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Abstract

The rapid growth of model scale has necessitated substantial computational resources for fine-tuning. Existing

approach such as Low-Rank Adaptation (LoRA) has sought to address the problem of handling the large updated

parameters in full fine-tuning. However, LoRA utilize random initialization and optimization of low-rank matrices to

approximate updated weights, which can result in suboptimal convergence and an accuracy gap compared to full fine-

tuning. To address these issues, we propose LoLDU, a Parameter-Efficient Fine-Tuning (PEFT) approach that

significantly reduces trainable parameters by 2600 times compared to regular PEFT methods while maintaining

comparable performance. LoLDU leverages Lower-Diag-Upper Decomposition (LDU) to initialize low-rank matrices for

faster convergence and orthogonality. We focus on optimizing the diagonal matrix for scaling transformations. To the

best of our knowledge, LoLDU has the fewest parameters among all PEFT approaches. We conducted extensive

experiments across 4 instruction-following datasets, 6 natural language understanding (NLU) datasets, 8 image

classification datasets, and image generation datasets with multiple model types (LLaMA2, RoBERTa, ViT, and Stable

Diffusion), providing a comprehensive and detailed analysis. Our open-source code can be accessed at

https://github.com/SKDDJ/LoLDU.

Corresponding author: Jiwei Wei, mathematic6@gmail.com

I. Introduction

WITHIN the era of exponentially increasing the scale of models, fine-tuning these large models for new domains (e.g.,

Visual Instruction Tuning[1]), applying advanced learning techniques (e.g., Representation Learning[2][3][4]), or adapting to

downstream tasks (e.g., Text-to-Image Customization[5][6], Object Tracking[7][8]) requires substantial computational

resources. To address this challenge, Parameter-Efficient Fine-Tuning (PEFT) techniques such as LoRA[9],

VeRA[10],QLoRA[11], and PiSSA[12] have been developed to mitigate the bottleneck by reducing the number of trainable

parameters, memory (VRAM), and storage costs.
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Figure 1. Performance vs log-scaled trainable parameters for FGVC (left) and StanfordCars (right) on ViT Base. Our LoLDU methods with 

r = {1, 8, 16, 32, 64, 128, 256, 512, 768} exhibit superior parameter efficiency and performance when contrasted with Linear Probing [13] (LP, fine

tuning the classifier head only1), FourierFT[14] (n = {3000, 10000}), LoRA[9] (r = 16), and Full Fine-Tuning. LoLDU r=768 outperforms LoRAr=16 with

96.837% fewer trainable parameters. Particularly noteworthy is that LoLDU with r = 1 achieves competitive scores with just 24 trainable parameters,

while LoLDU with r = 768 attains the highest accuracy: 42.15% for FGVC and 66.66% for StanfordCars, showcasing the scalability and

effectiveness of our approach. Full Fine-Tuning (85.8M parameters) and Linear Probing represent the upper and lower performance bounds,

respectively.

Despite advancements in PEFT, the process of fine-tuning large models remains prohibitively expensive in terms of both

computational resources and storage requirements. For instance, fine-tuning a model with 7 billion parameters, such as

LLaMA2[15], on instruct-following tasks[16][17] incurs substantial costs. These costs are not limited to the training phase

but extend to the storage of multiple fine-tuned model checkpoints, each consuming gigabytes of storage, thus leading to

significant storage overhead. Approaches like Low-Rank Adaptation (LoRA)[9] and Vector-based Random Matrix

Adaptation (VeRA)[10] have been developed to address these challenges by reducing the number of updated parameters.

LoRA[9] achieves this by randomly initializing two low-rank matrices and optimizing them to approximate the model’s

updated weights. Similarly, VeRA[10] involves the random initialization and freezing of two matrices while training only two

vectors for scale transformation. Recent research has revealed LoRA’s limitations in data memorization due to low-rank

updates. MoRA[18] addresses this issue through input dimension reshaping and square linear layer application. However,

these methods often result in suboptimal convergence due to random initialization, as proposed by[19][20], thus yielding a

provably small hyperspherical energy[21]. Furthermore, there is an accuracy gap compared to full fine-tuning, underscoring

the need for more effective Parameter-Efficient Fine-Tuning strategies.
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Thus, OFT[21] proposes that maintaining orthogonality is crucial for preserving pre-trained knowledge, which enhances

generalization[22].Building on this insight, we observe that Lower-Diag-Upper (LDU) decomposition inherently possesses

orthogonal properties in its lower and upper triangular matrices. Additionally, we incorporate a heuristic initialization

constrain the range of initialized values, resulting in a more stable training process.

In contrast to other PEFT approaches[9][12][10][18], which require fine-tuning O(n2) level parameters, for the first time, we

demonstrate that it is possible to optimize only 0.00025% of parameters without any performance degradation. Our

method, LoLDU, operates at O(n) level and employs the LDU decomposition technique to extract the core model

parameters, which are then fine-tuned for downstream tasks.

