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In ultra-relativistic collisions of nuclei at the Large Hadron Collider, the created QCD environment

rapidly changes, leading to a non-adiabatic evolution of the quantum states involved. Considering

this, we �rst examine the pre-equilibrium state of QCD matter and its e�ect on the initially produced

charmonium using a temperature-independent Hamiltonian. As the QCD matter reaches local

thermal equilibrium, this Hamiltonian transforms to its �nite temperature counterpart. To model

the pre-equilibrium stage, we use the bottom-up thermalization approach to determine the e�ective

temperature of the QCD matter, followed by a Gubser-type expansion for the thermalized medium.

Additionally, we consider collisional damping, gluonic dissociation, and regeneration mechanisms,

which speci�cally modify the charmonium yield in the thermalized medium. Mainly, the gluonic

dissociation and collisional damping cause a reduction in the yield conversely, regeneration through

gluonic de-excitation enhances the yield of charmonium. Further, we explore the combined e�ects

of these mechanisms on the collective yield of charmonium states with transverse momentum ( )

and event multiplicity in the proton-proton collisions at   TeV. Based on our �ndings, we

contend that the combined e�ects of these mechanisms can serve as a robust probe for determining

the possible existence of a thermalized QCD medium in such a small collision system.

I. Introduction

The suppression of quarkonia has been proposed as an e�cient probe for the creation of the transient

phase of quark-gluon plasma (QGP) in heavy-ion collisions[1][2]. In QGP-like scenarios, quarkonia

suppression arises from the breaking of the heavy quark-antiquark pair ( ) and the screening of

the QCD potential, the transition from color neutral to a colored state[1][3][4]. In the heavy-ion

collisions, even in the absence of a QGP-like medium, the quarkonia production itself gets suppressed
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to a certain extent due to the presence of a nuclear environment in the colliding ions, such phenomena

are incorporated in the cold nuclear matter (CNM) e�ects[5]. However, the CNM e�ect and the QGP

e�ect were separately unable to explain the experimental data for quarkonia suppression from heavy-

ion collisions at RHIC and LHC energies. The inclusion of these two e�ects jointly helped to explain

the quarkonia suppression data qualitatively in Au Au, Pb Pb,  Pb collisions at RHIC and LHC

energies[4][6][7][8][9]. In these studies, gluonic dissociation, collisional damping, and color screening

are the main e�ects reducing the e�ective yield of the quarkonia in the QGP medium. Under CNM

e�ects, authors considered the shadowing e�ect, which modi�es the initial production of the

quarkonia in heavy-ion collisions. Besides the suppression or mechanism of yield reduction, an

enhancement in the yield due to secondary production or regeneration of quarkonia in the QGP

medium is also considered. Meanwhile, quarkonia suppression in heavy-ion collisions is an interplay

of various phenomena including cold and hot nuclear matter e�ects.

The quarkonium suppression in heavy-ion collisions is studied by considering results from 

  collisions as a baseline[2][10][11][12]. The    collision is used as a benchmark because it is

assumed that such collisions lack the nuclear environment and are also unable to achieve the critical

conditions to create a thermal QCD medium. But over the decades, a signi�cant increase in the center

of mass collision energies at the LHC has been achieved and results from   collisions have changed

this perception. The data from high multiplicity   collisions at   = 7 and 13 TeV have shown the

phenomena which resemble the conditions of heavy ion collision[13][14][15][16]. However, the existence

of QGP in such a small system is still unclear and requires more investigation. In this direction,

experimental data of the normalized charmonium yield observed in    collisions have been

quantitatively explained using the Uni�ed Model of Quarkonia Suppression (UMQS)[8]. The UMQS

model is based on the QGP phenomenology and it was successful in explaining the quarkonia

suppression in A A and  A collisions at various center of mass energies. And in the given conditions

it predicts a QGP-like scenario in the   collisions at the LHC energy.

The quarkonia suppression in heavy-ion collisions due to the production of QGP was �rst proposed by

Matsui and Satz[1] based on the color screening mechanism. In their work, it was considered that when

the temperature of the medium exceeds the dissociation/melting temperature of the quarkonium, the

quark-antiquark potential gets screened, resulting in the suppression of these states. It infers that

quarkonia have adequate time to adjust to the evolving medium, thereby undergoing adiabatic

evolution. The adiabatic evolution involves gradual changes, enabling the system to adapt its
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con�guration over time. As a consequence, the change in the Hamiltonian of the system must occur

slowly to prevent transitions to di�erent eigenstates. However, such conditions may not be satis�ed

in small collision systems like  , where the temperature of the �reball is extremely high but the

system size is very small. Such a system is expected to cool down rapidly and consequently, the rapid

evolution of the plasma dynamics can challenge the conditions required for adiabatic evolution. This

necessitates a theoretical framework that accounts for non-adiabatic evolution, where quarkonia

states make a transition to other bound states or continuum states due to rapid changes in

temperature[17][18][19][20][21][22]. A similar scenario may exist in non-central heavy-ion collisions,

where a transient magnetic �eld can contribute to the non-adiabatic evolution of medium viz

quarkonia[23][24][25][26]. As the evolution of quarkonia depends on the QGP lifetime, particularly the

temperature decay rate and the initial temperature of the medium, a rapid decrease in the temperature

may not allow su�cient time for quarkonia to dissociate, even if the initial temperature surpasses the

dissociation threshold. By extending the concept of adiabatic evolution, it is argued that the e�ective

temperature determines the fate of quark-antiquark bound states in   collisions. If the e�ective

temperature exceeds the dissociation temperature, bound states dissolve; otherwise, dissociation is

minimal. As discussed, in the    collisions, the rapid temperature reduction can abbreviate the

lifespan of the decon�ned QCD medium, leading to abrupt alterations in the Hamiltonian of the

quarkonia. Consequently, it permits non-adiabatic evolution to take place.

In this study, we consider the Gubser-like expansion of the medium created in ultra-relativistic 

 collision, which predicts that the thermalized medium gets exhausted in a very brief time, say 

  fm. It allows us to delve into the suppression of charmonium by incorporating non-adiabatic

evolution, showcasing how it can extend the persistence of quark-antiquark bound states even amidst

heightened multiplicities[27]. Following this, we study the yield modi�cation of the  ,   and  (2S)

in    collision via incorporating non-adiabatic evolution of quarkonia along with the collision

damping, gluonic dissociation, and regeneration mechanisms as the QGP e�ects[4].

