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Recent studies show that large language models (LLMs) are powerful tools for working with natural

language, bringing advances in many areas of computational linguistics. However, these models face

challenges when applied to low-resource languages due to limited training data and di�culty in

understanding cultural nuances. Research is now focusing on multilingual models to improve LLM

performance for these languages. Education in these languages also struggles with a lack of

resources and quali�ed teachers, particularly in underdeveloped regions. Here, LLMs can be

transformative, supporting innovative methods like community-driven learning and digital

platforms. This paper discusses how LLMs could enhance education for low-resource languages,

emphasizing practical applications and bene�ts.

1. Introduction

Recent research in large language models (LLMs) has demonstrated their profound capabilities in

processing and generating natural language, leading to advancements across various domains of

computational linguistics[1][2][3][4][5][6]. Despite these advancements, applying LLMs in the study of

low-resource languages presents signi�cant challenges. These models often struggle with the limited

availability of training data, which can lead to poorer performance and less e�ective language

understanding and generation. Additionally, the complexities of accurately capturing the nuances and

cultural contexts of less-documented languages further complicate their use in this area. To tackle the

problem, recently multilingual models have been studied, extending language models to low-resource

languages[7][8].
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Education in the domain of low-resource languages often face signi�cant challenges due to limited

access to teaching materials, quali�ed instructors, and formal language programs[9]. Typically, these

languages are spoken in regions where educational infrastructure is less developed, making

traditional classroom-based learning di�cult to implement. As a result, generative AI tools such as

LLMs have the potential to revolutionize educational initiatives[10][11][12][13]  such as community-led

classes, oral tradition, and providing digital tools and automated platforms[13][14][15][16][17][18][19][20].

In this vision paper, we discuss various aspects in low-resource language education that could be

enhanced by the recent foundation models.

2. Foundation Model Development

This section explores the development of multilingual foundation models designed to extend the

capabilities of NLP systems to low-resource languages. Both large language models and vision-

language models (VLMs) are discussed in the context of pre-training, �ne-tuning, and in-context

learning. These approaches aim to overcome the data scarcity challenges inherent in low-resource

languages, while also supporting educational and practical applications.

2.1. FM Pre-training

Pre-training forms the foundational stage for both LLMs and VLMs, where models learn to extract

general linguistic or multimodal patterns from large-scale datasets. LLM pre-training typically

employs loss functions such as masked language modeling (e.g., BERT[21]) or autoregressive

objectives (e.g., the GPT series[22][23][24] and the Llama family of models[3][25][26]). These techniques

allow LLMs to capture complex syntactic, semantic, and contextual relationships in text.

LLM pre-training commonly[18][20][17] employs objectives such as:

Masked Language Modeling (MLM): This method masks random tokens in the input sequence and

trains the model to predict these masked tokens during pre-training[21]. BERT and many of its

variants use MLM as their primary pre-training objective, enabling bidirectional context

understanding.

Autoregressive Modeling: This approach trains models to predict the next token in a sequence by

learning patterns from vast amounts of text data[24]. The model conditions each new token on all
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previously generated tokens, enabling it to maintain coherence and capture long-range

dependencies while generating text.

Denoising AutoEncoder (DAE): This technique corrupts the input data with various noise functions

(masking, deletion, permutation) and trains the model to reconstruct the original sequence[27].

BART and T5 employ DAE-based objectives to learn robust text representations and generation

capabilities.

Replaced Token Detection (RTD): This task trains a discriminator to distinguish between original

and synthetically replaced tokens in the input sequence[28]. ELECTRA demonstrated that RTD

enables more compute-e�cient pre-training compared to MLM, particularly for smaller models.

Next Sentence Prediction (NSP) and Sentence Order Prediction (SOP): NSP trains models to

determine if two sentences appear consecutively in the original text[21], while SOP focuses on

predicting the correct ordering of consecutive sentences[29]. ALBERT showed that SOP could be

potentially more e�ective than NSP for learning inter-sentence coherence.

However, the representation of low-resource languages in existing datasets remains limited, often

leading to suboptimal performance in these languages[30].

For VLMs, pre-training involves aligning image and text embeddings within a uni�ed semantic space.

Techniques include the use of CLIP’s contrastive learning framework[31], where paired image-text

data are used to maximize alignment, and latent di�usion models like Stable Di�usion[32], which

focus on text-to-image tasks. Models such as LLaVA[33]  and Kosmos-2[34]  enhance cross-modal

understanding, enabling tasks such as visual question answering and captioning. However, these

models predominantly rely on high-resource language datasets, leaving low-resource languages

underserved.

