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High-Performance Computing (HPC) is crucial for performing advanced computational tasks, yet

their complexity often challenges users, particularly those unfamiliar with HPC-speci�c commands

and work�ows. This paper introduces Hypothetical Command Embeddings (HyCE), a novel method

that extends Retrieval-Augmented Generation (RAG) by integrating real-time, user-speci�c HPC

data, enhancing accessibility to these systems. HyCE enriches large language models (LLM) with

real-time, user-speci�c HPC information, addressing the limitations of �ne-tuned models on such

data. We evaluate HyCE using an automated RAG evaluation framework, where the LLM itself creates

synthetic questions from the HPC data and serves as a judge, assessing the e�cacy of the extended

RAG with the evaluation metrics relevant for HPC tasks. Additionally, we tackle essential security

concerns, including data privacy and command execution risks, associated with deploying LLMs in

HPC environments. This solution provides a scalable and adaptable approach for HPC clusters to

leverage LLMs as HPC expert, bridging the gap between users and the complex systems of HPC.

1. Introduction

HPC is powerful but often inaccessible to a broad range of users due to their inherent complexity.

While graphical user interfaces (GUIs) such as Open OnDemand[1]  have made HPC resources more

accessible, users still need to interact with the system through command-line interfaces (CLIs) for

resource availability, monitoring queue and software availabilities. This requirement places a steep

learning curve on users unfamiliar with shell commands and the intricacies of the HPC environment.

Furthermore, relying on HPC experts to answer user queries is not an e�cient use of time, as their

expertise is a valuable and limited resource.
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Recent advances in large language models (LLMs)[2][3] have opened new possibilities for simplifying

user interactions with HPC systems. Tools such as ShellGPT[4] and AI-Shell[5] have demonstrated the

potential for LLMs to translate human-readable queries into executable shell commands, simplifying

the interaction with complex systems. However, these systems lack the capability to integrate cluster-

speci�c documentation or addressing the real-time user information, which is often essential for

users to e�ciently navigate HPC environments. LLMs directly putting commands in the terminal also

poses some security risks.

Retrieval-Augmented Generation (RAG)[6] o�ers a solution by extending LLMs with domain-speci�c

knowledge, dynamically incorporating speci�c HPC cluster information corresponding to speci�c HPC

organization into the model’s context.

Fine-tuned LLMs[7][8][9]  have shown potential in aiding parallel programming and detecting race

conditions, demonstrating their strength in coding parallel programs. However, this paper focuses on

extending RAG to �exibly integrate additional cluster documentation and real-time user information.

We introduce HyCE, an extension of RAG that enriches LLMs with HPC-speci�c data, allowing them to

serve as HPC experts HPC users. To evaluate this approach, we propose a novel framework where the

LLM generates synthetic HPC-speci�c datasets, evaluates itself using de�ned metrics for HPC

work�ows, and acts as its own judge to assess performance. Additionally, we address critical security

concerns, including safeguarding data privacy and ensuring command execution integrity, to

facilitate safe deployment in HPC environments.

This approach not only simpli�es access to HPC resources but also lays the foundation for a more

interactive and intelligent interface that adapts to the speci�c needs of each HPC organization. To

facilitate this, we open-source the code1 of our extended RAG, enabling straightforward and secure

deployment of LLMs with HPC context in any organization.

2. Related Work

2.1. LLMs in HPC Environments

As HPC applications grow in scale and complexity, there are examples of LLMs being adapted to

address HPC-speci�c requirements in programming, code generation[9][3][8][10][11][12], and

translation from natural language to commands[4][5].
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HPC-GPT[7], a �ne-tuned version of LLaMA[3]  on HPC-speci�c datasets, optimizes tasks like data

race detection in OpenMP parallel code, thereby enhancing productivity and accuracy in specialized

coding. Similarly, HPC-Coder[8] pushes the boundaries of LLM utility in HPC by generating parallel,

performance-optimized code. It assists in annotating code with OpenMP pragmas and forecasting the

performance impacts of code modi�cations, providing expert-level support for complex, high-

performance programming.