The paper is organized as follows: In Section II, we discuss the dynamics of the �reball by modeling

temperature evolution in the pre-hydrodynamic or pre-equilibrium phase followed by Gubser �ow for

the thermalized/hydrodynamic phase. In this section, we also discuss the modi�cation in the

temperature in the particle rest frame caused by the Relativistic Doppler Shift (RDS). Next, section III,

incorporates the dissociation probability of quark-antiquark bound states as well as transitions to

other states under non-adiabatic evolution using time-dependent perturbation theory. Further, it
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brie�y describes the regeneration of charmonium during QGP evolution. It takes us to the next

Section IV, which presents the main outcomes of the study, demonstrating the yield modi�cation of

di�erent charmonium states against charged particle multiplicity ( ) and transverse momentum (

). We also observe the yield modi�cation of the   and  (2S) with respect to   in terms of double

ratio as well as number ratios. Finally, Section V concludes and summarizes the results, providing an

outlook on future research.

II. System Dynamics

This section is divided into three main parts. Firstly, we will discuss the solution of the time-

dependent Schr dinger equation, focusing on the e�ects of rapid changes in potential on bound

states. Subsequently, we explore the evolution of temperature during the pre-equilibrium stage.

Lastly, we analyze the temperature evolution in the late stage after hadronization or during the near-

equilibrium stage.

A. Pre-equilibrium Kinematics

The key quantity that controls the evolution of wave function and speci�cally modi�es the survival

probability is the Hamiltonian, which carries the temporal dependence originating from the time

dependence of the temperature. Modeling the time evolution of temperature is non-trivial for the

entire evolution of the plasma in heavy ion collisions. Fortunately, hydrodynamic evolution plays a

crucial role in the space-time evolution of the QCD medium after the partonic medium thermalizes.

The hydrodynamics unambiguously describes the bulk evolution of the medium. Therefore, we can

choose a hydrodynamic model to study the temperature evolution which governs the evolution of the

Hamiltonian. However, to model the pre-equilibrium stages, one may rely on the e�ective QCD kinetic

theory description as discussed within the framework of bottom-up thermalization[28][29][30].

Qualitatively, in this approach, it has been argued that in non-expanding systems, gauge bosons can

rapidly achieve equilibrium (kinetic) among themselves, followed by the equilibration of the fermions.

On the other hand, if the system undergoes rapid longitudinal expansion, partons may remain out of

equilibrium, but the system can be e�ectively described by �uid dynamics. Without going into the

details of the model, we consider the following ansatz for the proper time evolution of the pseudo

temperature ( ). Note that it is a pseudo-temperature because the temperature is strictly de�ned

only in equilibrium:
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The physical picture that prompts us to explore the above scaling is that the initial out-of-equilibrium

partons scatter with each other to achieve kinetic/thermal equilibrium. We also identify the

thermalization time scale as the time when we can apply the hydrodynamic description ( ). In

principle, all these di�erent time scales can form a hierarchy, but we expect that if thermalization is

achieved very fast, then the di�erence between di�erent scales may not be too large, not a�ecting the

system dynamics signi�cantly. The parameter    enters the above equation because the pseudo

temperature can be de�ned through the  -th moment of the fermionic or bosonic distribution

function[28]. Physically, the parameter    determines how fast the system achieves hydronization

(onset of hydrodynamic description) or thermalization. In the subsequent discussion, we

appropriately choose  ,  , and    to model the pre-equilibrium dynamics. Instead of going

into the microscopic description, naively, one can also assume the temperature starts at zero at some

initial time and increases linearly until it reaches a value   at time  .

B. Thermal Evolution with Gubser �ow

Once we have a description of the pre-equilibrium pseudo temperature that also quanti�es the pre-

equilibrium dynamics of the Hamiltonian, we can look into the temperature evolution due to the �ow

dynamics. To solve the hydrodynamic equations, de�ning both the initial conditions and the equation

of state (EoS) is essential. In the absence of a �rst-principle method for estimating the initial

temperature ( ), the following relation has been employed in this study to constrain 

 using available data[31];

where   is the transverse area of the system obtained using the IP-Glasma model[32], and   is the

statistical degeneracy of the QGP phase. In Eq.  2,  . Additionally, we assume 

, which holds true in the massless limit. Given the lack of a �rst-principle approach to

determine thermalization time ( ), it is reasonable to hypothesize that the thermalization

time decreases with increasing center-of-mass collision energy, i.e.,   [33][31]. In this study,

we assume   fm for   collisions at   TeV.
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Notably, in   collisions, the size of the produced medium is expected to be relatively small, and the

maximum size for high multiplicity    collision can approximately be    fm[32]. Consequently,

transverse expansion must be addressed, unlike in the Bjorken �ow solution for large systems. To

account for the transverse expansion of the system in this calculation, we examine the Gubser �ow,

�rst explored by Gubser and Yarom[34][35]. This approach combines a “boost-invariant” longitudinal

�ow, akin to the Bjorken �ow, with consideration for transverse �ow. The evolution of

thermodynamic quantities, including energy density ( ) and shear stress ( ), within the framework of

Gubser �ow with third-order viscous corrections, is detailed in[36][37].

The dimensionless quantities,   and  , are expressed as   and   where   is

the proper time and    is related to temperature. The parameters are chosen[36]  as  , 

  is related to relaxation time, where  ,  ,    and the third order

correction parameter  .

The conformal time   can be written as

where    is an arbitrary energy scale, which is related to the transverse size of the medium ( ) like 

,    is the position in the transverse plane. One can retrieve the Bjorken �ow solution by

taking the limit   or  . One can also use the   dimensional hydrodynamic description

for a more accurate description of non-boost invariant �ow with nontrivial rapidity dependence. But

considering the possible boost invariance in ultra-relativistic collisions, we restrict ourselves to the

analytically solvable hydrodynamic description with transverse expansion.

Previously, it was demonstrated in Ref.  [27]  that the e�ect of the transverse expansion on the

temperature evolution by Eqs.(3) and (4) with initial conditions    MeV and 

  at    fm for various system sizes ( ). The results indicate that, as 

  increases, the lifetime of the Quark-Gluon Plasma (QGP) increases. At su�ciently large  , the

variation of temperature ( ) with proper time ( ) for Gubser �ow closely resembles that of Bjorken

�ow. The variation of temperature with system size clearly indicates that for small systems, the time
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evolution of the system can be rapid as compared to large systems, allowing us to explore the scenario

of non-adiabatic evolution.

