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Abstract

The intensity of volatility persistence is sensitive to time scales, market returns and data regimes. Investors who

acquire intangible digital assets in the form of "cryptocurrencies" should consider that they may or may not receive a

fiat currency. Sometimes there is a possibility of a loss of the entire investment due to volatility of prices in digital

currency/cryptocurrency.

Several empirical studies are conducted to measure the volatility behavior of cryptocurrencies using different

mathematical models like: i) Autoregressive Distributed Lag (ARDL) Model, ii) Heterogeneous Autoregressive (HAR)

Model, iii) Autoregressive Conditional Heteroskedasticity (ARCH) Model, and iv) Generalized Autoregressive

Conditional Heteroscedastic (GARCH) Models.

This paper focuses on the review of various GARCH Models studied during 1980-2020.

Keywords: Crypto-asset, Crypto-exchange, Digital transactions, GARCH Models, Price volatility.

 

Objectives:

1. To identify a better model for measuring the volatility of crypto currencies.

2. To appreciate GARCH models of measuring the volatility of cryptocurrencies, studied during 1980-2020.

 

1. Introduction

The intensity of volatility persistence is sensitive to time scales, market returns and data regimes. Investors who acquire

intangible digital assets in the form of "cryptocurrencies" should consider that they may or may not receive a fiat currency.

Sometimes there is a possibility of a loss of the entire investment due to volatility of prices in digital

currency/cryptocurrency. Other than bitcoins, there are about 1,000 alternative coins (altcoins) in the global market, with
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Ethereum being the most popular. Altcoins are cryptocurrencies launched after bitcoin's success (Rajesh Kurup, 2017).

Several empirical studies are conducted to measure the volatility behavior of cryptocurrencies using different

mathematical models like: i) Autoregressive Distributed Lag (ARDL) Model, ii) Heterogeneous Autoregressive (HAR)

Model, iii) Autoregressive Conditional Heteroskedasticity (ARCH) Model, and iv) Generalized Autoregressive Conditional

Heteroscedastic (GARCH) Models. This paper focuses on the review of various GARCH Models studied during 1980-

2020.

2. Review of literature

This analysis is based on a systematic review and focused on keywords viz., Cryptocurrency/ Bitcoin, Volatility of

Cryptocurrency, and its measures. One may acquire 'Intangible Digital Assets' created through a 'Non-Fungible Token'

(NFT). The lack of interchangeability, i.e., fungibility, distinguishes NFTs from blockchain-based cryptocurrencies, such as

Bitcoin. It is a non-interchangeable unit stored on a digital ledger or blockchain. NFTs can be associated with easily-

reproducible items such as photos, videos, audio, and other types of digital files as unique items. Copies of the original file

are not restricted to the owner of the NFT.

The concept of an open-source currency without a central point of trust, such as a significant distribution agency or state

lead control, is new (King & Nadal, 2012). Every investor needs to have an answer to the questions, viz., is it Bitcoin, that

particular private currency that will have the most extended life? Moreover, how long will it run in parallel with the

traditional currency? Will Bitcoin have the ability to benefit from a higher degree of confidence than the present one

starting from the backdrop of the growing discontent generated by numerous imbalances occurring in the economies of

different states?" (Angela Rogojanu and Liana Badea, 2014).

The results reveal that Bitcoin has shown a successful path since its inception, despite volatile market conditions

(Caporale et al., 2018). It is observed that the technology can potentially improve central banks' operations and can serve

as a platform to launch their cryptocurrencies (Raskin & Yermack, 2016). The nature and the ability of the five largest

cryptocurrencies, viz., Bitcoin, Ethereum, Ripples, NEM, and Dash, are examined by Phillip et al. (2018).

It should be noted that the cryptocurrencies cannot replace the fiat currency, and they could change how inter-connected

global markets interact, clearing away barriers surrounding normative currencies and foreign exchange rates (Peter D.

DeVries, 2016).

Although consumers may have digital banking credentials to access the digital financial system, consumers in many

emerging markets are not active users of digital channels due to a lack of consumer trust and confidence in the new

channels (Maladay, 2016).