To enhance user accessibility to HPC systems, tools like Shell-GPT[4]  and AI-shell[5]  have been

developed to translate natural language queries into executable bash commands. While these tools

demonstrate signi�cant potential, academic research on leveraging LLMs to improve user interaction

with HPC resources remains limited. This paper addresses this gap by introducing HyCE, a method

that integrates HPC commands into a standard RAG architecture. Given the critical importance of

secure command execution in HPC environments, this paper also explores the security implications of

the proposed approach in a dedicated section.

2.2. Retrieval-Augmented Generation (RAG)

RAG[6]  o�ers another method for incorporating supplementary information into pre-trained LLMs,

presenting a �exible alternative to �ne-tuning. Unlike �ne-tuning, which modi�es the model itself,

which often is more expensive, RAG dynamically accesses up-to-date or domain-speci�c

information. This dynamic nature makes RAG particularly suited for HPC environments where real-

time data, such as user and system information, is essential. For instance, queries like “What GPUs are

available to me?” or “What is the status of my program?” necessitate executing HPC commands and

interpreting their output within the user’s speci�c environment. By leveraging RAG, LLMs can

respond more accurately, providing context-aware support in HPC contexts.

Among various RAG techniques, including query translation, indexing, and retrieval[13][14][15], our

HyCE approach took inspiration from Hypothetical Document Embedding (HyDE)[16]. HyDE generates

a hypothetical answer based on a query, using it to retrieve relevant contexts more accurately. In a

similar way, HyCE utilizes hypothetical commands that are embedded into a vector space, which helps

in retrieving similar real commands more e�ectively to enhance the semantic context retrieval.

Moreover, an automated and continuous evaluation work�ow is essential for RAG applications in HPC

settings. Recent research has introduced LLMs as evaluators[17][18][19], enabling a self-sustaining
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process in which the LLM generates synthetic data for evaluation and serves as a “judge” to assess

RAG performance. Custom evaluation metrics tailored to speci�c RAG tasks allow LLM evaluators to

e�ectively assess various RAG implementations, including those involving HPC data.

3. RAG with HPC Data

3.1. Approach

In our approach expressed in Figure 1, we extend the standard RAG framework to perform HPC-

speci�c question-answering by integrating data such as cluster documentation and command

outputs. In a typical RAG work�ow, chunks[20][2] are created from these data, embedded with a text

embedding model, and used as context. Top K relevant chunks are retrieved with a bi-encoder[21] and

ranked with a cross-encoder[22], then prompt is constructed for LLM to answer. Additionally, we

incorporate HyCE into this standard RAG pipeline to accurately include command outputs in the

LLM’s context.

Figure 1. RAG Architecture with HPC Data. In addition to the conventional RAG architecture, it

incorporates Hypothetical Command Embeddings (HyCE), which enhances command retrieval to

accurately access user-speci�c HPC data. When a command description is retrieved (indicated by green

arrows) based on the query, HyCE executes the command, and the resulting command output is fed into

the LLM as context to answer user query
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3.2. HPC data

In this paper, HPC data encompasses to cluster documentations and shell commands.

Cluster documentation serves as a comprehensive guide to navigating an HPC environment. Typically

available online, it provides essential details such as the cluster’s purpose, account setup procedures,

and access methods. It also includes overviews of hardware, software, and storage resources, along

with speci�c instructions for job submission using schedulers like SLURM or PBS. Furthermore, it

outlines best practices for data management and performance optimization while addressing security

policies, data protection guidelines, and compliance requirements. Additional resources, such as

training materials, support contacts, sample job scripts, tutorials, and FAQs, help users e�ectively

utilize HPC clusters for various tasks.

Shell commands, on the other hand, allow users to retrieve dynamic, real-time information speci�c to

their needs. These commands provide insights into resource availability (e.g., GPUs or CPUs available),

job queue status (e.g., running, queued, or held jobs), and software availabilities. Integrating these

commands into the RAG framework enables the generation of tailored, context-aware responses,

ensuring users receive precise and actionable information for their speci�c HPC work�ows.