Targeted pre-training strategies can signi�cantly bene�t low-resource languages. Continuous pre-

training on multilingual corpora or domain-speci�c datasets enhances model adaptability[35][36]. For

VLMs, incorporating culturally relevant visual and textual data ensures better alignment for

underrepresented languages. In educational settings, such pretrained models can generate learning

materials, including multimodal content, that cater to diverse linguistic contexts, ultimately

improving accessibility and inclusion.
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2.2. FM Fine-tuning

Fine-tuning adapts pre-trained models to speci�c tasks or domains by training them on task-speci�c

data and optimizing loss functions to re�ne their performance. This process allows foundation models

to address particular requirements, such as low-resource language processing or multimodal

applications.

Fine-tuning typically uses a supervised learning approach, where the model’s predictions are

compared against labeled data. The most commonly used loss function is cross-entropy[37], which

measures the di�erence between predicted probabilities and the true labels. By minimizing cross-

entropy loss, the model learns to generate accurate outputs for the target task while mitigating

over�tting through techniques like dropout, weight decay, or early stopping. Optimization

algorithms, such as AdamW[38], are often employed to �ne-tune model parameters e�ciently.

Instruction Fine-tuning for LLMs and VLMs

Instruction �ne-tuning adapts pre-trained models to align with speci�c instructions and tasks,

enhancing their generalization to unseen scenarios. For LLMs, this involves training on datasets

containing task-speci�c instructions paired with responses. This approach, as seen in models like

InstructGPT[2] and FLAN-T5[39], enables e�ective zero-shot and few-shot task generalization. Such

�ne-tuning often leverages datasets encompassing diverse tasks, such as answering questions,

performing translations, and summarizing text. For low-resource languages, instruction-tuning can

be pivotal. By training on carefully curated datasets of low-resource languages (e.g., Quechua or

Cherokee), LLMs can address linguistic gaps and support education through task-based language

exercises tailored to underrepresented communities.

In the context of VLMs, instruction �ne-tuning expands the capability of models to follow multimodal

instructions. Recent developments like LLaVA[33]  and Flamingo[40]  have demonstrated how visual

instruction-tuning aligns language and vision encoders with task-speci�c goals, such as image

captioning and visual question answering. For instance, by �ne-tuning on datasets with paired

image-text instructions, these models can describe images in underrepresented languages or perform

tasks such as cultural-speci�c object identi�cation. This is particularly impactful for education, where

VLMs can enable immersive learning experiences, providing visual aids and engaging storytelling in

local languages.
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Applications in Education

Fine-tuned models open up signi�cant possibilities for personalized and localized educational tools.

Instruction-tuned LLMs can assist students in learning low-resource languages by generating

culturally speci�c exercises, correcting grammar, or providing contextually appropriate examples.

Similarly, �ne-tuned VLMs can enable immersive learning experiences by creating visual aids,

interactive storytelling, or image-based quizzes tailored to the learner’s linguistic and cultural

background. These adaptations bridge the gap between global AI technologies and local educational

needs, fostering inclusivity and accessibility in resource-constrained environments.

2.2.1. Preference Alignment with RLHF

Preference alignment re�nes foundation models by aligning their outputs with human preferences,

enhancing their utility for speci�c applications. Two prominent approaches for preference alignment

are Proximal Policy Optimization (PPO)[41]  and Direct Preference Optimization (DPO)[42], each with

unique strengths.

Proximal Policy Optimization (PPO)

PPO is a reinforcement learning method central to Reinforcement Learning from Human Feedback

(RLHF)[43][2]. This process involves training a reward model on human-labeled rankings of model

outputs, followed by �ne-tuning the foundation model to maximize these rewards. PPO ensures stable

updates to the model while aligning it with desired stylistic and behavioral traits, such as cultural

sensitivity or conversational norms.

For low-resource languages, PPO can adapt models to handle speci�c cultural contexts or linguistic

subtleties, making it suitable for applications like culturally aware chatbots or educational AI

companions. However, the approach requires substantial human-labeled data for training the reward

model, which may pose challenges in low-resource settings.

Direct Preference Optimization (DPO)

DPO provides a more streamlined alternative by bypassing the need for a reward model and

reinforcement learning loop. Instead, it directly �ne-tunes the model on preference-labeled data

using a contrastive loss to maximize the likelihood of preferred outputs over less-preferred ones. This

simplicity reduces computational overhead and eliminates the instability risks inherent in PPO.
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A signi�cant advantage of DPO is its ability to reduce labeling costs. Unlike PPO, which requires ranked

outputs for reward model training, DPO leverages binary or limited comparative preference data,

minimizing the burden of annotation. This e�ciency makes it particularly valuable for low-resource

languages, where obtaining extensive labeled datasets is often infeasible. For instance, DPO can be

used to train models that generate culturally sensitive text or conversational agents with minimal

labeled examples.

