
Open Peer Review on Qeios

RESEARCH ARTICLE

Optimizing Multi-GPU Training with Data Parallelism and
Batch Size Selection

Oleksii Kuziv1, Mariia Nazarkevych1

1 Lviv Polytechnic National University, Ukraine

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

Abstract

This study investigated the optimization of deep learning model training in multi-GPU environments, focusing on the

impact of batch size on computational efficiency and model performance. The authors conducted experiments using

the MobileNetV2 architecture on a large-scale image dataset, employing single-GPU and multi-GPU setups. It was

found that multi-GPU setups significantly reduced training times and mitigated memory constraints. Batch size

configurations of 16, 32, 64, and 128 were analyzed to determine their influence on validation accuracy and

convergence rates. The study established that a batch size of 64 provided the best balance between training efficiency

and model generalization. The research highlights the benefits of data parallelism and multi-GPU systems while

addressing the trade-offs between computational speed and accuracy. Suggestions for future work include developing

adaptive batch size techniques and extending the analysis to other architectures and datasets.

1. Introduction

The continuous evolution of deep learning has brought transformative advancements across numerous domains,

necessitating efficient and scalable training processes to manage the exponential growth of large datasets. Traditional

single-GPU training, though foundational, often struggles with limitations such as constrained memory capacity and an

increased risk of overfitting. These challenges become particularly pronounced when handling high-dimensional data,

where the computational demands surpass the capabilities of a single device[1][2].

To address these challenges, multi-GPU setups employing data parallelism have emerged as indispensable solutions. By

distributing workloads across multiple GPUs, these configurations alleviate memory constraints and significantly reduce

training time, offering a more efficient use of computational resources[3][4]. Data parallelism enhances this process further

by partitioning data subsets for simultaneous processing, facilitating faster convergence while maintaining the integrity of

model performance[1][5]. This capability is precious in large-scale tasks, where computational scalability becomes a

priority.

This study focuses on optimizing multi-GPU training processes by investigating the role of batch size configurations in

Qeios, CC-BY 4.0 · Article, December 5, 2024

Qeios ID: IQ9XCJ · https://doi.org/10.32388/IQ9XCJ 1/11

https://www.qeios.com/read/IQ9XCJ#reviews
https://www.qeios.com/profile/97260
https://www.qeios.com/profile/96147

influencing training efficiency and accuracy. Batch size, a pivotal parameter in deep learning, governs the trade-off

between computational resource utilization and model performance. It directly impacts convergence rates, training speed,

and memory requirements, making its optimization a cornerstone for improving training outcomes[1][6]. Identifying the

optimal batch size that balances computational efficiency and validation accuracy is the central objective of this research.

The relevance of this study lies in its contribution to enhancing scalability in deep learning applications. Optimizing multi-

GPU training processes is essential for advancing fields such as cybersecurity, image recognition, and language

processing[7][8]. These domains often require the processing of extensive datasets, making scalable and efficient training

pipelines critical for practical implementation.

The object of research is the training processes of neural networks within distributed multi-GPU environments, while the

subject of research focuses on understanding the relationship between batch size configurations and training efficiency.

The purpose of this work is to develop insights that guide the optimization of multi-GPU training by identifying an optimal

batch size that balances computational resource use and model generalization.

The primary objectives of this research are to compare the performance of single-GPU and multi-GPU training, evaluate

the impact of batch size on training dynamics, and determine the optimal batch size for efficient and accurate multi-GPU

training setups. This study contributes to the broader understanding of how to effectively utilize distributed computational

systems to advance deep learning capabilities across diverse applications.

2. Related Work

The growing complexity of neural networks and the scale of modern datasets have underscored the importance of

efficient multi-GPU training methodologies. Researchers have focused on enhancing computational scalability, improving

resource allocation, and optimizing training dynamics. However, significant gaps remain in understanding the influence of

batch size on training efficiency in multi-GPU setups.

In the article[6], the authors investigated the communication characteristics of distributed transformer models in multi-GPU

environments. They highlighted how inter-device communication overhead could hinder training performance and

proposed strategies to optimize this process. While the study provided valuable insights into overcoming communication

bottlenecks, it did not examine the effects of batch size configurations on training efficiency or validation performance.