3.3. Hypothetical Command Embeddings (HyCE)

For handling terminal commands, we employ Hypothetical Command Embeddings (HyCE), an

adaptation of the ”HyDE” (Hypothetical Document Embeddings) approach. In HyDE, a hypothetical

answer to the query is generated to match relevant contexts for retrieval. Similarly, HyCE leverages

command descriptions to identify the most appropriate command to execute in response to a query. In

this context, a ”hypothetical command” refers to a descriptive explanation of what the command

does. For example, for the command ”nvidia-smi,” the description might be ”This command checks

the GPU model, memory usage, and utilization rate in real time”. After retrieving the relevant

command, it is executed to generate output, which is then used as context for the LLM to formulate an

answer to the query.

To measure the e�ectiveness of the HyCE method in retrieving HPC data, we compared the average

text similarity between two setups, a cross-encoder which matches the query directly with command

and a cross-encoder with HyCE which matches the query with a command description instead. The
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results indicate the similarity score is consistently higher between the user query and the HyCE-

augmented description than between the query and the raw command.

Matching the query to a command description proves more accurate than direct matching for several

reasons. First, commands are often abbreviated, like ”ls” for ”list �les,” which lacks semantic

meaning on its own, making direct semantic matching ine�ective. Second, commands are

syntactically structured and thus incompatible with the semantic search methods typically used in bi-

encoder and cross-encoder models. By using descriptive explanations instead, HyCE makes the

command more semantically aligned with the user’s natural language query.

4. Automatic RAG evaluation with HPC data

Using the generated chunks and the extended RAG architecture, we expand the evaluation process to

assess RAG’s performance with HPC data automatically as described in Table 1

Cross-Encoders
Avg Top Sim Score Query vs

Command Name

Avg Top Sim Score Query vs

Command Description

nvidia/llama-3.2-nv-rerankqa-1b-v1 -2.8283 -2.7880

cross-encoder/ms-marco-MiniLM-L-

12-v2
-9.0231 -5.1792

cross-encoder/stsb-roberta-large 0.0906 0.5285

dangvantuan/CrossEncoder-

camembert-large
0.2501 0.5718

yunyu/cross-encoder-stsb-deberta-

v3-large
0.1472 0.3981

Table 1. Comparison of the average similarity scores between the top-matching query and either the

command or command description (HyCE setup). Higher similarity scores indicate greater textual

similarity.
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4.1. Question & Answer Generation and Filtering

To comprehensively evaluate the RAG system, we utilize chunks of HPC-speci�c information to

generate hypothetical question-answer (Q&A) pairs. These pairs simulate potential user queries and

their corresponding answers based on the provided context, creating a benchmark for testing the

system’s performance.

The HPC data chunks comprise two key sources: online documentation and shell commands. For Q&A

generation based on command chunks, the commands are executed, and both the command

description and output are used in LLM to create the Q&A pairs. This ensures the generated pairs

accurately re�ect the practical use cases and speci�c details of the HPC environment.

In this study, a total of 100 Q&A pairs were generated: 90 derived from cluster documentation and 10

from shell commands. To ensure the quality and relevance of these pairs, the LLM evaluates them

using three criteria aligned with typical HPC usage:

Groundedness: Ensuring the question can be answered unambiguously using the available context.

Relevance: Verifying the question addresses practical and commonly encountered issues in HPC

environments.

Standalone: Con�rming the question is understandable without requiring additional background

information.

Each response is evaluated using a binary scoring system (1 for success, 0 for failure), and only Q&A

pairs scoring 1 on all criteria are included in the evaluation set. This rigorous �ltering process ensures

the Q&A pairs are both realistic and applicable, providing a robust foundation for assessing the RAG

system. Detailed prompts and output formats for this process are provided in the Appendix.
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4.2. Evaluation of RAG via LLM as a Judge

Following the generation of hypothetical Q&A pairs, the RAG system generates responses for each

question. These responses are evaluated by comparing them to reference answers using de�ned

scoring criteria:

Correctness: Ensuring that the response accurately matches the reference answer.

Faithfulness: Verifying that the response is free from errors, does not hallucinate, and aligns

closely with the given context.