C. In-medium Implicit Temperature for Quarkonia

Heavy quarkonia like charmonia do not attain thermalization with the medium, and such mesons have

a di�erent velocity than the medium. The velocities of the medium and charmonium are denoted by 

  and  , respectively. This lack of integration between charmonium and the surrounding

medium gives rise to acquiring an e�ective temperature for charmonium. The e�ective temperature of

charmonium in the medium is obtained using the Relativistic Doppler Shift (RDS), which arises from

the velocity di�erence between the charmonium and the thermalized QCD medium. The RDS leads to

an angle-dependent e�ective temperature ( ), expressed as[38]:

 

where    is the angle between the relative velocity    and the direction of the free-�owing light

partons. The   in Eq. 6, represents the medium cooling rate obtained using Gubser �ow. Now we

have averaged   over the solid angle, which leads to an angle-independent e�ective temperature,

given as [6],

Using Eq. 7, we have obtained the e�ective temperature for  ,   and  (2S) charmonium states and

its variation with    along comparison with medium temperature    is shown Fig. 1. For 

  GeV, all the charmonia resonances are found to be thermalized with medium, as 

  corresponding to  ,    and  (2S) is almost same as  . While    obtained for 

  GeV comes out less than  , following the argument that quarkonia moving with

high    is incapable of being in thermal equilibrium with the medium. As  (2S) and    masses are

higher than  , traverse through the medium with relatively slower speed, and consequently feel

slightly higher temperatures at given   GeV. This mass ordering on the    for  ,   and 

(2S) is preserved at    GeV while    is further reduced respective to the  -range; 

. Our �ndings suggest that   plays a crucial role in the modi�cation of charmonium yield

in the QGP medium.
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Figure 1. (Color online) Medium Temperature evolution with time ( ) corresponding to

Gubser �ow is represented through  . Along with it, the e�ective temperature ( )

respective  ,  (1P) and  (2S) for   3, 9, 30 GeV are also shown here.

III. Yield Modi�cation Mechanisms

There are several phenomena related to cold nuclear matter and hot QCD matter that may in�uence

the production/suppression of charmonium in heavy-ion collisions. However, unlike heavy-ion

collisions, the nuclear environment is absent in p+p collisions. Therefore, any changes in charmonium

yield in these collisions can be attributed solely to the e�ects of a hot partonic medium. In the context

of hot QCD matter e�ects, we have considered factors such as collisional damping, gluonic

dissociation, and the regeneration of charmonium states through gluonic de-excitation. Additionally,

we have formulated the non-adiabatic approximation for charmonium evolution and studied its

impact on charmonium yield.

τ

Tmedium Teff

J/ψ χc ψ =pT
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A. Collisional Damping

The collisional energy loss of charmonium within the quark-gluon plasma (QGP) is characterized by

“Collisional Damping.” The charmonium dissociation due to this damping e�ect is evaluated using

the complex singlet potential. In this study the singlet potential for the    bound state in the QGP

medium is de�ned as follows [39][40][4]:

In Eq. (8), the �rst two terms on the right-hand side represent the string and Coulombic

contributions, respectively. The third term is the imaginary component of the heavy-quark potential,

which accounts for collisional damping. Here,    is the string tension for the    bound state, and 

 denotes the Debye mass. The running coupling constant at the hard scale,  ;  . The

e�ective coupling constant,  , is de�ned at the soft scale as  , and is expressed as  .

The collisional damping,  , describes the decay of charmonium caused by the imaginary part of the

complex potential. It is computed using �rst-order perturbation theory by integrating the imaginary

part of the potential with the radial wave function:

where   is the charmonia singlet wave function. We have obtained the wave functions by solving

the Schrödinger equation for  ,  (1P),  (2S).

B. Glutonic Dissociation

In the quark-gluon plasma (QGP) medium, quarkonium states can make a transition from a color

singlet state to a color octet state, which gradually dissociates within the medium. The cross-section

for this process is given by [8]:

where   is the mass of the charm quark and   is the coupling constant, scaled as  .

The   is the energy eigenvalue corresponding to the charmonium wave function,  . Here,   is
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the probability density, derived using both the singlet and octet wave functions as follows;

The octet wave function   has been obtained by solving the Schrödinger equation with the octet

potential  . The value of    is determined by using the conservation of energy, 

.

The gluonic dissociation rate,  , is calculated by taking the thermal average of the dissociation

cross-section [8]:

The    is the transverse momentum of the charmonium, and   represents the degeneracy factor of

the gluons.

Now taking the sum of the decay rates associated with collisional damping and gluonic dissociation,

the combined e�ect is expressed in terms of the total decay width, given as;

C. Time-dependent Schrödinger equation: non-adiabatic evolution of quantum states

First, to study the non-adiabatic behavior of charmonium states, it is essential to ensure that the

evolution rate exceeds the transition time. We de�ne the evolution time scale,  , as  , while

the transition time scale,  , represents the time associated with transitions between di�erent energy

states, speci�cally given by   fm. Using this, we estimate   to be approximately 0.3 fm during

the thermalization phase, where the temperature evolution follows a Gubser-type pro�le with viscous

correction. This estimation assumes an initial system size of  1.5 fm, which is relevant to high-

multiplicity    collisions. In contrast, the transition time scale    for charmonium states is

calculated to be around 0.7 fm.

Now, coming back to the charmonium evolution; the charmonia are hypothesized to form during the

initial phases of collision. Utilizing a bottom-up thermalization approach rooted in QCD kinetic

theory, it can be argued that from an initially interacting out-of-equilibrium state, a thermalized

medium is reached at a subsequent time marked as  . Right after the collision (well before
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thermalization). The evolution of the initial state of charmonia from    to  , can be

determined by solving the zero-temperature Hamiltonian  [41],

Here,   denotes the reduced mass of the quark-antiquark system. However, as thermalization occurs

in the medium, the zero-temperature Hamiltonian evolves into its �nite temperature counterpart

 [42],

here   is the real part of the potential given in Eq. 8.

The time-dependent nature of the Hamiltonian arises from the temporal variation of temperature. As

the system expands further, the medium temperature eventually drops below the threshold for

hadronization, causing the Hamiltonian to revert to a zero-temperature state. It has been contended

in  [27]  that the adiabatic approximation for the evolution of the quantum bound state of charmonia

may not hold, as the Hamiltonian evolves quite rapidly for medium produce in   collision.

Due to the rapid evolution of the medium, the initial quarkonia states experience non-adiabatic

evolution, which may cause transitions to states orthogonal to their initial con�gurations.

Consequently, the survival probability of the initial state is a�ected. To determine this survival

probability, we solve the time-dependent Schrödinger equation, which can be expressed as follows:

In spherical polar coordinate   can be written as,

and  . As for simplicity, we are considering potential is

spherically symmetric, one can write    and separate the radial part of Schrödinger

equation as

where  ,   and   is energy Eigenvalue, represents the binding

energy.

