticity (ARCH) Model, and iv) Generalized Autoregressive Conditional Heteroscedastic (GARCH) Models.

2. Review of literature

This literature review is based on a systematic review with a focus on keywords viz., Cryptocurrency, Bitcoin and Volatility

of Cryptocurrency.

Every investor needs to have an answer to the questions, viz., is it Bitcoin, that particular private currency that will have

the most extended life? Moreover, how long will it run in parallel with the traditional currency? Will Bitcoin have the ability

to benefit from a higher degree of confidence than the present one starting from the backdrop of the growing discontent

generated by numerous imbalances occurring in the economies of different states? (Angela Rogojanu and Liana Badea,

2014).

The nature and the ability of the five largest cryptocurrencies, viz., Bitcoin, Ethereum, Ripples, NEM, and Dash, are

examined by Phillip et al. (2018). Other than bitcoins, there are about 1,000 alternative coins (altcoins) in the global

market, with Ethereum being the most popular. Altcoins are cryptocurrencies launched after bitcoin's success (Rajesh

Kurup, 2017).

Modeling and forecasting the prices of cryptocurrencies and measuring the volatility with the GARCH specification (Engle,

1982) has become standard among researchers. James and Raul (1994) state that the ARCH models often impute a lot of

persistence to stock volatility and yet give relatively poor forecasts. Adrian and Schwert (1990) show the importance of

nonlinearities in stock return behavior that are not captured by conventional ARCH or GARCH models.

Several applications and extensions of GARCH model is proposed by Bollerslev (1986). Later, an integrated GARCH

model (Engle & Bollerslev, 1986) states that the persistence parameter is equal to one. The analysis of co-integration and

error correction with the help of single equation is derived by Engle-Granger test (1987).

The research results show (see Annexure) that robust procedures outperform non-robust ones when forecasting the

volatility and estimating the Value-at-Risk. These results suggest that the presence of outliers plays an important role in

the modelling and forecasting of Bitcoin risk measures (Carlos Trucíos,2019).

The Autoregressive Fractionally Integrated Moving Average (ARFIMA) model is based on the assumptions of linearity,

stationarity and homoscedasticity of error variance. Under these assumptions it is quite impossible to deal with series

exhibiting high volatility or periods of instability such as agricultural commodity price series. A combination of short and

long memory conditional models for the mean and the volatility to analyze crypto returns is done with the help of ARFIMA
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(Autoregressive Fractionally Integrated Moving Average) and FIGARCH (Fractionally Integrated Generalized

Autoregressive Conditionally Heteroskedastic) Model. It is to be noted that understanding the dual Long Memory (LM) in

cryptocurrency markets is essential for crypto investors and forecasters. Zhuhua Jiang et al (2023) contribute to the

related empirical studies by examining the presence of dual LM (in the mean and the variance) in six major digital

currencies (Bitcoin, Dash, Ethereum, Litecoin, Monero, and Ripple).

Lykke et al (2022) find that EGARCH and APARCH perform best among the GARCH models. HAR models based on

realized variance perform better than GARCH models based on daily data. Superiority of HAR models over GARCH

models is strongest for short-term volatility forecasts.

3. Models for Measuring Volatility of cryptocurrency

Campbell, Lo, and MacKinlay (1997, p.481) argued that “it is both logically inconsistent and statistically inefficient to use

volatility measures that are based on the assumption of constant volatility over some period when the resulting series

moves through time”.

3.1. Autoregressive Conditional Heteroskedasticity (ARCH) Model

ARCH is a method that explicitly models the change in variance over time in a time series (Engle, 1982). There are two

types of model viz., i) conditional means and variance and ii) unconditional mean and variance; of the error terms in time-

series data. An ARCH method models the conflict at a time step as a function of the residual errors from a mean process

(e.g., a zero mean). The ARCH model has a simple regression model, as can be seen below:

AR(1) Model:

Yt = β0 + β1Xt + ut

ut ∼ N(0, α0 + α1u2
t−1)

This suggests the error term is normally distributed with zero mean and conditional variance depending on the squared

error term for lagged one time period. 

The conditional variance process is given an autoregressive structure and the log returns are modelled as a white noise

multiplied by the volatility:

Xt = etσt

σ2
t = ω + α1X2

t−1 + ... + αpX2
t−p,

where et (the ’innovations’) are independent and identically distributed with expectation 0 and variance 1 and are assumed

independent from σk for all k ≤ t. The lag length p ≥ 0 is part of the model specification and may be determined using the

Box-Pierce or similar tests for autocorrelation significance, where the case p = 0 corresponds to a white noise process.

Qeios, CC-BY 4.0   ·   Article, April 12, 2023

Qeios ID: IGRTD8.3   ·   https://doi.org/10.32388/IGRTD8.3 3/11



3.2. The standard GARCH model- sGARCH(1,1) (Bollerslev, 1986)

σ2
t = ω + αɛ2t−1 + β2σt−1

This Equation estimates the variance at time t, which depends on a historical mean (ω), news about volatility from the

previous period, measured as a lag of the squared residuals from the mean Equation (ɛ2
t−1), and volatility from the last

period (σ2
t-1). The main feature of models is that they capture volatility clustering in the data.