To demonstrate the efficiency of LoLDU across various model architectures, scales, and task types, we conduct an

extensive set of experiments on tasks including instruction following[16][17][23], natural language understanding (NLU)[24],

image classification[25][26][27][28][29][30], and image generation[6]. These experiments involved models with architectures

such as LLaMA2-7B (decoder-only)[15], RoBERTa-Base (encoder-decoder)[31], ViT-Base (encoder-only)[32], and Stable

Diffusion[33], with model scales ranging from 86 million to 7 billion parameters. This comprehensive evaluation verifies the

effectiveness of our method across diverse scenarios.

In summary, this paper makes three key contributions:

We introduce a novel approach to Parameter-Efficient Fine-Tuning (PEFT) by firstly attempting to leverage Lower-Diag-

Upper (LDU) decomposition, offering a solution that maintains model performance while drastically reducing trainable

parameters to as low as 0.00025% of the original model.

We present LoLDU, a PEFT technique that harnesses Low-Rank Adaptation via Lower-Diag-Upper Decomposition,

which operates with a complexity of O(n). The LoLDU method employs orthogonal lower and upper triangular matrices

to preserve pre-trained knowledge and enhance generalization, incorporating a heuristic initialization and scaling factor

to optimize the diagonal matrix.

LoLDU demonstrates the effectiveness and versatility through comprehensive experiments across various model

architectures, scales, and task types. It offers a pioneering approach for efficient model adaptation across diverse

scenarios in both NLP and CV domains.

II. Related Work

Parameter-Efficient Fine-Tuning (PEFT) is designed to mitigate the significant computational and storage costs

associated with Full Fine-Tuning (FT). Among the various PEFT approaches, Low-Rank Adaptation (LoRA)[9] offers a

more flexible and generalized re-parameterization framework for fine-tuning, achieved by training two low-rank matrices to

approximate the updated parameters. However, studies[19][20] have indicated that random initialization for re-

parameterization can be a bottleneck, leading to suboptimal convergence. In this work, we present the first attempt to

address this issue by leveraging the Lower-Diag-Upper (LDU) decomposition technique for initialization. In Figure 2, we

provide a comparison between LoRA and our LoLDU method.
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Figure 2. Comparison of LoRA (left) and our LoLDU (right) method.  In LoRA, tunable parameters are low-rank ( r) matrices A and B, with 

ΔW = BA. For each weight W, there are r × (din + dout) trainable parameters. LoLDU, however, optimizes a diagonal matrix for scale transformation,

preserving original model knowledge during tuning. The weight update in LoLDU is ΔW = σ ⋅ P ⋅ (Lr, diag(zr), Ur), involving r + 1 trainable

parameters. The permutation matrix P, while omitted in this figure for simplicity, is included in Figure 3.

Parameter efficient fine tuning (PEFT). To date, existing PEFT approaches can be divided into three categories: (1)

Additive PEFT: This approach introduces new tunable parameters or modifies model representations. Examples include

adapters[34][35][36][37] and prefix-tuning[38], which add small, trainable components to the model for efficient task-specific

learning. (2) Selective PEFT[39][40][41][42]: This method fine-tunes only a subset of the model’s parameters, such as

specific layers or neurons. Techniques like BitFit[43] aims to only update bias parameters b, while maintaining fixed

weights W, to shift the model’s conditional distribution p(y |x; θ) towards the target domain distribution ptarget(y |x), where θ

 denotes the model parameters. (3) Re-parameterized PEFT [9][44][45]. This technique usually reconstructs model

parameters in a low-dimensional space as new knowledge is often represented in a low-rank form [46].

Low-Rank Adaptation. LoRA[9] decomposes parameter matrices into low-rank forms, maintaining performance while

reducing the number of parameters to be fine-tuned. Previous studies have credited LoRA for its efficiency in inference

and storage, albeit at an expensive training cost due to the random initialization, which causes the model to saturate more

slowly. Recent studies[47] have attempted to bridge this gap by exploring the development of new initialization methods to

create LoRA parameters instead of starting from scratch. Advancing the initialization strategies for LoRA parameters is

imperative for enhancing the quality and adaptability of downstream tasks. Therefore, Section IV delves into the

exploration of various initialization methodologies.

Re-parameterization. Singular Value Decomposition (SVD) is widely utilized for re-parameterization in Parameter-

Efficient Fine-Tuning (PEFT) methods. Recent studies[12][48][49][37][50] have explored various SVD-based approaches for
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low-rank matrix initialization. These include fine-tuning singular values of reshaped weight matrices[50] , initializing adapter

matrices with principal components[12] , introducing intermediate matrices between frozen principal components matrices,

and updating weights as sparse combinations of singular vector outer products[49] . However, SVD’s computational

complexity O(mn2 + n3) for an m × n matrix remains a constraint compared to LDU decomposition O(mn2 − n3/3).

Furthermore, LDU decomposition offers a more interpretable representation of matrix structure through elementary row

operations and pivoting strategies.