Applications in Low-Resource Language Education:

Both PPO and DPO can enhance educational tools for low-resource languages, but DPO’s e�ciency

and lower data requirements make it especially impactful. By reducing the need for extensive labeling,

DPO enables the rapid adaptation of AI systems to underserved languages and cultural contexts. In

education, it supports the development of AI companions that provide personalized feedback,

culturally sensitive guidance, or tailored lesson plans, fostering inclusivity and accessibility in

resource-constrained environments.

In low-resource languages, RLHF can adjust models to re�ect cultural sensitivity, conversational

norms, and localized communication styles. Applications include AI learning companions tailored to

speci�c linguistic contexts, culturally aware educational chatbots, and training systems for language-

speci�c customer service.

2.3. FM In-context Learning

In-context learning (ICL)[44] allows pre-trained models to generalize to new tasks without additional

parameter updates by leveraging few-shot examples provided as input prompts. This capability is

particularly valuable for low-resource languages, where annotated data is scarce. Properly designed

prompts enable LLMs to recognize patterns and generate relevant outputs, reducing the reliance on

large labeled datasets.

For VLMs, ICL extends to multimodal prompts that combine images with textual instructions. This

facilitates zero-shot or few-shot learning for tasks like image captioning or visual question answering

in low-resource languages. Models like Kosmos-2[34] and DeepSeek-VL[45] demonstrate strong zero-

shot capabilities, making them suitable for applications where task-speci�c data are unavailable.

The intuitive and �exible nature of ICL is a signi�cant advantage in educational contexts. LLMs can be

prompted to create exercises, translate content, or summarize lessons in low-resource languages,
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while VLMs can answer visual questions or provide contextual understanding of imagery. This

adaptability supports educators and learners in resource-constrained environments, democratizing

access to AI-driven educational tools.

3. Language Education Modules

With foundational models for low-resource languages, we can generate comprehensive lessons and

learning materials spanning various aspects[30], including vocabulary and pronunciation, grammar,

interactive exercises, cultural integration, and video generation. This section will discuss

methodologies for leveraging foundational models for various language education modules,

demonstrating how foundation model agents can e�ectively support education in low-resource

languages.

3.1. Vocabulary and Pronunciation

To build vocabulary resources, the foundation model agents can harness their ability to understand

and generate contextualized text in low-resource language[46]. More speci�cally, these model agents

can produce:

Word Lists: Starting with foundational word sets, models can extrapolate to generate synonyms,

antonyms, and contextually related terms. For instance, a low-resource language with a small

dictionary can be expanded by inferring semantically linked words using multilingual embeddings

in large language models.

Contextual Examples: Learners often bene�t from seeing new vocabulary used in meaningful

contexts. Foundation models can generate diverse, practical examples by embedding target words

within sentences, dialogues, or short narratives. These examples provide learners with a deeper

understanding of how words function in real-life scenarios[47].

Thematic Categorization: Vocabulary lists can be organized into thematic areas like family, nature,

or technology. Foundation models trained on multilingual data can identify domain-speci�c terms

and present them in learner-friendly ways, such as �ashcards or interactive quizzes.

Pronunciation mastery is often a hurdle in language learning, especially for learners of low-resource

languages with limited audio examples. Foundation model agents equipped for speech and

multimodal processing provide innovative solutions[48][49]:
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Phoneme-to-Audio Generation: Text-to-speech (TTS) systems based on foundation models can

generate audio samples for speci�c words or phrases. Foundation models or �ne-tuned systems

can provide native-like pronunciation examples, even when trained on small low-resource

language datasets.

Phonetic Guides and Feedback: By integrating speech recognition, models can evaluate learners’

pronunciation. For instance, a learner speaking a word can receive feedback on accuracy,

intonation, and stress patterns. This fosters self-paced learning without needing a native speaker’s

constant availability.

Regional Variations: For low-resource languages with signi�cant dialectical di�erences,

foundation models can be �ne-tuned to generate region-speci�c pronunciations, o�ering learners

exposure to the diversity within the language. This is particularly valuable for languages where

phonetic, tonal, or lexical di�erences between regions are substantial.

The TF-IDF (Term Frequency-Inverse Document Frequency) [50] method can enhance vocabulary and

pronunciation learning by identifying words that are both frequent and contextually important. For

vocabulary, TF-IDF can prioritize words that are common in a learner’s target domain (e.g., travel or

business), helping learners focus on terms with high relevance. In pronunciation practice, TF-IDF can

highlight less common but important words or those with regional variations, guiding targeted

practice. This method ensures that learners engage with vocabulary that is both practical and speci�c

to their needs, optimizing their learning experience.