τ = 0 τHydro

= + σr −H0
p ⃗ 2

2M

4

3

αs

r
(14)

M

H(τ) = + Re(V )
p ⃗ 2

2M
(15)

Re(V )

p + p

− ψ + V (r)ψ = i
1

2M
∇2 ∂ψ

∂τ
(16)

∇2

= [ ( )+ (sin θ )+ ]∇2 1

r2

∂

∂r
r2 ∂

∂r

1

sin θ

∂

∂θ

∂

∂θ

1

θsin2

∂ 2

∂ϕ2
(17)

V (r) = (1 − exp(−μr)) − exp(−μr)/rσ
μ

4
3
αs

ψ = R(r)ψ(θ,ϕ)

[− + (r)]u(r) = Eu(r)
1

2M

d2

dr2
Veff (18)

(r) = l(l + 1) + V (r)Veff
ℏ2

2mr2 u(r) = rR(r) E

qeios.com doi.org/10.32388/IQJMU8 11

https://www.qeios.com/
https://doi.org/10.32388/IQJMU8


Here we solve the time-dependent Schrödinger equation (Eq. 18) for the time-dependent Hamiltonian

shown in Eq. 15 using the Crank-Nicolson Method ([43]) to obtain the survival probability of a

particular initial state. The initial states, charmonia bound states ( ,  (2S), and  (1P)), evolves

with time until the temperature drops below the QGP threshold temperature  . The survival

probability of particular charmonium states can be calculated by taking the overlap integration of the

�nal wave function with the initial zero-temperature charmonium state.

If we consider  ,  , and    states to represent bound states of the initial zero-

temperature Hamiltonian (Eq. 14), and    represents the evolving wave function, the survival

probability of  ,  , and   at   can be represented as:

D. The Regeneration Factor

In addition to the gluonic excitation of a color-neutral state to a color-octet state, gluonic de-

excitation from the color-octet to the neutral state is also feasible. Consequently, charmonia gets

regenerated in the QGP medium through this process. The regeneration is signi�cant in heavy-ion

collisions at LHC energies due to the abundant production of   pairs in the hot QGP medium, which

regenerate charmonia through recombination of  . While, in smaller systems like   collisions, the

production of   pairs is relatively low, making the regeneration due to the coalescence less probable.

However, regeneration due to gluonic de-excitation plays an important role in estimating

charmonium production in such a small collision system (discussed in detail in Ref.  [8]). This de-

excitation is calculated in terms of the regeneration cross-section   for charmonium by employing

the detailed balance of the gluonic dissociation cross-section   [6]:

where    is the Mandelstam variable, related with the center-of-mass energy of    pair, given as; 

, where   and   are four momenta of   and  , respectively.

Finally, we have obtained the recombination factor   by taking the thermal average of the product of

recombination cross-section and relative velocity   between   and  :

J/ψ ψ χc

Tc

|J/ψ⟩ |ψ(2S)⟩ | (1P )⟩χc

ψ(τ)

|J/ψ⟩ |ψ(2S)⟩ | (1P )⟩χc τ = τc

=PJ/ψ |⟨ψ( )|J/ψ⟩|τc
2 (19)

=Pψ(2S) |⟨ψ( )|ψ(2S)⟩|τc
2 (20)

=P (1P)χc
|⟨ψ( )| (1P )⟩|τc χc

2 (21)

cc̄̄

cc̄̄ p + p

cc̄̄

σf,nl

σd,nl

=σf,nl
48

36
σd,nl

(s − M 2
nl

)2

s(s − 4 )m2
c

(22)

s cc̄̄

s = ( +pc pc̄)
2 pc pc̄ c c̄̄

ΓF

vrel c c̄̄

=< ,ΓF,nl σf,nlvrel >pc
(23)
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Since the gluonic dissociation increases with the increase in temperature, it leads to the production of

a substantial number of octet states in a high multiplicity events. Such that the de-excitation of 

  octet states to    enhances the regeneration of    in high multiplicity events conferred with

relatively low multiplicities.

E. The Quanti�ed Yield

Modi�cation of the charmonium yield in the medium due to collisional damping, gluonic dissociation,

and regeneration is obtained by combining all these mechanisms in one transport equation[44][45][4]

[6][8]:

The �rst term on the right-hand side of Eq. 25 is a gain term, and the second is the loss term. Here, 

 is the dynamic volume of the evolving medium. We assume that initially, the number of charms (

) and anti-charm quarks    are produced in equal numbers,    =    =  . The Eq. 25 can be

solved analytically under the assumption of   at   [4][6][8]:

Here,    is the net number of charmonium formed during the QGP evolution period 

. The quantities    and    represent the number of    and    pairs formed during the

initial hard scattering, respectively. Input for   and   are taken from Ref. [8] corresponding to

p p collisions at   = 13 TeV.

In Eq. 26,    and    are decay factors for the meson due to gluonic dissociation and

collisional damping in the QGP with a lifetime of  , and    represents the evolution time. These

factors are calculated using the following expressions:

and

=vrel
( −p

μ
c p μc̄ )2 m4

c

+ ( + + )p2
cp

2
c̄

m2
c p2

c p2
c̄

m2
c

− −−−−−−−−−−−−−−−−−−−

⎷


 (24)

cc̄̄ J/ψ J/ψ

= [V (τ) −
dNJ/ψ(nl)

dτ
ΓF,nlNcNc̄ ]−1 ΓD,nlNJ/ψ(nl) (25)

V (τ)

Nc ( )Nc̄ Nc Nc̄ Ncc̄

<<NJ/ψ(nl) Ncc̄ τ0

( , ) = ( , ) [N
f

J/ψ(nl) τQGP pT ϵ1 τQGP pT N i
J/ψ(nl)

+ (τ, )[V (τ) (τ, ) dτ]N 2
cc̄
∫

τQGP

τ0

ΓF,nl pT ϵ2 pT ]−1 (26)

( , )N
f

J/ψ(nl) τQGP pT

τQGP N i
J/ψ(nl) Ncc̄ J/ψ cc̄̄

N i
J/ψ(nl) Ncc̄

− s√

( )ϵ1 τQGP (τ)ϵ2

τQGP τ

( , ) = exp[− (τ, )dτ],ϵ1 τQGP pT ∫
τQGP

τ
′
nl

ΓD,nl pT (27)
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After obtaining the    from Eq. 26 we took the ratio to the initially produced

charmonium,    to quantifying the medium e�ect and called it survival probability  . The

survival probability of charmonium, due to gluonic dissociation and collisional damping along with

the regeneration e�ect is de�ned as:

here “ ” stands for Multiplicity Class de�ned as  .