III. Method

Figure 3. Schematic representation of our LoLDU method.  The left diagram illustrates the forward pass, demonstrating the transformation of the

input x ∈ Rdin into the output h ∈ Rdout via a residual subspace matrix L[ r: ]D[ r: ]U[ r: ]  and a decomposed subspace matrix σLrDrUr. The right

diagram shows the initialization process, where the residual matrix is obtained by performing LDU decomposition on the pre-trained weights, then

subtracting the top-r submatrices (top-r rows and columns) from the permutation matrix (P), lower triangular (L), scaled diagonal (D), and upper

triangular (U) matrices. Diagonal matrix is trainable (orange), while the other matrices remain fixed (blue). LoLDU enables efficient adaptation of pre-

trained models via low-rank updates, reducing both computational cost and parameter count.

We present LoLDU (depicted in Figure 3), a parameter-efficient-fine-tuning method utilizing Lower-Diag-Upper (LDU)

decomposition. LoLDU builds upon the principle proposed by LoRA[9], focusing on learning the changes in pre-trained

weights. In contrast to LoRA, which employs random initialization, LoLDU leverages the LDU decomposition for

initialization. We then compute the Residual Subspace Matrix (RSM) by applying element-wise subtraction of the

Decomposition Subspace Matrix (DSM) from the original matrix. The DSM is constructed using the first r entries, which

are selected to maintain a low-rank formation while remaining trainable.

A. Initialization and Orthogonal Space Preservation

Previous works have shown that maintain the orthogonality nature is crucial to improve the representation quanlity[21].

The advantage of LDU decomposition is the factorization that preserves the orthogonality of the lower and upper

triangular matrices. We leverage this property to initialize the low-rank matrices. The LDU decomposition factorizes a

Qeios, CC-BY 4.0   ·   Article, November 20, 2024

Qeios ID: IN8JL4   ·   https://doi.org/10.32388/IN8JL4 5/30



matrix W0 ∈ Rm×n into four matrices:

W0 = P ⋅ L ⋅ diag(z) ⋅ U,

where P ∈ Rm×m is a permutation matrix, L ∈ Rm×k is lower triangular with ones on the diagonal, diag(z) ∈ Rk×k is the

diagonal formation of vector z, and U ∈ Rk×n is upper triangular with ones on the diagonal, where k = min (m, n). This

property is essential for obtaining an equivalent formation to the original model weight W0.

Specifically, we optimize only the diagonal entries of matrix diag(z) and dynamically adjust the scaling factor σ to align

updated parameters with the target matrix, wherein the σ is initialized to 1.0.

B. Low-Rank Approximation

In the realm of learning weight changes, our approach aligns with the principles of LoRA-based methods[9][18][51][52],

which mitigate inference latency by merging pre-trained weights with the learned adapter matrices.

Formally, let W0 ∈ Rm×n represent the pre-trained weight matrix, and ΔW ∈ Rm×n denote the weight changes

introduced during fine-tuning. LoRA parameterizes ΔW using a low-rank decomposition in the forward pass:

h = W0x + ΔWx = W0x + BAx,

where B ∈ Rm× r and A ∈ Rr×n are trainable matrices, with the rank r ≪ min (m, n).

In contrast, our proposed method, LoLDU, decomposes the weight matrix W0 using an LDU (Lower-Diag-Upper)

decomposition which breaks down W0 into four matrices: σ ⋅ P ⋅ (L, diag(z), U). We take the insprition from[53][46] that

learned adapter matrices reside in a low intrinsic dimension. Therefore, we extract the top r components from the LDU

decomposition, which helps in maintaining an intrinsic subspace to adapt to downstream tasks. These components are

represented as follows:

B = Lr = L [ : , : r] ∈ Rm× r, (3)

diag(zr) = D : r, : r ∈ Rr× r, (4)

A = Ur = U : r, : ∈ Rr×n, (5)

where Lr represents the first r columns of the lower triangular matrix L, D : r, : r denotes the top r by r block of the diagonal

matrix D, and Ur is the first r rows of the upper triangular matrix U. These components capture the essential structure of

the original weight matrix in a reduced form.

C. LoLDU Weight Adaptation Procedure

Using these components, we define the Decomposed Subspace Matrix (DSM), which reconstructs a part of the original

weight matrix using the top r components. The DSM is formulated as:

DSM = σ ⋅ P ⋅ (Lr, diag(zr), Ur), (6)
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where σ is introduced to control the magnitude of the weight updates as a scaling factor.

Next, we obtain the Residual Subspace Matrix (RSM) by subtracting the DSM from the original weight matrix W0, which

ensures that the RSM captures the information not represented by the top r components, thereby preserving the full

knowledge encoded in W0:

RSM = W0 − DSM. (7)

The weight change ΔW is parameterized as:

ΔW = DSM = σ ⋅ P ⋅ (Lr, diag(zr), Ur), (8)

by parameterizing ΔW in this manner, efficient updates to the model weights are enabled without significantly increasing

the parameter count.