3.3. Integrated Generalized Autoregressive Conditional heteroskedasticity (IGRACH 1,1)

This is a restricted version of the GARCH model. The persistent parameters sum up to one and import a unit root in the

GARCH process (Engle & Bollerslev, 1986).

xt = µ + at

at = σtϵt

σ 2 t = αo + α1a 2 t−1 + β1σ 2 t−1

Here, it is imposed that: α1 + β1 = 1.

3.4. Integrated Generalized Autoregressive Conditional heteroskedasticity (IGRACH 1,1)

Cointegration describes the long-run equilibrium relationship between the variables. An error correction mechanism forces

the short-run deviation from equilibrium in one period to move towards equilibrium in the next period.

3.5. Non-linear Arch (NARCH)

The NARCH model encompasses various functional forms, we argue it provides a useful framework for testing Engle's

original specification against a wide class of alternatives. It would be interesting to investigate what happens to tests of

expectation theory or CAPM models if NARCH-type models capture the nonlinearity in the data (Higgins and Bera, 1992).

3.6. Glosten, Jagannathan and Runkle (GJR) GARCH Model

h2
t = α0 + ∑p i=1 (αiZ2

t−i(1 − 1(Zt−i > 0)) + γiZ2 t−i1(Zt−i > 0)) +∑q j=1 βj h2-t−j

With parameters α0 > 0, αi ≥ 0, βi ≥ 0, and γi ≥ 0 that guarantee a non-negative conditional variance. In order to highlight

the asymmetry properties, a function f (Zt) is introduced where the magnitude effects (γ1) and the asymmetry effects (α1).

3.7. Asymmetric Power Autoregressive Conditional Heteroscedastic (APARCH)

Ding, Granger, and Engle (1993) find that |εt|d often displays strong and persistent autocorrelation for various values of d,

or rather returns have a long memory property. The asymmetric Power ARCH (APARCH) model assumes a specific
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parametric form for powers of this conditional heteroskedasticity. 

3.8. The Asymmetric GARCH -AGARCH(1,1)

The AGARCH(1,1) (asymmetric GARCH) model developed by Engle and Ng (1993) is another approach to allowing the

GARCH model to react asymmetrically. The news impact curve is a standard measure of how news is incorporated into

volatility estimates. The model allows several types of asymmetry in the news impact on volatility. 

It is defined by

Xt = etσt, σ2 t = ω + α(Xt−1 + γ)2 + βσ2
t−1

where γ is the non-centrality parameter

3.9. The Component Standard GARCH model - CSGARCH (1, 1)

This model decomposes the conditional variance into permanent and transitory components to investigate volatility's long-

and short-run movements (Lee and Engle (1999). The model is deployed as follows:

σ2
t = qt + α1(a2

t−1 − qt−1) + β1(σ2
t−1 − qt−1),

qt = α0 + pqt−1 + φ(a2 t−1 − σ2
t−1)

for 0 < α0, 0 ≤ α1, 0 ≤ β1, 0 < δ, 0 ≤ φ. If α1 + β1 < 1 and p < 1 weak stationarity holds. qt represents the permanent

component of the conditional variance. It can be seen as a time-varying intercept for the conditional heteroscedasticity

3.10. An Autoregressive Distributed Lag (ARDL)

This model states that the demand for absolute stationary variables is inexistent. This is an ordinary least square (OLS)

based model applicable for non-stationary time series and times series with mixed order of integration (Pesaran et al.,

2001) 

Yt = β0 + β1yt-1 + …….+ βpyt-m + α0xt + α1xt-1 + α2xt-2 + ……… + αqxt-n + εt

Here, m and n are the number of years for lag, εt is the disturbance terms, βi's are the short-run, and αi's are coefficients

for the long-run relationship. Hence, it can be used to research the cointegration among a series of variables of order I (0)

or I (1) or mixed I (0) with I (1). The general ARDL(p,q) model equation is expressed as follows:

Yt = β0 + β1yt-1 + …….+ βpyt-p + γ1 Xt-1 + γq Xt-q + εt

The lags order p and q are determined by the AIC criterion and may differ depending on the independent variables or

periods.
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3.11. Fractionally Integrated Generalized Autoregressive Conditional Heteroscedastic (FIGARCH) model

Bordignon et al. (2004) state that the parameter S represents the cycle length, while d indicates the degree of memory.

ht = α0 + α(L)ε2 t + β(L)ht + [1 − (1 − LS )d]ε2

The first three terms in the conditional variance reproduce the general GARCH model, and the fourth term introduces an

extended memory component that operates at zero and seasonal frequencies.

