

Review of: "Infrared Spectroscopy (FT-NIR) and t-Distributed Stochastic Neighbor Embedding (t-SNE) as an Analytical Methodology for Rapid Identification of Tea Adulteration"

Kiran Raj Bukkarapu¹

1 Indian Institute of Technology, Madras, India

Potential competing interests: No potential competing interests to declare.

The manuscript investigates the use of FT-NIR and advanced clustering techniques, including t-SNE, for detecting tea adulteration. The study evaluates the chemical composition of Chamomile, Ginseng, and Quebra-pedras by analyzing spectral data and identifying unique vibrational bands, demonstrating the efficacy of FT-NIR in distinguishing authentic samples from adulterated ones. With some refinements, this study could serve as a benchmark for developing innovative solutions to combat food fraud effectively, such as

- Discussing more recent advances in similar studies in the Introduction Section, especially if other non-destructive techniques like Raman spectroscopy or machine learning approaches have been explored in food fraud detection.
- 2. The "Sample Collection and Preparation" section could benefit from additional details on the selection criteria for plant types. Why were Chamomile, Ginseng, and Quebra-pedras specifically chosen?
- 3. Discuss the limitations of using t-SNE over PCA for clustering. Although t-SNE is shown to perform better, it is computationally expensive and may not be suitable for larger datasets.
- 4. Highlight any recommendations for future research, such as validating the approach on a broader range of samples or real-world adulterated tea.
- 5. Consider adding a table summarizing key chemical groups and their spectral features for easier interpretation.
- 6. The study mentions high R² values but does not discuss external validation. Could the model be validated with blind or real-world adulterated samples?

Qeios ID: IPNXRL · https://doi.org/10.32388/IPNXRL