It is assumed here that from the initial collision to the QGP end-point (at   to  ), the non-

adiabatic evolution of charmonia states is a completely independent process with the other

suppression mechanisms in QGP. The net yield in terms of survival probability,    is

expressed as:

Further, we incorporate the feed-down correction from excited charmonium states, such as  (1P)

and  (2S), into  . To determine the feed-down, we calculate the ratio between the net initial and

�nal numbers of  . The net initial number is derived by accounting for the feed-down from higher

resonances into   in the absence of the QGP medium. This is expressed as  ,

where   represents the branching ratio for the decay of state   into state  . The net �nal number of 

  incorporates medium e�ects, represented by the survival probability ( ), along with

feed-down:  . The overall generalized survival probability, including the

feed-down correction, is given as[6]:

IV. Results and Discussions

In our investigation of charmonium yield modi�cation ultra-relativistic proton-proton ( )

collisions at  13 TeV under the above-mentioned circumstances, we have obtained the survival

probability ( ), the double ratio (used for the direct comparison of two probabilities), and the

variation of particle ratios with respect to both charged particle multiplicity ( ) and

(τ, ) = exp[− ( , )d ]ϵ2 pT ∫
τ

τ
′
nl

ΓD,nl τ
′ pT τ ′ (28)

( , )N
f

J/ψ(nl) τQGP pT

N i
J/ψ(nl) SP

( ,mc) =S
J/ψ
cgr pT

( ,mc)N
f

J/ψ(nl) pT

(mc)N i
J/ψ(nl)

(29)

mc ⟨d /dη⟩Nch

τ = 0 τ = τqgp

( ,mc)SP pT

( ,mc) = ( ,mc) ( ,mc).S
J/ψ
P pT S

J/ψ
gc pT PJ/ψ pT (30)

χc

ψ J/ψ

J/ψ

J/ψ = N(J)N in
J/ψ ∑J≥I CIJ

CIJ J I

J/ψ ( , b)SP pT

= N(J) (J)N
fi

J/ψ ∑J≥I CIJ SP

(I) = .SP

N(J) (J)∑J≥I CIJ SP

N(J)∑J≥I CIJ

(31)

p + p

=s√

SP

⟨d /dη⟩Nch
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transverse momentum ( ) at the mid-rapidity. This study analyzes a spectrum of suppression

mechanisms alongside the regeneration process. We have methodically categorized these mechanisms

into two distinct groups for clarity and detailed analysis: CGR and NAb. The “CGR” group encapsulates

mechanisms such as Collisional damping, Gluonic Dissociation, and Recombination processes,

highlighting the interactions that directly involve gluonic exchanges. On the other hand, “NAb”

focuses on the non-adiabatic evolution of charmonium states, considering the temporal evolution

under the scenario when the reaction time is so short that the transition amplitude is described as the

overlap of these states. The combined e�ects, both CGR and NAb, are presented in a dataset labeled

“Net”, showcasing the intertwined relationship and net impact of these complex mechanisms on the

charmonium yield in such high-energy collisions.

A. Multiplicity Dependent Yield

The  -integrated charmonium yield modi�cation in terms of    with event multiplicity at mid

rapidity has been explored using the charmonium distribution function    as discussed in the

Ref. [6][8]. The yield modi�cation of  ,   and  (2S) shown in Fig. 2, predicts that suppression due

to CGR is relatively large for  (1P) than    and  (2S), and it further increases with increasing

multiplicity. The CGR and NAb independently predict about 20% suppression for    at highest

multiplicity, as shown in Fig. 2. However,   suppression due to NAb is slightly less than CGR at low

multiplicity events. Conversely, NAb predicts substantial suppression for  (1P) compared to CGR. In

contrast to   and  ,  (2S) experiences an enhancement due to the NAb approach, increasing with

multiplicity. Normally, the average radius of  (1P) is larger than that of  , and the average radius

of  (2S) is even larger than both. As the average radius increases, dissociation due to non-adiabatic

evolution also increases. Consequently,  (1P) undergoes more dissociation compared to  , and 

(2S) should, in principle, experience even greater dissociation than both   and  (1P). Despite this, 

(2S) exhibits an enhancement due to non-adiabatic transitions from   to  (2S), as described in

Ref.  [46]. The combined e�ects of CGR and NAb, represented through “Net”, lead to up to 40%

suppression for   and 80% for  (1P) with increasing multiplicity. For  (2S), the combined e�ects

reduce the enhancement to some extent but are unable to transform it into suppression.

pT

pT SP

1/E4
T

J/ψ χc ψ

χc J/ψ ψ

J/ψ

J/ψ

χc

J/ψ χc ψ

χc J/ψ

ψ

χc J/ψ ψ

J/ψ χc

ψ J/ψ ψ

J/ψ χc ψ
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Figure 2. (Color online) Survival probability   as a function of multiplicity is

shown for  ,  (1P) and  (2S) at mid-rapidity corresponding to 

 collision at   TeV.

In Fig. 3, the feed-down of the  (1P) and  (2S) into   further increases the suppression for   at

all the multiplicity classes. The feed-down corresponding to the NAb only predicts maximum

suppression up to 20% for  , which is almost the same as its prediction in the absence of the feed-

down correction. While considering feed-down correction, only incorporating the CGR process

increases the suppression up to 40% while twice as its earlier prediction (CGR without feed-down

correction shown in Fig. 2). Finally, the combined e�ects of CGR and NAb, with feed-down of higher

resonances, lead to 50% suppression for    at high multiplicity events in ultra-relativistic 

 collisions at   = 13 TeV.

SP

J/ψ χc ψ

p + p = 13s√

χc ψ J/ψ J/ψ

J/ψ

J/ψ

p + p s√
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Figure 3. (Color online) Survival probability   as a function of multiplicity is

shown for  , considering the feed-down of  (1P) and  (2S) into   at

mid-rapidity corresponding to   collision at   TeV.

In Fig.  4 the survival probability ratios or double ratio between  (1P) to    and  (2S) to    are

shown to quantify the relative yield modi�cation of  (1P) and  (2S) with respect to  .