Practical insights into PyTorch Distributed for accelerating data parallel training were provided in[3]. The authors discussed

the implementation challenges of scaling workloads across multiple GPUs, emphasizing the need for efficient parallelism

strategies. Although the work is foundational for understanding the mechanics of distributed training, it lacked a

systematic evaluation of batch size configurations, particularly concerning their impact on training speed and

generalization.

The study in[8] introduced Megatron-LM, a framework for training large-scale language models on GPU clusters. This work

demonstrated the scalability of transformer architectures and explored the interplay between batch size and GPU

Qeios, CC-BY 4.0 · Article, December 5, 2024

Qeios ID: IQ9XCJ · https://doi.org/10.32388/IQ9XCJ 2/11

utilization. However, the findings were specific to language models and did not address the implications for image

recognition tasks, leaving an important gap in application diversity.

The article[4] presented MGPUSim, a framework for modeling and optimizing the performance of multi-GPU systems. The

authors provided insights into resource allocation strategies that enhance distributed training scalability. Despite its

relevance, the study did not investigate how varying batch sizes influence computational efficiency or convergence rates,

an area critical to optimizing training in practical settings.

In[1], the authors examined the trade-offs associated with data parallelism, focusing on the effects of batch size on neural

network convergence. Their findings highlighted that while data parallelism facilitates scalability, excessively large batch

sizes can negatively impact convergence, resulting in reduced model performance. Although the study laid the

groundwork for understanding batch size trade-offs, it did not explore multi-GPU environments in detail.

Immediate communication methods in distributed AI tasks were explored in[5]. The study demonstrated how faster inter-

device communication reduces latency and enhances parallel processing, improving training efficiency. However, the

focus remained on communication efficiency, with limited attention to the role of batch size in optimizing training

dynamics.

A comprehensive survey of GPU optimization techniques was conducted in[2], where the authors emphasized the critical

role of batch size in influencing training efficiency and model performance. While the survey offered a broad overview of

optimization strategies, it lacked empirical evaluations of batch size impacts specific to multi-GPU configurations, leaving

practitioners without concrete guidance.

While significant progress has been made in understanding multi-GPU training, notable gaps persist. First, there is a

limited systematic evaluation of the impact of batch size on training dynamics across diverse tasks and datasets in multi-

GPU environments. Second, the trade-offs between batch size, training time, and validation accuracy are underexplored,

leaving room for further research to provide practical insights. Third, the interaction between data parallelism strategies

and batch size optimization remains insufficiently addressed, particularly in scenarios involving high-dimensional data and

computational resource constraints.

This study addresses these gaps by systematically evaluating the influence of batch size on training dynamics in a multi-

GPU environment. By integrating insights from prior research with empirical evaluations, the work contributes to the

development of scalable and efficient training strategies for large-scale neural networks. Focusing on image recognition

tasks using MobileNetV2, the findings are both practical and widely applicable, offering valuable guidance for optimizing

training processes in diverse applications.

3. Methodology

3.1. Dataset

Qeios, CC-BY 4.0 · Article, December 5, 2024

Qeios ID: IQ9XCJ · https://doi.org/10.32388/IQ9XCJ 3/11

The dataset used in this study comprises a total of 1,281,167 images, with 1,024,977 allocated for training and 256,190

for validation. The images represent diverse categories relevant to cybersecurity tasks, focusing on anomaly detection and

recognition.

Preprocessing steps:

All images were resized to 224×224 pixels to match the input requirements of the MobileNetV2 architecture.

Normalization was applied to scale pixel values to the range[6].

Augmentation techniques, including random flips, rotations, and brightness adjustments, were applied to enhance

generalization and prevent overfitting.

The dataset was split into training and validation sets to ensure robust evaluation of the model's performance during and

after training.

3.2. Model architecture

The study utilized MobileNetV2 as the base architecture, a lightweight convolutional neural network designed for efficient

image recognition tasks. MobileNetV2 incorporates depthwise separable convolutions and inverted residual blocks to

reduce computational complexity without compromising accuracy.

Justification for MobileNetV2:

MobileNetV2 is optimized for computational efficiency, making it suitable for large-scale datasets and multi-GPU

setups[2].

Its modular design allows easy adaptation for distributed training.