Yates (2017) highlighted that government agencies explore the potential for cryptocurrencies to compete with

government-backed money; the total value of all cryptocurrencies in circulation is over $100 billion, arguably posing a

credible threat of supplanting central-bank-issued money.
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Hacker and Thomale (2017) suggest two policy proposals to mitigate legal uncertainty concerning token sales. They are,

first, tailoring disclosure requirements to the code-driven nature of token sales. An ICO-specific safe harbor would offer a

clear and less burdensome path to EU law compliance for token sellers who suspect their tokens may qualify as

securities. Second, overlapping and partially contradicting securities regulation regimes can undermine each other. It is

noted that only a joint international regulatory authority can efficiently balance investor protection and investor access in

the face of the novel generation of decentralized blockchain applications.

Blemus (2018) extensively compares the current regulatory trends in selected countries on the various applications

enabled or issues raised by Blockchain technology.

Michael & Wei (2020) suggested a model for cryptocurrency as membership in a decentralized digital platform to facilitate

transactions between users of certain goods or services. The problem induced by the cryptocurrency price has to clear

membership demand with speculators' supply of the token.

3. Measures of Volatility of cryptocurrency-1980-2020

3.1. Engle (1982) - Autoregressive Conditional Heteroskedasticity (ARCH) Model

ARCH is a method that explicitly models the change in variance over time in a time series. An ARCH method models the

conflict at a time step as a function of the residual errors from a mean process (e.g., a zero mean). The ARCH model has

a simple regression model, as can be seen below:

Yt = β0 + β1Xt + ut

ut ∼ N(0, α0 + α1u2
t−1)

This suggests the error term is normally distributed with zero mean and conditional variance depending on the squared

error term lagged one time period. The conditional variance is the variance given the values of the error term lagged once,

twice etc:

σ2
t = var ut∖ut−1, ut−2… = E u2

t ∖ut−1, ut−2

Where  is the conditional variance of the error term. The ARCH effect is then modelled by:

σ2
t = α0 + α1u2

t−1

This is an ARCH model as it contains only a single lag on the squared error term, however it is possible to extend this to

any number of lags, if there are q lags it is termed an ARCH (q) model.

3.1. Bollerslev (1986)-The standard GARCH model)- is represented as sGARCH (1,1)

( ) ( )
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y t = xtγ + ɛt

Here: dependent variable: yt, exogenous variables: xt, error term: ɛt.

σ2
t = ω + αɛ2t−1 + β2σt−1

This Equation estimates the variance (squared volatility σt2) at time t, which depends on a historical mean (ω), news

about volatility from the previous period, measured as a lag of the squared residuals from the mean Equation (ɛt-12), and

volatility from the last period (σt-12).

3.2. Engle & Bollerslev (1986)-Integrated Generalized Autoregressive Conditional heteroskedasticity

(IGRACH 1,1)

This is a restricted version of the GARCH model. The persistent parameters sum up to one and import a unit root in the

GARCH process (Engle & Bollerslev, 1986).

xt = µ + at

at = σtϵt

σ 2 t = αo + α1a 2 t−1 + β1σ 2 t−1

Here, it is imposed that: α1 + β1 = 1.

3.4. Engle and Granger (1987)

The cointegration is characteristic of a series vector Xt, with the same order of integration d, whose linear combination

results in a process with integration order d minus b.

∃β≠0 and Zt≔β0 Xt∼I (d−b); with b > 0

Based on the case of series with a unit root, if each element of a vector of time series Xt, stationary only after the first

differentiation, generates by linear combination βXt a stationary process with finite variance, they are said to be

cointegrated. In practice, two non-stationary series with a stochastic tendency and typical displacements over time are

said to be cointegrated.

3.5. Autoregressive Fractionally Integrated Moving Average-Fractionally Integrated Generalized

Autoregressive Conditionally Heteroskedastic (ARFIMA-FIGARCH)- Ravichandran et al. (1989)

This model is used to analyze the crypto-assets returns, a powerful combination of short and long memory conditional

models for the mean and the volatility.