Experimental observations employ double ratios to ascertain that the medium, which may have

existed in ultra-relativistic collisions whether, a�ects the  (2S) and    yields di�erentially or the

same. Notably, due to the technical di�culties in the observation of  (1P), the yield modi�cation and

double ratio for  (1P) with    has not been reported in any of the ultra-relativistic heavy-ion

collision experiments. However, the present study explored the  ,  (1P) and  (2S) dynamics in the

medium and the impact on their yield imposed by the medium. Fig. 4 depeicts that  (1P) experiences

signi�cant suppression compared to   at high multiplicity, whereas the suppression magnitude for 

(1P) to    is relatively small at low multiplicity. On the other hand, the yield of  (2S) is

considerably enhanced compared to   due to the NAb mechanism, leading to a populated transition

to  (2S) in the �nal state, which increases with multiplicity. However, CGR predicts that  (2S) is more

suppressed than   but less than   at the high multiplicity classes. While at low multiplicity  (2S)

SP

J/ψ χc ψ J/ψ

p + p = 13s√

χc J/ψ ψ J/ψ

χc ψ J/ψ

ψ J/ψ

χc

χc J/ψ

J/ψ χc ψ

χc

J/ψ

χc J/ψ ψ
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ψ ψ

J/ψ χc ψ
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and  (1P) are almost equally suppressed. The cumulative in�uence of CGR and NAb predicts a

multiplicity-dependent 30% to 70% suppression for   compared to   and similarly estimates an

enhancement of approximately 130% to 200% for  (2S) relative to  .

χc

χc J/ψ

ψ J/ψ
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Figure 4. (Color online) Double ratio as a function of multiplicity is shown for 

, and  , at mid-rapidity corresponding to   collision at  13

TeV.

Furthermore, we extend the examination of survival probability ratios of the charmonium states in

ultra-relativistic collisions to quantitatively assess the �nal numbers of  ,  (1P), and  (2S) at the

chemical freezeout boundary, as depicted in Fig.  5. These results align with previous observations,

indicating a notably higher production and relatively less suppression of   compared to  (1P) and 

(2S) during the transportation from initial production to the QGP endpoint, i.e.,  .

Additionally, Fig. 5 suggests that  (1P) dissociation due to the CGR mechanism is relatively smaller in

comparison with  (2S). While the NAb mechanism e�ectively reduces the  (1P) and comparably

predicts a large production for  (2S). The   yield decreases with increasing multiplicity for both CGR

and NAb processes. The  (2S) yield is almost steady at all the multiplicities corresponding to CGR

while it increases with multiplicity. Meanwhile, the combined e�ects of CGR and NAb predict the

survived production for  (1P) around 8% to 2% and approximately 0.5% to 1% for  (2S) with respect

to   depending on the multiplicity classes.

(1P)χc

J/ψ

ψ(2S)

J/ψ
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J/ψ χc ψ

J/ψ χc

ψ T = Tc
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Figure 5. (Color online) Particle number ratio as a function of multiplicity is shown for  , and   at

mid-rapidity corresponding to   collision at  13 TeV.

B. Yield Modi�cation with Transverse Momentum

The production of charmonia as a function of transverse momentum ( ) provides valuable insights

into the physics at both low and high  . We have also examined the impact of system size or, in this

case, multiplicity classes on the charmonium yield over the considered  range. The chosen

multiplicity classes include the lowest multiplicity class (Multi. Class X: 70 - 100%), the highest

multiplicity class (Multi. Class I: 0 - 1%), and minimum bias (Min. Bias: 0 - 100%). To this end, we

have computed the survival probability ( ) as a function of    by averaging over the range of the

corresponding multiplicity bins. The expression for the weighted average of   is given by[6]:

The index    represents the multiplicity bins. The weight function    is de�ned as 

. The number of binary collisions    is determined using a Glauber model

for   collisions, which incorporates an anisotropic and inhomogeneous proton density pro�le to

calculate   [47]. Also, we have obtained the impact parameter,  , for   collisions corresponding

to multiplicity bins at   = 13 TeV using the above-mentioned Glauber model.

(1P)χc

J/ψ

ψ(2S)

J/ψ

p + p =s√

pT

pT

−pT

SP pT

SP

( ) =SP pT
( , ⟨ ⟩)∑i SP pT bi Wi

∑iWi

(32)

i = 1, 2, 3, . . . Wi

= (b)πbdbWi ∫ bmax

bmin
Ncoll Ncoll

p + p

Ncoll b p + p

s√

qeios.com doi.org/10.32388/IQJMU8 21

https://www.qeios.com/
https://doi.org/10.32388/IQJMU8


qeios.com doi.org/10.32388/IQJMU8 22

https://www.qeios.com/
https://doi.org/10.32388/IQJMU8


Figure 6. (Color online) Survival probability   as a function of   is shown

for   at mid-rapidity corresponding to   collision at  13 TeV. From

top to bottom, results are shown for high-multiplicity, low-multiplicity, and

minimum bias events, respectively.
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Figure 7. (Color online) Survival probability   as a function of   is shown

for   considering the feed-down of  (1P) and  (2S) into   at mid-

rapidity corresponding to   collision at  13 TeV. From top to bottom,

results are shown for high-multiplicity, low-multiplicity, and minimum bias

events, respectively.
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Figure 8. (Color online) Survival probability   as a function of   is shown for 

 at mid-rapidity corresponding to   collision at  13 TeV. From top to

bottom, results are shown for high-multiplicity, low-multiplicity, and

minimum bias events, respectively.

The  -dependent suppression of   corresponds to Multi. Class I, shown in Fig. 6, predicts around

20% suppression at low    for both NAb and CGR mechanisms. However, as    increases, the

suppression due to NAb rapidly decreases and becomes negligible at   GeV. On the other hand,

the suppression due to CGR also decreases with increasing  , but at a slower rate, still predicting

around 10% suppression at   GeV. When these two mechanisms are combined, the suppression

increases to around 40% at low   and 10% at high  , primarily due to the CGR mechanism. Fig. 7

shows that considering the feed-down corrections of  (1P) and  (2S) into    at Multi. Class I

provides marginal changes in the results compared to the case without the feed-down. It suggests that

high-multiplicity  (1P) is largely suppressed, and as  (2S) contribution in feed-down is relatively

small, mainly   dynamics in the medium dominate the feed-down correction. The results for Multi.

Class X, depicted in Fig. 6, indicates a signi�cant decrease in suppression due to NAb, with its impact

on   suppression being smaller than that of CGR at   GeV. The yield modi�cation caused by

SP pT
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CGR is also reduced at the lowest multiplicity and around    GeV, where its e�ect nearly

vanishes, while NAb deactivates at   GeV. When these mechanisms are combined, they predict

less than 10% suppression at low  , which almost disappears at high    GeV. However, the

feed-down correction shown in Fig.  7 for Multi. Class X predicts a non-zero suppression at high 

  due to CGR stemming from the larger suppression of higher resonances. In contrast, the

corresponding NAb e�ect provides a slight enhancement for   at high  . In the minimum bias case

illustrated in Fig. 6, the prediction indicates a signi�cant suppression of  . When both mechanisms

are combined, this suppression is approximately 30% at   GeV, decreasing to 5% at higher  .