This evaluation framework assesses both the factual accuracy and the overall reliability of the RAG

system’s responses, emphasizing their applicability to HPC users. Unlike the direct scoring approach

used for �ltering synthetic Q&A pairs, this stage employs a reference-based evaluation approach[19].

Each generated answer is scored against the reference answer using binary metrics, assigning a score

of 1 for success and 0 for failure for each criterion.

This process provides a structured and rigorous means of evaluating the RAG system, ensuring its

responses meet the practical needs of HPC environments. The full prompt can be found in the

Appendix.

5. Experiment and Discussion

While the extended RAG system is designed for deployment as a chatbot integrated into HPC GUIs like

Open OnDemand to enable seamless and intuitive user interactions, this experiment evaluates its

functionality in a command-line environment. Speci�cally, the RAG evaluation was conducted on the

terminal of Katana[23], an on-premises HPC cluster managed by Research Technology Services at

UNSW Sydney. For LLM inference in the RAG, Nvidia NIM microservices and OpenAI were utilized.

Details of the RAG hyperparameters and models used in the experiment are provided in the Appendix.

5.1. Qualitative Analysis of RAG with HPC Data

We conducted a qualitative analysis to evaluate the impact of incorporating shell command data via

HyCE. For instance, when asked, “What GPUs do I have access to?”, an LLM relying solely on cluster

documentation provided only generic information about GPU types. In contrast, our RAG setup with

HyCE dynamically retrieved user-speci�c context by executing relevant commands, accurately

identifying the user’s available GPUs, such as Nvidia V100 and A100.
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This demonstrates how the integration of shell commands enables RAG to generate precise, tailored

responses, enhancing the relevance and utility of its outputs for HPC users. Additional examples are

shown in Figure 2.

Figure 2. Example of comparing of two RAG responses. Unlike the ambiguous response provided by RAG

with just HPC documents, RAG combined with HyCE can address user speci�c HPC questions more

precisely.

5.2. Orthogonality of HyCE to Other RAG Improvement Methods

Our approach to extending RAG with HPC-speci�c data complements other RAG improvement

methods such as prompt engineering using Chain of Thought(CoT)[24] and better models. The results

of automatic evaluation in Table 2 demonstrate that the incorporation of these components into the

pipeline proportionally enhances the performance of our HPC-augmented RAG system. For instance,

while HyCE alone improved the baseline RAG by 4.66%, the combination of CoT and better models

e�ectively leveraged the shell commands’ output provided by HyCE, resulting in incremental

performance gains.
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Changes Eval Score Eval Score

RAG baseline 77.67% -

+ HyCE 82.33% 4.66%

+ Prompt Engineering(CoT) 83% 0.67%

+ Better Retrieval, Re-Rank models and LLM 86% 3%

Table 2. Automatic RAG evaluation with incremental changes

In addition, our framework is designed for adaptability, enabling users to integrate �ne-tuned models

optimized for generating parallel code in HPC environments or to adopt open-source models for

enhanced security. This �exibility underscores the robustness of our approach across diverse HPC

scenarios, allowing users to tailor the system to their unique needs and security requirements.

Furthermore, the RAG architecture can be seamlessly integrated with analytics tools to enhance user

support. For example, analyzing user interactions can help identify frequently asked questions,

driving iterative improvements to user documentation. These enhancements, in turn, enrich the

RAG’s generative capabilities, creating a “spiral of improvement” where both user document and RAG

evolve to better serve users.

5.3. Limitations of the Automatic RAG Evaluation

Despite its utility, our automatic RAG evaluation method has some limitations. This approach relies on

data chunks to create hypothetical questions and answers, which means that it cannot e�ectively

measure performance outside of the provided documentation chunks or commands. Consequently, the

system may exhibit hallucinations when responding to queries that fall outside the scope of the user

documentation or command output in the real world. Future work could explore evaluation methods

that assess RAG’s ability to generalize beyond speci�c chunks to further enhance robustness of the

RAG system.