A stochastic process x (t) t∈Z is:
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An ARFIMA (p, d, q)- GARCH (r, s), p, q, r, s ∈ N ∪{0} and d ∈ R,

if it satisfies: φ(B)∇dx (t) = θ(B) ǫ (t), with ǫ (t) = σ(t) z (t

Here, the polynomial Φ(B) and Θ(B) are of orders p and q, respectively, and the fractional differentiation and the white

noise process {at}t∈Z have zero mean and finite variance.

3.6. Ravichandran et al., (1989): Threshold GARCH (TGARCH)

This indicates the existence of leverage effects of the first order:

σ2 t = ω + αx2 t−1 + βσ2 t−1 + λx2 t−11t−1

Here, α and α + λ denote the effect of good news and bad news, respectively, and λ > 0 is evidence that bad news

upsurge volatility in the Bitcoin market.

3.7. Ravichandran et al. (1989)- Markov Switching GARCH (MSGARCH)

Yt | (st = k, It−1) ∼ D (0, HK, t, ξk)

where D (0, HK, t, ξk) is a continuous distribution with zero mean, time-varying variance HK, t,

Furthermore, additional shape parameters are gathered in the vector ξk.

The integer-valued stochastic variable st, defined on the discrete space {1,..., K}

3.8. Diagnol Baba-EngleKraft-Kroner (BEKK) Model, 1990

Ht = C ′C + A ′ (Ξt−1Ξ ′ t−1) A + B ′ (Ht−1) B

Where Ht is an nxn conditional variance-covariance matrix, C is an upper triangular matrix of parameters, Ξt−1 is an nx1

disturbance vector, and A and B are 'n x n' diagonal parameter matrices.

3.9. Nelson (1991)-Exponential GARCH (EGARCH) Model-

log σ 2 t = ω + α1Zt−1 + γ1 [|Zt−1| − E (|Zt−1|)] + β1 log σ 2 t−1

α1 > 0, β1 > 0, γ1 > 0 and ω > 0. α1 captures the sign effect, and γ1 captures the size effect.

The persistence parameter for this model is β1.

3.10. Higgins and Bera's (1992)

theory applied to weekly exchange rates and found the existence of non-linear ARCH. Their study reveals that “since the

NARCH model encompasses various functional forms, we argue it provides a useful framework for testing Engle's original
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specification against a wide class of alternatives. It would be interesting to investigate what happens to tests of

expectation theory or CAPM models if NARCH-type models capture the nonlinearity in the data."

3.11. Glosten, Jagannathan and Runkle (GJR)- GARCH Model-1993

h2 t = α0 + ∑p i=1 (αiZ2 t−i (1 − 1(Zt−i > 0)) + γiZ2 t−i1(Zt−i > 0)) +∑q j=1 βj h2-t−j

With parameters α0 > 0, αi ≥ 0, βi ≥ 0, and γi ≥ 0 that guarantee a non-negative conditional variance. In order to highlight

the asymmetry properties, a function f (Zt) is introduced where the magnitude effects (γ1) and the asymmetry effects (α1).

3.12. Ding, Granger and Engle (1993):Asymmetric Power Autoregressive Conditional Heteroscedastic

(APARCH)

Ding, Granger, and Engle (1993) find that |εt|d often displays strong and persistent autocorrelation for various values of d,

or rather returns have a long memory property. The asymmetric Power ARCH (APARCH) model assumes a specific

parametric form for powers of this conditional heteroskedasticity. More specifically, we say that εt∼APARCH, if we can

write εt=σtzt, where zt is a standard Gaussian and:

σδ
t=ω+α(|εt−1|−γεt−1)δ+βσδ

t−1

� ��= � ��� + ∑q i=1 αi (|� � | - � ���) + ∑p i=1 � � � 2�−�

Where � � = ℎ�, the parameter � (assumed positive and ranging between 1 and 2.

3.13. Engel and Ng's (1993)

study reveals that "the news impact curve is a standard measure of how news is incorporated into volatility estimates.