The feed-down correction shown in Fig.  7 for the minimum bias case slightly enhances the

suppression for  . In this case, the enhancement of    is found to be absent at high  , unlike

Multi. Class X.

≃ 30pT

≃ 30pT

pT ≳ 30pT

pT
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Figure 9. (Color online) Survival probability   as a function of   is shown

for  (2S) at mid-rapidity corresponding to   collision at  13 TeV.

From top to bottom, results are shown for high-multiplicity, low-

multiplicity, and minimum bias events, respectively.

These results indicate that the non-adiabatic (NAb) evolution of the   state is predominant at low

transverse momentum ( ) and high multiplicity. At these conditions, the system size is maximized

compared to lower multiplicities, and particles with low    moving slowly through the medium,

prolong the transition from   to   at  . As a result, the yield of   decreases under high

multiplicity and low  , however, this reduction diminishes rapidly with increasing   and a decrease

in system size.

In parallel, the combined e�ects of collisional damping, gluonic dissociation, and regeneration (CGR)

signi�cantly in�uence suppression. Within CGR, collisional damping and gluonic dissociation

substantially lower the yield at low  , whereas the regeneration mechanism tends to increase the

yield at high  , rendering suppression less impactful for  . Conversely, for other charmonium

resonances like  (1P) and  (2S), the regeneration the e�ect is marginal. Given their excited state

nature, these resonances experience greater suppression compared to   due to CGR mechanisms.
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Interestingly, NAb a�ects these states di�erently. For example, in Multi. Class I,  (1P) exhibits

dominant suppression due to the NAb mechanism as shown in Fig.  8. This suppression results in a

yield reduction of approximately 65% at  , while survival probability at high    increases to

about 55%. In contrast, the CGR suppression for  (1P) in Fig.  8 at    is around 45%, rising to

50% in the range of   GeV before declining at   GeV. The interplay of CGR and NAb

predicts a suppression range of 50% to 80% for  (1P) across high to low    in high multiplicity

(Multi. Class I) events.

Further, Fig. 8 illustrates for low multiplicity events (Multi. Class X), the CGR and NAb mechanisms

exhibit a complex relationship regarding  (1P) suppression from low to high  . At   GeV, NAb

is the primary suppression mechanism; however, in the range of   GeV, dissociation of 

(1P) is largely driven by CGR processes. At high transverse momenta ( ), CGR and NAb equally

a�ect the yield of  (1P) in low multiplicity events, resulting in net suppression between 20% and

40%, depending on the    region. Similar to Multi. Class I, NAb primarily drives suppression

mechanisms for  (1P) in a minimum bias scenario, except in the   range of 8 - 14 GeV, where CGR

predicts greater suppression. The overall suppression of  (1P) in minimum bias (Min. bias: 0 - 100%)

lies between the extremes of multiplicity classes, ranging from approximately 70% suppression at

low   to about 40% at high  .

So far, observations indicate that non-adiabatic evolution tends to reduce the yields of quarkonia, as

has been predicted for   and  . However, the results shown in Fig. 9 for  (2S) is on the contrary.

Instead of suppression, non-adiabatic evolution leads to a signi�cant enhancement of  (2S) yields

across both low and high multiplicity classes. In Multi. Class I, Fig.  9 reveals a substantial

enhancement of  (2S) at low transverse momentum ( ), which diminishes as   increases. At very

high    (around 26 GeV and above), there is a noticeable suppression pattern for  (2S). A similar

phenomenon is observed in Multi. Class X, though the magnitude of enhancement is smaller

compared to Class I, with the yield of  (2S) starting to decrease at   GeV.

These �ndings suggest that the non-adiabatic evolution of charmonium states facilitates the

transition to excited states characterized by larger principal quantum numbers ( ) and smaller

azimuthal quantum numbers ( ). This transition is particularly dominant when the lifetime of the

medium is su�ciently long, allowing the continuum state to evolve into a discrete charmonium state.

Given that  (2S) is a higher excited state with relatively high eigen energy, it is particularly conducive

to the formation during this transition from continuum to discrete eigenstates. Consequently, the
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non-adiabatic mechanism predicts a signi�cant enhancement of  (2S) yields at high multiplicity,

which then decreases due to changes in eigenenergy in lower multiplicity events.

On the other hand, the CGR mechanisms signi�cantly reduce the yield of  (2S) across all chosen

multiplicity classes, as illustrated in Fig. 9. For Multi. Class I, the suppression is around 40-45% at 

12 GeV, further with increasing   suppression reduces to 20%. The combined e�ects of CGR and

NAb lead to a decrease in the “Net” survival probability ( ) for  (2S) at high  , which in contrast

with the behavior observed for   and  . A similar trend re�ects the in�uence of NAb and CGR on

the  (2S) yield with  , is also seen in Multiplicity Class X; however, the magnitude of enhancement

and suppression is less pronounced due to change in charged-particle multiplicity density. Under the

Min. bias scenario, the  (2S) yield falls within the range set by Multi. Class I and Multi. Class X and

results are consistent with the behavior observed in other multiplicity classes.

Figure 10. (Color online) Double ratio as a function of   is shown for  , and  , at mid-rapidity

corresponding to   collision at  13 TeV. Legends shown with “I” and “X”, stand for High and Low

multiplicity events, respectively.
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Figure 11. (Color online) Particle number ratio as a function of   is shown for  , and  , at mid-

rapidity corresponding to   collision at  13 TeV. Legends shown with “I” and “X”, stand for High

and Low multiplicity events, respectively.

The  -dependent double ratios depicted in Fig.  10 provide important insights into the relative

suppression of  (1P) and  (2S) in comparison to  . At low multiplicity and  , the NAb

mechanism demonstrates a higher degree of suppression than the CGR mechanism for  (1P) relative

to  . Notably, at    GeV, the suppression for  (1P) predicted by both mechanisms align

closely, indicating a convergence in their outcomes under certain conditions.

In high multiplicity scenarios, the NAb mechanism is identi�ed as a signi�cant factor in the reduction

of the  (1P) yield, leading to a suppression approximately 60% to 50% greater than that of 

 across the selected   range. While the CGR mechanism predicts substantial suppression for 

(1P), its estimates are notably lower than the NAb mechanism. Collectively, these �ndings suggest a

net suppression of  (1P) with respect to    is around 70% to 50% at high multiplicity and from

30% to 20% at low multiplicity within the   range of   GeV.