MobileNetV2 has demonstrated strong performance on image recognition benchmarks[1].

A fully connected layer was added to adapt the architecture to the specific classification task, followed by a softmax

activation function for output probabilities.

3.3. Experimental setup

3.3.1. Single-GPU training

The single-GPU training setup served as a baseline for comparison with multi-GPU configurations. The process involved:

Loading batches of images into memory, applying transformations, and training the model.

Observing memory usage and model performance metrics.

Key observations:

Memory constraints limited the maximum batch size that could be used efficiently.

Qeios, CC-BY 4.0 · Article, December 5, 2024

Qeios ID: IQ9XCJ · https://doi.org/10.32388/IQ9XCJ 4/11

Overfitting was observed due to the model's inability to generalize across the validation set beyond early epochs.

3.3.2. Multi-GPU Training

To address the limitations of single-GPU training, a multi-GPU setup was implemented. Data parallelism was employed to

distribute workloads across GPUs, enabling the training of larger batch sizes while maintaining memory efficiency.

Implementation Details:

Data was split into smaller portions and distributed across GPUs.

Each GPU independently computed gradients for its assigned data subset, and the results were aggregated during the

backpropagation step.

Advantages:

Enhanced computational efficiency.

Reduced training time due to parallel processing.

3.3.3. Batch Size Evaluation

Batch size optimization was a critical focus of this study. The following batch sizes were tested: 16, 32, 64, and 128. Each

batch size was evaluated for its impact on training efficiency, accuracy, and validation performance.

Optimization Approach:

A Mutual Information (MI) framework was used to evaluate the trade-offs between batch size and model

performance[6][8].

Validation accuracy, training time, and loss trends were analyzed to identify the optimal batch size.

Results from Preliminary Experiments:

Batch size 16: Balanced accuracy but slower training time.

Batch size 32: Improved training time with reasonable accuracy.

Batch size 64: Achieved the best trade-off between training efficiency and validation accuracy.

Batch size 128: Degraded validation accuracy due to convergence issues.

4. Results and discussion

4.1. Results

The single-GPU training experiment provided the baseline for evaluating multi-GPU performance. Training on a single

GPU revealed several important trends:

Qeios, CC-BY 4.0 · Article, December 5, 2024

Qeios ID: IQ9XCJ · https://doi.org/10.32388/IQ9XCJ 5/11

Figure 1. Training and validation accuracy and loss over epochs for single-device training.

Training and validation accuracy:

Training accuracy increased steadily over epochs, as illustrated in Figure 1.

Validation accuracy, however, plateaued after a few epochs, highlighting overfitting.

Loss Trends:

Training loss decreased consistently.

Validation loss exhibited an upward trend after the initial epochs, further indicating overfitting.

The overfitting observed during single-GPU training stems from the model's inability to generalize to unseen data. This

result aligns with findings from other studies on constrained single-GPU training setups[2][1].

Multi-GPU experiments were conducted to evaluate the impact of data parallelism and batch size on training efficiency

and model performance.

Comparative analysis of Batch Sizes:

Qeios, CC-BY 4.0 · Article, December 5, 2024

Qeios ID: IQ9XCJ · https://doi.org/10.32388/IQ9XCJ 6/11

Figure 2. Training and validation accuracy and loss over epochs with manual batch sizing (Batch Size = 16) on multi-device setup.

Batch Size 16:

Achieved high validation accuracy but resulted in prolonged training time due to smaller data portions being processed

per iteration (Figure 2).

Suitable for scenarios prioritizing accuracy over training speed[6][8].

Qeios, CC-BY 4.0 · Article, December 5, 2024

Qeios ID: IQ9XCJ · https://doi.org/10.32388/IQ9XCJ 7/11

Figure 3. Training dynamics depicting accuracy and loss for a multi-GPU setup using manual batch sizing (Batch Size = 32).

Batch Size 32:

Improved training time while maintaining reasonable validation accuracy (Figure 3).

Represents a balance between speed and accuracy for moderate resource availability.

Figure 4. Optimization results of training with a batch size of 64 on a multi-GPU setup, showcasing the effectiveness of MI-determined batch sizing.

Batch Size 64:

Produced the best trade-off, achieving the highest validation accuracy and reduced training time (Figure 5).