The advantage of LoLDU lies in its use of orthogonal, lower, and upper triangular matrices, which help preserve the

inherent knowledge of the model. The orthogonal nature of these matrices ensures that the decomposed components

maintain their properties during transformations as proposed by[22], thereby preserving the information integrity. Moreover,

we initialize diag(zr) using heuristic methods such as Constant (Dr. mean), Uniform, Normal, or Regular LDU, to enhance

training stability.

The proposed forward pass can be expressed as follows:

h = RSMx + ΔWx
= RSMx + DSMx
= RSMx + σ ⋅ P ⋅ (Lr, diag(zr), Ur)x.

(9)
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Algorithm 1.

D. Optimization Process

The fine-tuning phase of LoLDU employs a sophisticated optimization strategy, focusing on the diagonal matrix Dr and the

scaling factor σ. This approach represents a departure from conventional fine-tuning methods, offering more granular

control over parameter updates while preserving the integrity of pre-trained knowledge.

The optimization problem is formulated as a constrained minimization:
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minimize
Dr,σ L(fW0+ΔW(x), y)

subject to ‖Dr‖F ≤ ϵ, (10)

0 < σ ≤ 1,

where L denotes the task-specific loss function, fW0+ΔW denotes the model with updated weights, (x, y) are the input-

output pairs from the fine-tuning dataset, ∥ ⋅ ∥F represents the Frobenius norm, and ϵ is a set constraint threshold.

To address the constrained nature of the optimization problem, we employ a projected gradient descent method, ensuring

that updates to Dr and σ remain within the feasible region defined by the constraints. This is achieved through a projection

operator P:

Dt+1
r = P Dt

r − ηt

∂L

∂Dt
r ,

σt+1 = P σt − ηt

∂L
∂σt

,

where ηt is the learning rate at iteration t, adaptively adjusted using techniques such as Adam[54] or RMSprop[55] to

account for the geometry of the parameter space.

Please refer to Algorithm 1 for additional detailed information.

E. Computational Complexity Analysis

The computational efficiency of LoLDU can be evaluated in terms of both space and time complexity:

Space complexity: The storage requirement for LoLDU is O(r + 1), which is considerably lower than the O(mr + rn)

 required by methods such as LoRA. This reduction in parameter count not only leads to significant memory savings but

improves efficiency during both the training and inference phases.

Time complexity: The forward pass of LoLDU requires O(mnr) operations with a minor linear term O(r). In contrast to

methodologies that necessitate recurrent complex iterations[56][52], LoLDU performs the LDU decomposition only once

during initialization, with a time complexity of O(mn2 − n3/3), and utilizing direct updates via projected gradient descent

without iterative refinement, ensuring efficient parameter optimization and rapid convergence.

In summary, LoLDU leverages LDU decomposition to efficiently parameterize weight changes, reducing the number of

tunable parameters and maintaining high performance. This method provides a more efficiency and effective alternative to

traditional LoRA-based approaches.

( )
( )
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IV. Experiments

Table I. Results for different adaptation methods on the GLUE benchmark. The term ”Params” refers to the number of parameters updated during

fine-tuning. We report Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy for the remaining tasks. Higher values indicate

better performance. Except LoLDU, all results are from prior work. LoLDU performs on par with LoRA while using significantly fewer parameters.

The Δbaseline row shows the percentage increase or decrease in performance compared to our method.

This section presents an evaluation of LoLDU within the fields of natural language processing (NLP) and computer vision

(CV). For NLP, LoLDU is applied for fine-tuning: (1) RoBERTa Base[31] on natural language understanding (GLUE[24]),

and (2) LLaMA-2 7B[15] on instruction tuning (Alpaca[16], Vicuna[17]). For CV, we apply LoLDU to fine-tune: (1) Vision

Transformers (ViT) Base[32] on image classification[25][26][27][28][29][30], and (2) Stable Diffusion v1.5[33] on customized

image generation[6].

We compare our LoLDU method with widely used Parameter-Efficient Fine-Tuning (PEFT) methods. To ensure a fair

comparison, we replicate the setups from previous studies[9][14][57] and utilize their reported results.

The baselines considered are:

Full Fine-Tuning (FT): FT trains all model parameters on the task-specific data.

LoRA[9]: LoRA updates weights by injecting two tunable low-rank matrices for parameterization.

MELoRA[57]: MELoRA trains a group of mini LoRAs to maintain a higher rank.

FourierFT[14]: FourierFT learns a small fraction of spectral coefficients using the Fourier transform.

Finally, we perform ablation studies to examine the impact of initialization methods, scaling factors, and rank. Further

results concerning the learning rate and rank are detailed in Appendix E1 and Appendix E2. We conduct all experiments

on a single NVIDIA RTX A6000 (48G) GPU.
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Table II. Comparative analysis of various methods on image classification datasets using ViT Base models. The table reports

the mean accuracy (%) after 10 epochs, alongside parameters efficiency and approach features.