Moreover, the left panel of Fig. 10 illustrates that the relative yield of  (2S) experiences a suppression

of approximately 10% at low multiplicity and 30% at high multiplicity due to the CGR mechanism.

Particularly, the  (2S) considerable enhancement through the NAb mechanism underscores the

distinct roles played by each mechanism in particle dynamics. The survival probability of  (2S) in

comparison with   increases at both low and high multiplicities. However, it is noteworthy that at 

  GeV in low multiplicity scenarios,  (2S) is observed to be more suppressed than  . In
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higher multiplicity conditions, the onset of suppression for  (2S) is shifted to higher    values, as

evidenced by results indicating suppression at   GeV. This subtle understanding enhances our

comprehension of particle behavior across varying system dynamics depending on the charged-

particle multiplicity density.

We have conclusively observed that the   survival probability ( ) in the QGP medium is signi�cantly

lower than that of   and  (2S). While  (2S) is indeed suppressed due to the CGR mechanisms, that

too is less pronounced than that of  . Additionally,  (2S) experiences enhancement from the NAb

mechanism. This leads us to critical questions about whether the net production of  (2S) actually

exceeds that of   or if its survival probability is merely bolstered under these conditions.

To resolve this, we have estimated the relative production numbers of   and  (2S) with respect to 

, as illustrated in Fig.  11 through particle number ratios. At low multiplicity, the ratio of    to 

 shows that approximately 30% of the �nal production of    is conceded when factoring in CGR

and NAb mechanisms independently. Notably, this �nal yield is nearly independent of the transverse

momentum ( ) of the particles. The combined e�ects of CGR and NAb de�nitively reduce the net 

  yield by up to 8% at low multiplicity. At high multiplicity, the production of    under CGR

mechanisms accounts for around 20% to 25%, whereas predictions based solely on NAb yield

estimates of 12% to 20%, �uctuating from low to high  . The cumulative impacts of CGR and NAb

conspicuously diminish the net   production by approximately 2% in high multiplicity events.

Furthermore, when examining the net yield of  (2S) relative to  , it is found that the �nal yield of 

(2S) is substantially lower than that of  . At high  , the production levels of  (2S) are

comparable to those of  , driven by the NAb mechanism. However, at low  , the yield of  (2S) is

signi�cantly less than that of    across both multiplicity classes. With CGR mechanisms taken into

account, the yield of  (2S) is estimated at approximately 8% to 10% relative to   for both high and

low multiplicity. The combined e�ects of CGR and NAb indicate that the production of  (2S) is roughly

1% of    and which is smaller than  . This trend remains consistent across low and high

multiplicity as well as throughout the selected   ranges.

These results strongly suggest that while the sequential suppression of charmonium may appear

inconsistent in this context, the sequential production of charmonium states is upheld. Even when

accounting for the complexities of medium dynamics and charmonium evolution in ultra-relativistic 

 collisions, it is evident that  (2S) may experience enhancements; however, the net number of 

 will invariably surpass that of  (2S).
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V. Summary and Outlook

This work explored the charmonium yield modi�cation under various mechanisms that could possibly

exist in ultra-relativistic proton-proton ( ) collisions at    = 13 TeV. The study considers both

pre-equilibrium and thermalized QCD medium e�ects, modeling the temperature evolution through

the bottom-up thermalization approach and Gubser �ow. Under the “in-medium suppression

e�ects” for QGP, it incorporates collisional damping, which arises because of the energy loss due to

interactions between charmonium and the medium, and gluonic dissociation as the consequence of

quarkonium states into a color octet lead interactions with gluons. It also includes the regeneration of

charmonium states within the medium due to the transition from the color octet state to the color

singlet state. Additionally, the non-adiabatic evolution of charmonium states is considered,

recognizing that rapid temperature changes in small systems like    collisions can challenge the

adiabatic assumption and signi�cantly a�ect the charmonium yield. At last, feed-down corrections

from higher resonances into   have been incorporated for more realistic predictions.

The �ndings conclude that charmonium suppression is driven by these mechanisms, and their

combined e�ect is modeled in terms of survival probabilities ( ) as a function of transverse

momentum ( ) and charged-particle multiplicity ( ). The study �nds that while    and 

 experience signi�cant suppression,  (2S) shows enhancement at higher multiplicities due to non-

adiabatic evolution at low   and high multiplicities.

These results indicate that the QGP evolution time scale is signi�cantly smaller than the

charmonium transition time scale in ultra-relativistic   collisions, thereby invalidating the use

of the adiabatic approximation for the state evolution in the medium. This discrepancy necessitates

considering a non-adiabatic evolution of charmonium, especially in small systems such as those

formed in ultra-relativistic   and even in ultra-peripheral heavy-ion collisions.

The results suggest that    suppression and/or  (2S) enhancement in small systems, such as 

  collisions can be a valuable probe for understanding the presence of a thermalized QCD

medium. This investigation suggests that ultra-relativistic   collisions may also exhibit QGP-

like behavior under speci�c conditions.

This study presented a holistic approach that reinforces our understanding of quark-gluon plasma

characteristics and enhances our grasp of the intricate dynamics within ultra-relativistic collisions

from large to small systems.
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The future scope of research on charmonium yield modi�cation in    collisions at    TeV

o�ers various promising directions:

Non-Adiabatic Evolution: The study shows that the evolution of quarkonia in smaller systems,

such as   collisions, may not adhere to adiabatic assumptions. Future work can further explore

the non-adiabatic evolution of charmonium states, particularly in di�erent system sizes, like

peripheral heavy-ion collisions, where rapid cooling in�uences their behavior.

Comparison with Heavy-Ion Collisions: Our �ndings are contrary to the  (2S) suppression

observed in heavy-ion collisions and that controversy arises because the evolution of charmonium

states is considered to behave di�erently depending on the system size and its cooling rate. Future

research should investigate this phenomenon more deeply to understand how charmonium states

behave across various collision systems.

QGP Characteristics in Small Systems: The �ndings suggest the potential for using charmonium

suppression as a probe to detect thermalized QCD matter, even in small systems like 

 collisions. Further experimental studies could focus on developing the methodology for such

observations to probe the existence of quark-gluon plasma in such a small collision system.

These avenues can help connect theory with experimental observations, enhancing the understanding

of QGP properties and charmonium dynamics in ultra-relativistic high-energy collisions.
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