Several new candidates for modeling time-varying volatility are introduced and contrasted to better estimate and match

news impact curves to the data. These models allow several types of asymmetry in the news impact on volatility." The

AGARCH (1,1) (asymmetric GARCH) model developed by Engle and Ng (1993) is another approach to allowing the

GARCH model to react asymmetrically.

It is defined by

Xt = etσt, σ2 t = ω + α(Xt−1 + γ)2 + βσ2 t−1

where γ is the non-centrality parameter

3.14. Engle & Kroner (1995)

presents theoretical results on the formulation and estimation of multivariate generalized ARCH models within

simultaneous equations systems. A new parameterization of the multivariate ARCH process is proposed, and equivalence
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relations are discussed for the various ARCH parameterizations.

3.15. Lee and Engle (1999)

The Component Standard GARCH model is denoted by CSGARCH (1, 1)- This model decomposes the conditional

variance into permanent and transitory components to investigate volatility's long- and short-run movements (Lee and

Engle (1999). The model is deployed as follows:

σ2
t = qt + α1(a2

t−1 − qt−1) + β1(σ2
t−1 − qt−1),

qt = α0 + pqt−1 + φ(a2 t−1 − σ2 t−1)

for 0 < α0, 0 ≤ α1, 0 ≤ β1, 0 < δ, 0 ≤ φ. If α1 + β1 < 1 and p < 1 weak stationarity holds. qt represents the permanent

component of the conditional variance. It can be seen as a time-varying intercept for the conditional heteroscedasticity

3.16. Pesaran et al. (2001)

proposed an Autoregressive Distributed Lag (ARDL) model stating that the demand for absolute stationary variables is

inexistent. This is an ordinary least square (OLS) based model applicable for non-stationary time series and times series

with mixed order of integration.

Yt = β0 + β1yt-1 + …….+ βpyt-m + α0xt + α1xt-1 + α2xt-2 + ……… + αqxt-n + εt

Here, m and n are the number of years for lag, εt is the disturbance terms, βi's are the short-run, and αi's are coefficients

for the long-run relationship. Hence, it can be used to research the cointegration among a series of variables of order I (0)

or I (1) or mixed I (0) with I (1). The general ARDL (p, q) model equation is expressed as follows:

Yt = β0 + β1yt-1 + …….+ βpyt-p + γ1 Xt-1 + γq Xt-q + εt

The lags order p and q are determined by the AIC criterion and may differ depending on the independent variables or

periods.

3.17. Bordignon et al. (2004)- Fractionally Integrated Generalized Autoregressive Conditional

Heteroscedastic (FIGARCH) model-

Bordignon et al. (2004) state that the parameter S represents the cycle length, while d indicates the degree of memory.

ht = α0 + α(L)ε2 t + β(L) ht + [1 − (1 − LS) d]ε2

The first three terms in the conditional variance reproduce the general GARCH model, and the fourth term introduces an

extended memory component that operates at zero and seasonal frequencies.

3.18. Corsi (2009)-Heterogeneous Autoregressive (HAR) MODEL
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The basic specification in Corsi (2009) estimates by ordinary least squares under the assumption that at time t, the

conditional mean of \var epsilon_{t+1} is equal to zero. Where the conditional volatility is made dependent on past

volatilities aggregated at different frequencies (HMEM; D (Daily), 5 is for W (Weekly), 22 is for M (Monthly)):

xt = µtεt, εt ∼ Gamma (a, 1/a) for each t

µt = ω + αDxt−1 + αW x ̄ (5) t−1 + αM x ̄ (22) t−1,

with the possible introduction of regimes (MS (n)- HMEM)

xt = µt, st εt,

εt |st ∼ Gamma (ast, 1/ast) for each t

µt, st = ω + ∑n i=1 ki Ist + αD, st xt−1 + αW, st x ̄ (5) t−1 + αM, st x ̄ (22) t−1.