A. Natural Language Understanding

a) Models and Datasets

We evaluate LoLDU on the GLUE benchmark (General Language Understanding Evaluation[24]), which comprises nine

NLU tasks. These tasks include single-sentence classification (CoLA, SST-2), similarity and paraphrasing (MRPC, STS-B,

QQP), and natural language inference (MNLI, QNLI, RTE, WNLI). For evaluation, we fine-tune pre-trained RoBERTa Base

models[31].

b) Implementation Details

We adopt the experimental setup of VeRA[10], tuning the hyperparameters for learning rates and the scaling factor values

across six datasets in the GLUE benchmark. Following the approach of LoRA[9], we fully fine-tune the classification head.

We apply LoLDU to the weight matrices Wq, Wk, Wv, and Wo in each transformer block. Hyperparameters are provided in

Table VII in the Appendix.

c) Results

Results are summarized in Table I. Following[9][52], and[58], we specify the number of trainable parameters for the fine-

tuned layers excluding the classification head. We report the median of five random seed results, selecting the best epoch

for each run. In general, LoLDU achieves better or on-par performance compared to baseline methods with significantly

fewer trainable parameters. Notably, LoLDU outperforms all baselines including fully fine-tuning the RoBERTa Base on

STS-B. As mentioned in Section III, the parameter count of LoRA is dependent on both the width and depth of models,

resulting in a larger count growth (LoRA: 0.3M; ours: 0.0184M) compared to LoLDU.

B. Instruction Tuning
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a) Models and Datasets

Instruction tuning[59][60][16] is a technique that involves fine-tuning large language models (LLMs) on paired data

consisting of instructions and their corresponding outputs to enhance the quality of the model’s responses. In our study,

we apply LoRA[9] and LoLDU to fine-tune the LLaMA2 model[15]. Specifically, we use LLaMA2-7B as the base model,

which is then fine-tuned on the Alpaca dataset[16]. This dataset comprises 52,000 instruction-output pairs generated by

OpenAI’s text-davinci-003 model. For evaluation, we conduct a rigorous and holistic assessment of the fine-tuned model

using INSTRUCTEVAL[23], allowing us to systematically analyze the model’s performance in problem-solving, writing

ability, and alignment to human values.

b) Implementation Details

In the implementation of LoRA, a rank of r = 64 is employed, with a focus on updating all linear layers, excluding the

language modeling head (lm_head), and specifically targeting the WQ and WV matrices. For LoLDU, the training process

spans three epochs, and we present the average performance scores across all evaluated responses. Hyperparameter

configuration is detailed in Table VIII in Appendix B.

c) Results

The results, as presented in Table III, demonstrate that LoLDU achieves a slight improvement over the performance of

LoRA, while employing merely 0.05% of the parameters required by LoRA.

Table III. Results on INSTRUCTEVAL for instruction-following tasks: exact match for MMLU, DROP, and BBH,

pass@1 for HumanEval. Higher values are preferable. Boldface indicates the best metric values. The Δbaseline row

displays the performance change percentage compared to our method.
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Figure 4. Comprehensive Analysis of Rank Ablation Study Results.  This figure presents the performance of the ViT-base model on various

image classification tasks using the LoLDU method with different ranks. The x-axis shows ranks (1 to 768), and the y-axis indicates accuracy for

datasets: FGVC, StanfordCars, CIFAR10, CIFAR100, EuroSAT, and Flowers.

C. Image Classification

a) Models and Datasets

We assess our approach on image classification utilizing the Base version of the Vision Transformer (ViT)[32], pre-trained

on ImageNet-21K[61]. Fine-tuning is performed on datasets such as CIFAR10 (10)[25], EuroSAT (10)[30], as well as

StanfordCars (196)[28], FLOWERS102 (102)[27], FGVC (100)[29], and CIFAR100 (100)[26], covering both small and large

label spaces. For detailed information, refer to Appendix C.

b) Implementation Details

We include three baselines for evaluation: Full Fine-Tuning (FT), Linear Probing[13] (LP, fine-tuning the classification head

only), and LoRA[9]. We adhere to the experimental configurations established by FourierFT[14]. For both LoRA and our

method, only the WQ and WV matrices of ViT are updated. We use r = 16 for LoRA and r = {64, 768} for LoLDU. Detailed

hyperparameter configurations are available in Table IX in the Appendix C.
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Table IV. We conducted a comparison on image classification datasets using ViT Base models. The accuracy (%) after 10 epochs is reported.