Δ
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5.4. Other Context Retrieval Metrics

While context retrieval quality could also be evaluated through metrics such as accuracy, precision, F1

score and AUC, this aspect remains consistent with conventional RAG implementations and thus is not

a primary focus in our project. While these metrics may provide additional insights, they fall outside

the scope of the HyCE-speci�c extensions in our RAG approach.

6. Security Considerations

6.1. Data Privacy

Protecting sensitive HPC information is paramount, especially when interacting with external servers

(e.g., OpenAI). Solutions include using enterprise and local models. For enterprise deployments,

privacy can be maintained if the provider does not record input-output data and does not train their

LLMs with user data, thereby ensuring secure usage. Additionally, future encryption technologies may

allow data to be encrypted before being sent externally and processed by the LLM. Alternatively,

hosting local models entirely within the HPC environment enhances security by eliminating the need

to transmit data externally. However, this approach has challenges, as local model hosting requires

substantial compute resources and can reduce available HPC resources for other tasks. Thus, �nding a

balance between privacy and e�cient HPC utilization remains essential.

6.2. Command Execution Security

To maintain security in HPC environments, we implement several layers of safeguards to prevent

direct command execution by the LLM:

LLM Safety against Prompt Injection: LLMs are usually pre-trained to counter prompt injection

attacks, ensuring that queries with harmful prompts and outputs are detected, keeping the LLM’s

responses within safe operational bounds. From the perspective of building RAG, developers can

ensure this safety aspect when choosing the LLM model.

Prede�ned Command Retrieval: In HyCE, RAG is restricted to retrieving only prede�ned, validated

commands, preventing it from executing arbitrary commands autonomously. This reduces the risk

of unintended or unsafe system actions.

Restricted User Privileges: The LLM operates under user-level privileges, limiting access to

sensitive system functions. This minimizes the potential impact of any unintended commands,
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restricting the LLM to non-administrative interactions.

Containerization: Deploying the RAG application in a container isolates LLM processes from the

core HPC environment, ensuring that any unexpected behavior remains contained and does not

impact overall system stability.

These layers of security collectively create a secure framework, allowing safe LLM-assisted

interactions within HPC environments.

7. Conclusion

In this paper, we introduced HyCE, a novel approach to extending RAG with HPC-speci�c data,

transforming LLMs into e�ective HPC expert assistants. By incorporating cluster-speci�c

documentation and command outputs, our method enables LLMs to provide contextually accurate,

user-tailored responses that address the unique needs of HPC users. Our evaluation framework

further strengthens this system, utilizing the LLM as a judge to automate performance assessments

and support continuous improvement. This setup, while robust and adaptable, includes layered

security safeguards to prevent unauthorized command execution and maintain data privacy, making it

suitable for deployment in an HPC environments.
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Appendix A. RAG Hyperparameters and Models used

Hyperparameters

Parameter Value

Chunk Size Determined by LLM

Top K Retrieval 20

Top K Re-rank 5

Max Context Size 128k tokens (limit of LLM)

LLM Temperature 0

Max Output Tokens 4096

Models

Category Model Name(increasing order of performance in the RAG)

Retrieval Model nvidia/llama-3.2-nv-embedqa-1b-v1

  sentence-transformers/multi-qa-MiniLM-L6-cos-v1

Re-rank Model nvidia/llama-3.2-nv-rerankqa-1b-v1

  cross-encoder/ms-marco-MiniLM-L-12-v2

LLM meta/llama-3.1-405b-instruct

  gpt-4o-2024-08-06

Appendix B. LLM Prompt Templates

We list the prompt templates for LLM Q&A generation, Q&A �ltering, LLM answer, and LLM judge.

Please refer to our GitHub repository2 for full details.
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Figure 3. The prompts for RAG Q&A generation

Figure 4. The prompts for RAG Q&A �ltering
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Figure 5. The prompts for RAG answering

Figure 6. The prompts for RAG evaluation

Acknowledgements

This research was produced in whole or part by UNSW Sydney researchers and is subject to the UNSW

Intellectual property policy.

Footnotes

1 https://github.com/Yusuke710/llm_rag_eval_hpc

2 https://github.com/Yusuke710/llm_rag_eval_hpc
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