3.19. Mohammadi and Rezakhah. (2017)- Hyperbolic GARCH- (HYGARCH)

HYGARCH model is basically used to model long-range dependence

in volatility. This model provides a flexible

structure to capture different levels of volatilities and also short and

long memory effects. The equation is as given below:

rt = h1/2 t zt

ht = u (ht−1, · · ·, ht−p, xt−1, · · ·, xt−q)

here rt is the return, xt a realized measure of volatility, (zt) t are identically independently distributed (i.i.d) with mean zero

and variance one, (ut) t are also i.i.d with mean zero and variance σ2u. Here (zt) t and (ut) t are mutually independent.

market using trend-following and mean-reverting techniques.

3.20. Alina and Dieyo (2019) & Corbet et al. (2018)-Conditional Mean Equation (CME)

The CME is studied by Alina and Dieyo (2019) and Corbet et al. (2018) are explained here: Conditional Mean Equation

(CME): rt = µ +ϵ t

rt is the vector of the price returns,

µ is a vector of parameters that estimates the mean of the return series, and

ϵ t is the vector of residuals with a conditional covariance matrix

Ht given the available information set I t -1.

The daily price returns:

R i t = ln (P i, t)- ln (Pi, t - 1)
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ln (P i, t), is the natural logarithm of the closing price of cryptocurrency i on day t and

ln (Pi, t - 1) is the natural logarithm of the closing price of cryptocurrency i on day t- 1

Another Equation:

��,� = � � + � �,�, � = 1,2, � �,� |Ω�−1~�(0, Η�)

��,� = � � + � � � �,�−1 + � �,�, � = 1,2, � �,� |Ω�−1~�(0, Η�)

Where:

��,� is the vector of the logarithmic price return of cryptocurrency,

� at time �,

�� is a vector of parameters that estimates the mean of the price return of cryptocurrency

�, � �,� is the vector of error terms for � at time �, with a positive definite conditional covariance matrix

�� given the available information set ��−1. The sub-index 1 refers to Bitcoin, while sub-index 2 refers to Ethereum.

4. Pros and Cons of GARCH Models

James and Raul (1994) state that the ARCH models often impute a lot of persistence to stock volatility and yet give

relatively poor forecasts. One explanation is that extremely large shocks, such as the October 1987 crash, arise from quite

different causes and have different consequences for subsequent volatility than do small shocks. Adrian and Schwert

(1990) show the importance of nonlinearities in stock return behavior that are not captured by conventional ARCH or

GARCH models. The following interesting insights are found;

There is an interrelation between the non-normality and heteroskedasticity of the returns on cryptocurrencies.

Investment managers should select asymmetric GARCH-type models with a long memory to forecast the VaR of

cryptocurrencies.

The cross-correlation matrix of cryptocurrency price changes will reflect the 'non-trivial hierarchical structures' and

'groupings of cryptocurrency pairs.'

The transaction volume, the stock, the EUR/USD exchange rate, and the macroeconomic and financial development do

not determine the crypto-currency price in the short and long term.

ARDL models play a vital role in analyzing an economic scenario. In an economy, changing any economic variable may

bring change in another economic variable beyond time. This change in a variable is not reflected immediately but

distributed over future periods.

Some results show that it is possible to predict cryptocurrency markets using machine learning/ artificial intelligence

and sentiment analysis.

The "Efficient Market Hypothesis" is not valid and that speculation is feasible via trading. Nevertheless, significant steps

toward cryptocurrency efficiency have been traced in recent years. It can lead to less profitable trading strategies for
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speculators.

5. Conclusion

This paper analyzed about the intensity of volatility persistence is sensitive to time scales, market returns and data

regimes of the entire investment due to volatility of prices in digital currency/cryptocurrency.

In this paper several empirical studies conducted by various eminent research scholars are analyzed and presented an

overview of different mathematical models like: i) Autoregressive Distributed Lag (ARDL) Model, ii) Heterogeneous

Autoregressive (HAR) Model, iii) Autoregressive Conditional Heteroskedasticity (ARCH) Model, and iv) Generalized

Autoregressive Conditional Heteroscedastic (GARCH) Models. Investors who acquire intangible digital assets in the form

of "cryptocurrencies" should aware that they may or may not receive a fiat currency. Sometimes there is a possibility of a

loss of the entire investment due to volatility of prices in digital currency/cryptocurrency.
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