FourierFT was evaluated using different trainable parameters for each layer, indicated by symbols: (✞) for 3000 and (✝) for 10000. Δbaseline

 represents the performance gap between our LoLDU method and the baseline method LoRA. Bold denotes the best results.

c) Results

Table IV presents the results for six image classification datasets using the ViT Base model. LoRA and LoLDU

demonstrate superior performance compared to Linear Probing[13], showcasing their efficacy in image classification tasks

within the computer vision domain. Notably, our approach achieves comparable outcomes while utilizing merely 3.173%

of LoRA’s parameters. LoLDU exhibits particularly impressive gains, surpassing LoRA by 15.28% and 16.99% in FGVC

and StanfordCars tasks, respectively, effectively narrowing the accuracy gap with Full Fine-Tuning, as depicted in Figure

1. Furthermore, LoLDU outperforms all baselines, including Fully Fine-Tuning, on EuroSAT and Flowers datasets.

D. Image Generation

Figure 5. Concept Learning Progression In Text-to-Image Generation.  Top row: target concept. Subsequent rows: generated

images using LoLDU (our method), DreamBooth[6], and Textual Inversion [5], respectively, at training steps 0-600. LoLDU exhibits

accelerated convergence, achieving concept acquisition within ∼  100 steps, surpassing baseline methods in efficiency.
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a) Models and Datasets

We assess our method in the domain of image generation. Recent research[5][6] highlights the necessity for customization

in this field, which holds significant practical implications. The goal is to fine-tune a text-to-image model using a limited set

(typically 3-5) of images representing an unique concept (e.g., a scene, individual, pet, or object) to effectively capture and

reproduce the novel concept. For this study, we employ the v1.5 version of Stable Diffusion (SD)[33], a widely-adopted

computer vision foundation model. SD is pre-trained on LAION-5B[62], a dataset consists of 5.85 billion image-text pairs

filtered using CLIP[63].

b) Implementation Details

We conduct our experiments on seven different concepts, including persons, pets, and objects, using the

CustomConcept101 dataset[64] and the human-centric FFHQ dataset[65]. We select two concurrent works as baselines:

Textual Inversion[5] and DreamBooth[6]. Textual Inversion learns new concept by mapping it from the image to the textual

modality, encoding them as a rare token in the embedding space. DreamBooth, utilizes a semantic prior (e.g., class-

specific) to maintain the subject’s key features. We provide the datasets in Figure 6 and hyperparameters in Table X in

Appendix D.

Table V. Ablation study of different initialization methods across six image classification datasets. We set rank up to 768 and learning rate to 3e-3

and test on the ViT base model. The datasets include FGVC, StanfordCars, CIFAR10, CIFAR100, EuroSAT, and Flowers. The uniform initialization

method is indicated by symbols: ✞ for (a=-1, b=1) and ✝ for (a=-z.mean/2, b=z.mean/2). The normal initialization method is indicated by symbols:

✚ for (mean=0, std=1) and ★ for (mean=z.mean, std=z.std). For each entry, the left value represents results with scaling factor, while the right

value in gray represents results without scaling factor. The average performance (Avg.) across all datasets is also reported. Bold denotes the best

results for each dataset and the average.
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Table VI. Comparison of Image Generation Methods.  Performance metrics (DINO, CLIP-T, and CLIP-I) for

DreamBooth, Textual Inversion, and LoLDU methods. Higher values indicate better performance. Bold values indicate

best performance for each metric.

c) Results

We present the visual results in Figure 6, while Table VI provides a quantitative comparison. We assess our method’s

efficacy through DINO, CLIP-T and CLIP-I metrics. DINO[66] is computed as the average pairwise cosine similarity

between the ViT-S/16 DINO embeddings of generated and real images. CLIP-I measures the average pairwise cosine

similarity between CLIP[63] embeddings of generated and real images, while CLIP-T evaluates prompt fidelity by

measuring the average cosine similarity between prompt and image CLIP embeddings. LoLDU achieves the highest

average score across metrics.
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Figure 6. Visualized Results of the Image Generation Task.  From left to right: target reference images, outputs from LoLDU (ours), DreamBooth,

and Textual Inversion. Each row represents a distinct category with a specified prompt (annotated under each row). LoLDU demonstrates efficacy

in generating diverse, prompt-adherent images while preserving key attributes from the reference set.
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E. Analysis

In this section, we conduct a comprehensive analysis of the hyperparameters associated with LoLDU, specifically focusing

on initialization, scaling factor, and rank. We systematically investigate the influence of these parameters on the

performance and efficiency of our method across a variety of tasks.

a) Effect of Initialization

The initialization of the entries z in the diagonal matrix diag(z) (Eq. 1) plays a crucial role in LoLDU’s performance. We

evaluate several initialization policies on the ViT Base model across six image classification datasets. Table V presents

our findings.

Empirical results indicate that Uniform initialization consistently outperforms other strategies, achieving the highest

average accuracy by stabilizing the training loop and enhancing convergence. Thus, LoLDU with Uniform initialization is

optimal for applications requiring stable dynamics and high accuracy. Additionally, both Uniform and Normal initialization

contribute to training stability.

b) Impact of Scaling Factor

The scaling factor within LoLDU is crucial for assessing the efficacy of low-rank updates in augmenting model

performance. This ablation study is dedicated to examining the necessity of integrating a scaling factor, specifically fixed

at a value of 1, to evaluate its impact on enhancing model accuracy and ensuring training stability.