3.12. Heterogeneous Autoregressive (HAR) MODEL (Corsi ,2009)

The basic specification in Corsi (2009) estimates by ordinary least squares under the assumption that at time t, the

conditional mean of \var epsilon_{t+1} is equal to zero. Where the conditional volatility is made dependent on past

volatilities aggregated at different frequencies (HMEM; D(Daily), 5 is for W(Weekly), 22 is for M(Monthly)):

xt = µtεt, εt ∼ Gamma(a, 1/a) for each t 

µt = ω + αDxt−1 + αW x ̄ (5) t−1 + αM x ̄ (22) t−1 ,

with the possible introduction of regimes (MS (n)- HMEM)

xt = µt,st εt, 

εt |st ∼ Gamma(ast , 1/ast ) for each t 

µt,st = ω + ∑n i=1 ki Ist + αD,st xt−1 + αW,st x ̄ (5) t−1 + αM,st x ̄ (22) t−1.

3.13. Hyperbolic GARCH- (HYGARCH)

HYGARCH model is basically used to model long-range dependence

in volatility. This model provides a flexible

structure to capture different levels of volatilities and also short and

long memory effects (Mohammadi and Rezakhah, 2017). The equation is as given below:

rt = h1/2 t zt

ht = u (ht−1, · · · , ht−p, xt−1, · · · , xt−q )

here rt is the return, xt a realized measure of volatility, (zt)t are identically independently distributed (i.i.d) with mean zero

and variance one, (ut)t are also i.i.d with mean zero and variance σ2u. Here (zt)t and (ut)t are mutually independent.

market using trend-following and mean-reverting techniques.

3.14. Conditional Mean Equation (CME)
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The CME is studied by Alina and Dieyo (2019) and Corbet et al. (2018) are explained here: Conditional Mean Equation

(CME): rt = µ +ϵ t

rt is the vector of the price returns, 

µ is a vector of parameters that estimates the mean of the return series, and 

ϵ t is the vector of residuals with a conditional covariance matrix 

Ht given the available information set I t -1. 

The daily price returns:

R i t = ln(P i, t )- ln(Pi, t - 1)

ln(P i, t ), is the natural logarithm of the closing price of cryptocurrency i on day t and

ln(Pi, t - 1) is the natural logarithm of the closing price of cryptocurrency i on day t- 1

Another Equation:

��,� = �� + ��,�, � = 1,2, ��,� |Ω�−1~�(0, Η� ) 

��,� = �� + �� ��,�−1 + ��,�, � = 1,2, ��,� |Ω�−1~�(0, Η� ) 

Where:

��,� is the vector of the logarithmic price return of cryptocurrency, 

� at time �,

�� is a vector of parameters that estimates the mean of the price return of cryptocurrency

�, ��,� is the vector of error terms for � at time �, with a positive definite conditional covariance matrix 

�� given the available information set ��−1. The sub-index 1 refers to Bitcoin, while sub-index 2 refers to Ethereum.

4. Findings

The following interesting insights are found from measures of volatility of crypto currencies:

There is an interrelation between the non-normality and heteroskedasticity of the returns on cryptocurrencies.

Investment managers should select asymmetric GARCH-type models with a long memory to forecast the VaR of

cryptocurrencies.

The cross-correlation matrix of cryptocurrency price changes will reflect the 'non-trivial hierarchical structures' and

'groupings of cryptocurrency pairs.'

ARDL models play a vital role in analyzing an economic scenario. In an economy, changing any economic variable may

bring change in another economic variable beyond time. This change in a variable is not reflected immediately but

distributed over future periods.

The "Efficient Market Hypothesis" is not valid and that speculation is feasible via trading. Nevertheless, significant steps
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toward cryptocurrency efficiency have been traced in recent years. It can lead to less profitable trading strategies for

speculators.

5. Conclusion

This paper analyzed that the price of cryptocurrency is always volatile and is influenced by various factors like market

returns, prices of stocks, gold, and correlation of prices of cryptocurrency. 

Modeling and forecasting the prices of cryptocurrencies and measuring the volatility with the GARCH specification has

become standard among researchers. Several applications and extensions of GARCH model are also proposed by

researchers. An integrated GARCH model states that the persistence parameter is equal to one. A combination of short

and long memory conditional models for the mean and the volatility to analyze crypto returns is done with the help of

ARFIMA and FIGARCH (Fractionally Integrated Generalized Autoregressive Conditionally Heteroskedastic) Model. The

research results show that robust procedures outperform non-robust ones when forecasting the volatility and estimating

the Value-at-Risk. These results suggest that the presence of outliers plays an important role in the modelling and

forecasting of volatility of crypto currency.

Some results show that it is possible to predict cryptocurrency markets using machine learning/artificial intelligence and

sentiment analysis. The transaction volume, the stock, the EUR/USD exchange rate, and the macroeconomic and

financial development do not determine the crypto-currency price in the short and long term.

Annexure

Measuring Models and Its Application in Empirical Studies
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Bollerslev
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Lykke Øverland Bergsli, Andrea Falk Lind, Peter Moln´ar, Michał Polasik
(2022). Forecasting volatility of Bitcoin. Research in International Business
and Finance 59 (2022) 101540
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