This batch size allowed efficient utilization of multi-GPU resources without compromising model performance[4][5].

Batch Size 128:

Despite faster training times, validation accuracy diminished due to difficulties in achieving convergence (Figure 6).

Larger batch sizes resulted in gradient updates becoming less effective, a finding consistent with Shallue et al.[1].

The results demonstrate that increasing batch sizes improves computational efficiency up to a certain threshold. Beyond

this point, larger batch sizes negatively impact model accuracy, emphasizing the need for careful tuning[6][4].

The batch size of 64 was identified as the optimal configuration based on its ability to balance computational efficiency

and model performance. Validation accuracy peaked at this batch size, while training times were significantly reduced

compared to smaller batches. This observation aligns with findings from similar studies that emphasize the role of

Qeios, CC-BY 4.0 · Article, December 5, 2024

Qeios ID: IQ9XCJ · https://doi.org/10.32388/IQ9XCJ 8/11

moderate batch sizes in achieving high generalization performance[2][7].

Speed and Generalization: Batch size 64 minimizes training times without compromising validation accuracy, making it

suitable for resource-constrained multi-GPU setups.

Scalability: The results highlight the potential of moderate batch sizes to achieve scalability while maintaining model

quality[8][5].

4.2. Discussion of Research Results

The findings of this study align closely with recent advancements in multi-GPU training and batch size optimization, further

validating the broader applicability of the results. For instance, the study in[1] demonstrated that excessively large batch

sizes could negatively impact convergence rates, a trend that this research observed for batch size 128. This supports the

conclusion that careful tuning of batch size is essential to maintain a balance between training efficiency and model

accuracy.

Research in[6] underscored the importance of optimizing communication in multi-GPU setups to enhance training

performance. While this study did not directly focus on communication overhead, the results indirectly address these

challenges by demonstrating how optimal batch size selection can mitigate inefficiencies in multi-GPU environments.

The study in[5] emphasized the critical role of immediate communication in reducing latency during parallel training. This

aligns with the findings here, as the batch size of 64, identified as optimal in this study, effectively leveraged data

parallelism to achieve high performance with minimal computational overhead.

The results also extend previous research by systematically evaluating the interaction between batch size and training

dynamics in the context of image recognition. Unlike prior studies that focused on language models[8] or resource

modeling[4], this work provides empirical evidence specific to real-world applications, highlighting the generalizability of its

findings across different domains.

Scientific novelty: This research introduces a comprehensive evaluation of batch size configurations in multi-GPU

environments, extending the body of knowledge by focusing on real-world image recognition tasks using the MobileNetV2

architecture. The systematic approach adopted here bridges gaps in existing literature by addressing the trade-offs

between training efficiency and validation accuracy across a range of batch sizes.

Practical significance: The study provides actionable insights for practitioners aiming to optimize multi-GPU training

setups, particularly in tasks involving large-scale image datasets. By identifying the batch size of 64 as the optimal

configuration, the findings offer a practical reference for balancing computational efficiency and model generalization.

These insights can be readily applied to similar applications in cybersecurity, image recognition, and other data-intensive

domains, ensuring scalable and efficient deep learning workflows.

Qeios, CC-BY 4.0 · Article, December 5, 2024

Qeios ID: IQ9XCJ · https://doi.org/10.32388/IQ9XCJ 9/11

5. Conclusions

This study systematically evaluated the influence of batch size on the efficiency and accuracy of training deep learning

models in multi-GPU environments. The results underscore the significant advantages of multi-GPU setups in addressing

the inherent limitations of single-GPU training, such as memory constraints and extended training durations. By

distributing computational workloads across devices, multi-GPU systems enhanced training efficiency while maintaining

high performance, even for large-scale datasets.

A critical finding of this research is the identification of batch size as a pivotal factor in optimizing training dynamics.

Among the configurations tested, a batch size of 64 emerged as the most effective, achieving the highest validation

accuracy while significantly reducing training time. Smaller batch sizes, such as 16 and 32, while capable of maintaining

high accuracy, required considerably longer training times. Conversely, larger batch sizes, such as 128, resulted in a

marked decline in validation accuracy due to convergence challenges. These results emphasize the importance of

selecting a moderate batch size to achieve an optimal balance between computational speed and model generalization.