Table IV presents a comprehensive comparative analysis of performance metrics with and without the incorporation of a

scaling factor across various datasets. The empirical findings reveal that the absence of a scaling factor, as denoted by

the gray values, consistently leads to diminished accuracy and compromises the stability of the convergence process.

This highlights the pivotal role of the scaling factor in optimizing the performance of LoLDU, thereby enabling robust and

efficient learning dynamics across a diverse range of image classification tasks.

c) Influence of Rank

The rank parameter within LoLDU is pivotal in determining the model’s complexity and expressiveness. We conducted an

extensive analysis by varying the rank across diverse tasks, as detailed in Table XII. Additionally, the visual results of this

analysis are presented in Figure 4.

Our findings indicate that an increase in rank consistently enhances performance across all datasets, especially at lower

ranks, but stabilizes beyond 256, indicating diminishing returns. Thus, selecting an optimal rank balances expressiveness

and efficiency. In practical applications of LoLDU, our findings suggest that adopting a rank approximately one-third of the

full rank ensures an optimal balance between performance and resource efficiency, thereby providing broader applicability

across various scenarios.
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d) Parameter Efficiency vs. Performance Trade-off

Finally, we explore the nuanced relationship between parameter efficiency and performance, focusing on the capabilities

of LoLDU in comparison to other established methodologies.

Table II provides a compelling insight into the efficiency of LoLDU , which achieves a mean accuracy of 82.79% while

utilizing a mere 0.21% of the parameters. This is a stark contrast to methods like FullFT, which, despite achieving a higher

accuracy of 88.20%, require the full parameter set, and LoRA, which uses 6.77% of the parameters for a lower accuracy

of 76.22%. These data underscore LoLDU’s exceptional capacity to deliver competitive performance with a substantially

reduced parameter footprint.

LoLDU’s efficiency in parameter usage not only reduces computational and memory demands but also enhances the

model’s adaptability to various deployment scenarios, particularly those with limited resources. This efficiency is achieved

without compromising on key performance metrics, as evidenced by the method’s ability to maintain orthogonality, avoid

random initialization, eliminate extra inference costs, and ensure faster convergence. These attributes collectively position

LoLDU as a highly effective and resource-efficient alternative to traditional methods, offering a strategic advantage in both

research and practical applications.

V. Conclusion

In conclusion, LoLDU represents a significant advancement in Parameter-Efficient Fine-Tuning (PEFT), offering a novel

approach with the Lower-Diag-Upper (LDU) decomposition technique. By optimizing just 0.00025% of parameters while

maintaining performance across diverse tasks and model architectures, LoLDU addresses the prohibitive computational

and storage costs associated with fine-tuning large models. Its preservation of orthogonality in triangular matrices and

precise diagonal matrix optimization ensure efficient scale transformation and robust convergence. Our extensive

evaluation, spanning various tasks and model scales up to 7 billion parameters, validates LoLDU’s effectiveness and

superiority over traditional fine-tuning methods, underscoring its potential for broad applicability and impact in advancing

efficient model customization practices.

Appendix

This appendix provides supplementary material to support the methodologies and findings presented in the main

manuscript. It is organized into five key areas: Natural Language Understanding, Instruction Tuning, Image Classification,

Image Generation, and Ablation Studies. Each section offers detailed insights into datasets, experimental protocols, and

hyperparameter settings, ensuring the replicability and validation of our results.

Section A: Analysis of the GLUE benchmark and hyperparameters for Natural Language Understanding tasks.

Section B: Examination of the Alpaca dataset and LLaMA-2 model fine-tuning hyperparameters for Instruction Tuning.

Section C: Overview of image classification datasets and Vision Transformer (ViT) fine-tuning configurations.
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Section D: Exploration of datasets for image generation and Stable Diffusion hyperparameters.

Sections E: Ablation studies on learning rate and rank variations affecting model performance.

A. Natural Language Understanding

1. GLUE Benchmark Details

The GLUE benchmark is a framework for evaluating NLP models across nine tasks, such as CoLA, SST-2, and MRPC,

focusing on grammaticality, sentiment, and semantic similarity. It includes a diagnostic dataset for assessing linguistic

phenomena, aiding in the development of robust NLP systems through transfer learning. For more details, see the GLUE

Benchmark Overview.

2. Hyperparameters for GLUE Experiments

Table VII details the hyperparameters for GLUE experiments.

Task LR Epochs Max Length

MNLI 3e-4 10 128

SST-2 4e-4 10 128

MRPC 3e-4 20 512

CoLA 2e-4 20 128

QNLI 2e-4 10 512

QQP 3e-4 20 512

RTE 4e-4 20 512

STS-B 2e-4 30 512

Table VII. Hyperparameters for

GLUE Tasks

Base: roberta-base, Batch: 32, Rank: 768, Alpha: 768

Modules: query, value, Warmup: 0.06

B. Instruction Tuning

1. Alpaca Dataset Overview

The Alpaca dataset serves as a crucial asset for instruction tuning, consisting of 52,000 instruction-output pairs generated

using OpenAI’s ‘text-davinci-003‘ engine. Its primary goal is to improve the instruction-following capabilities of language

models by providing a diverse array of instructional scenarios. The dataset is produced through the Self-Instruct

framework, which includes modifications such as employing ‘text-davinci-003‘ for instruction generation and implementing

aggressive batch decoding to enhance efficiency. The Alpaca dataset’s diversity and high-quality annotations make it a
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valuable resource for training models to perform well across various tasks. This section explores the distinctive features of

the Alpaca dataset, highlighting its role in the fine-tuning process of language models. For more details, refer to the

Hugging Face dataset card for Alpaca.

2. Hyperparameters for LLaMA-2 Fine-tuning

Table VIII provides a comprehensive overview of the hyperparameter settings employed during the fine-tuning of the

LLaMA-2 model. These parameters are critical for optimizing model performance and ensuring robust convergence across

various tasks.

Hyperparameter Value

Base Model LLaMA2-7B

Precision BF16

Batch Size 128

Micro Batch Size 1

Learning Rate 1e-3

Number of Epochs 3

Rank 1024

Alpha 1024

Target Modules q_proj, v_proj

Cutoff Length 256

Seed 42

Table VIII. Hyperparameters

for Instruction Tuning

C. Image Classification

1. Dataset Descriptions

This section introduces the datasets employed for image classification tasks, which include CIFAR10[25], EuroSAT[30],

StanfordCars[28], FLOWERS102[27], FGVC[29], and CIFAR100[26]. These datasets are selected to represent a broad

spectrum of visual concepts and complexities, ranging from small to large label spaces.

2. Hyperparameters for ViT Fine-tuning

The hyperparameter settings utilized for the fine-tuning of the Vision Transformer (ViT) model are detailed in Table IX.

Table IX. Hyperparameters for

Image Classification

Qeios, CC-BY 4.0   ·   Article, November 20, 2024

Qeios ID: IN8JL4   ·   https://doi.org/10.32388/IN8JL4 21/30

https://huggingface.co/datasets/tatsu-lab/alpaca


Hyperparameter Value

Model vit-b16-224-in21k

Learning Rate 3e-3

Batch Size 128

Max Epochs 10

Precision bf16

Optimizer AdamW

LR Scheduler Linear

Warmup Steps 30

Target Modules query, value

Rank 768

Alpha 768

Seed 42

D. Image Generation

1. Dataset Details

The CustomConcept101 and Flickr-Faces-HQ (FFHQ) datasets provide concept images for fine tuning our image

generation model. FFHQ contains 70,000 high-resolution images (1024×1024) with diverse attributes such as age,

ethnicity, and accessories. Images were sourced from Flickr, aligned, and cropped using dlib, excluding non-human

subjects. For more information, see the FFHQ Dataset.

2. Hyperparameters for Stable Diffusion Fine-tuning

The hyperparameter settings utilized for the fine-tuning of the Stable Diffusion model are detailed in Table X.

Table X. Hyperparameters for Image

Generation
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Hyperparameter Value

Base Model stable-diffusion-v1-5

VAE sd-vae-ft-mse

Learning Rate 5e-4

Precision fp16

Resolution 512

Train Batch Size 1

Optimizer AdamW

LR Scheduler constant

LR Warmup Steps 15

Max Train Steps 1000

Rank 32

Alpha 32

Seed 42

Adam Weight
Decay

0.01

Target Modules
to_k, to_v, to_q,
to_out

E. Ablation Studies

1. Learning Rate
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Figure 7. Learning Rate Ablation Study.  The figure demonstrates the effect of different learning rates on ViT-base model

accuracy across FGVC, StanfordCars, CIFAR10, CIFAR100, EuroSAT, and Flowers datasets.

Table XI. LR Ablation for ViT-Base: Comparison on FGVC, StanfordCars, CIFAR10, CIFAR100, EuroSAT, and Flowers. All ranks set to 768. Bold

indicates best results.

This section provides an academic analysis of the impact of varying learning rates on model training. The visual

representation, as detailed in 7, illustrates the outcomes of the learning rate ablation study, while the accompanying table,
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referenced in XI, provides comprehensive quantitative data.

2. Rank Ablation

Table XII. ViT Rank Ablation Study on FGVC, StanfordCars, CIFAR10, CIFAR100, EuroSAT, and Flowers datasets. Different ranks indicate varying

parameter counts. #Params: Tunable parameters (M). The first section shows the base version, followed by the large-scale ablation. Bold denotes

optimal LoLDU results.

This subsection presents an analysis of the rank ablation study, examining the impact of different parameter ranks on

model performance. Table XII summarizes the results.

Footnotes

1 Kindly note that the parameter count reported does not include the classification head, as it must be trained using all

methods.
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