This study contributes to the broader understanding of training optimization in distributed multi-GPU setups, particularly

for image recognition tasks. The insights gained are directly applicable to practical scenarios, enabling practitioners to

optimize deep learning workflows for improved scalability and efficiency.

Future work should focus on adaptive batch size techniques, enabling dynamic adjustments to batch size based on real-

time convergence metrics and resource availability. Furthermore, extending the analysis to other neural network

architectures, such as Vision Transformers or ResNet variants, and diverse datasets, including medical imaging and

natural language processing, would validate the generalizability of these findings. Such extensions would enhance the

robustness and applicability of the recommendations presented here.

In conclusion, this research advances the field of multi-GPU training by providing actionable guidelines for batch size

selection and training optimization. By leveraging these findings, practitioners can design more efficient and scalable

training pipelines, paving the way for broader adoption of deep learning in data-intensive applications.

References

1. a, b, c, d, e, f, g, hShallue CJ, Lee J, Antognini J, Sohl-Dickstein J, Frostig R, Dahl GE (2019). "Measuring the effects of

data parallelism on neural network training." Journal of Machine Learning Research. 20(112): 1-49.

http://jmlr.org/papers/v20/18-789.html.

2. a, b, c, d, eMittal S, Vaishay S (2019). "A survey of techniques for optimizing deep learning on GPUs." Journal of

Systems Architecture. 99: 101635. doi:10.1016/j.sysarc.2019.101635.

3. a, bLi S, Zhao Y, Varma R, Salpekar O, Noordhuis P, Li T, Chintala S (2020). "PyTorch distributed: Experiences on

accelerating data parallel training." arXiv preprint arXiv:2006.15704. https://arxiv.org/abs/2006.15704.

4. a, b, c, d, eSun Y, Baruah T, Mojumder SA, Dong S, Gong X, Treadway S, Kaeli D (2019, June). "MGPUSim: Enabling

Qeios, CC-BY 4.0 · Article, December 5, 2024

Qeios ID: IQ9XCJ · https://doi.org/10.32388/IQ9XCJ 10/11

multi-GPU performance modeling and optimization." In Proceedings of the 46th International Symposium on Computer

Architecture (pp. 197-209). ACM. doi:10.1145/3307650.3322257.

5. a, b, c, d, eXin J, Bae S, Park K, Canini M, Hwang C (2024). "Immediate communication for distributed AI tasks."

mcanini.github.io. https://mcanini.github.io/papers/distfuse.hotinfra24.pdf.

6. a, b, c, d, e, f, gAnthony Q, Michalowicz B, Hatef J, Xu L, Abduljabbai M, Shafi A, Panda DK (2024, August).

"Demystifying the communication characteristics for distributed transformer models." In 2024 IEEE Symposium on

High-Performance Interconnects (HOTI) (pp. 57-65). IEEE. doi:10.1109/HOTI52428.2024.00012.

7. a, bSaathi S, Brantner T (2024). "Covert attacks on multi-GPU interconnects: Unveiling deep learning model secrets

and GPU side-channel vulnerabilities." ResearchGate. https://www.researchgate.net/publication/384284066.

8. a, b, c, d, e, fNarayanan D, Shoeybi M, Casper J, LeGresley P, Patwary M, Korthikanti V, Zaharia M (2021, November).

"Efficient large-scale language model training on GPU clusters using Megatron-LM." In Proceedings of the

International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1-15). IEEE.

doi:10.1109/SC42106.2021.00011.

Qeios, CC-BY 4.0 · Article, December 5, 2024

Qeios ID: IQ9XCJ · https://doi.org/10.32388/IQ9XCJ 11/11

	Optimizing Multi-GPU Training with Data Parallelism and Batch Size Selection
	Abstract
	1. Introduction
	2. Related Work
	3. Methodology
	3.1. Dataset
	3.2. Model architecture
	3.3. Experimental setup
	3.3.1. Single-GPU training
	3.3.2. Multi-GPU Training
	3.3.3. Batch Size Evaluation

	4. Results and discussion
	4.1. Results
	4.2. Discussion of Research Results

	5. Conclusions
	References