Foundation model agents can also be improved through tokenization, a critical component for

processing and understanding language. Tokenization is the process of breaking down text into

smaller units, or tokens, which are processed by language models. This is essential for understanding

how di�erent words and phrases are constructed in low-resource languages, especially when dealing

with agglutinative or morphologically complex languages. By tokenizing text properly, foundation

models can capture linguistic nuances more accurately and generate vocabulary lists that re�ect the

language’s true structure, rather than overgeneralizing based on sparse data.

3.2. Grammar

Grammar is fundamental to mastering any language, yet low-resource languages often lack

comprehensive instructional materials. The foundation model agents can automate the creation of

grammar explanations, exercises, contextualized examples, etc., all tailored to the speci�c needs of
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learners. By harnessing the power of these foundation model agents, we can provide learners of low-

resource languages with personalized, accessible, and engaging grammar content.

Grammar Rules Extraction and Explanation: Foundation models can analyze multilingual datasets

to extract and explain grammatical patterns for low-resource languages. By identifying syntactic

structures such as word order, tense, and subject-verb agreement, foundation models can generate

grammar guides tailored to the unique rules of a given low-resource language. These models can

produce detailed explanations of fundamental grammatical concepts, from simple noun-adjective

agreements to more complex structures, o�ering step-by-step guidance for learners.

Cross-Lingual Grammar Transfer: Foundation models can also facilitate cross-lingual grammar

transfer by comparing the grammatical structures of related languages. For example, a learner who

speaks English may bene�t from grammar lessons comparing English and a low-resource

language, focusing on shared and divergent grammatical features. This comparison allows learners

to leverage their existing linguistic knowledge, accelerating their learning process.

3.3. Interactive Exercises

The foundation model agents could o�er various types of interactive exercises that engage learners in

practicing the language in a controlled environment, providing immediate feedback and adjustments

based on their responses[51]. The �exibility of these exercises ensures that learners can practice

di�erent aspects of language acquisition in a way that suits their individual needs. Below are several

speci�c use cases that illustrate how foundation model agents can generate interactive exercises for

low-resource language learning.

Matching Exercises for Vocabulary Learning: Learners are presented with a set of vocabulary

words and their corresponding images or de�nitions. The learner must match each word with its

correct meaning or image. The foundation models adapt the di�culty based on the learner’s

progress, o�ering more challenging words or a wider variety of images as they advance.

Dialogue Simulation Exercises for Pronunciation Learning: The foundation models can simulate

real-life conversations, where learners interact with an AI-based character in a scenario (e.g.,

ordering food at a restaurant). The learner’s speech input is evaluated in real-time, and the system

provides feedback on pronunciation, �uency, and appropriateness of responses. This type of

exercise helps learners practice speaking in a practical, contextual setting.
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Error Correction Exercises for Grammar Learning: Learners are presented with sentences that

contain common grammatical errors (such as subject-verb agreement or tense inconsistencies),

and they are tasked with identifying and correcting them. Immediate feedback is provided,

explaining why a particular correction is necessary.

3.4. Culture Integration

Integrating cultural education into language learning is essential, particularly for low-resource

languages. Language and culture are deeply intertwined, and foundation model agents—spanning

text, voice, and vision—can generate materials that highlight how language operates within its

cultural context, including folklore, history, art, and traditions[52].

Foundation model agents can produce stories, songs, or dialogues that re�ect the cultural heritage of

the language’s speakers, exposing learners to folklore and idiomatic expressions. These materials not

only teach language but also reveal cultural values and worldviews. For instance, learners can engage

with traditional narratives that embody cultural meanings.

Moreover, foundation model agents can generate historical content that provides context on the

language’s evolution and its speakers’ experiences. They can translate or summarize historical texts,

highlight signi�cant events or �gures, and showcase scienti�c or artistic contributions, helping

learners understand the language’s cultural and historical roots.

Visual content created by these foundation model agents can complement text and voice lessons,

featuring landmarks, art, and indigenous knowledge. Interactive maps, art galleries, and multimedia

on local practices, like traditional medicine or sustainable agriculture, allow learners to connect the

language to the community’s way of life.

By integrating culture into low-resource language learning, foundation model agents o�er a

comprehensive approach that connects language contents with cultural identity, enriching the

learners’ understanding and experience.

3.5. Video Generation

In the context of low-resource languages, one of the most signi�cant barriers to education is the lack

of access to quali�ed educators and learning buddies. Foundation model agents o�er solutions to this

problem, particularly through the generation of video content featuring virtual teachers and learning
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buddies[53]. These resources provide immersive, interactive learning experiences that cater to the

needs of learners in underserved linguistic communities.

Virtual Teachers for Immersive Learning

Virtual teachers are AI agents that deliver lessons tailored to a student’s level and progress. Using a

combination of text-based foundation models, voice synthesis, and computer vision technologies,

these virtual teachers can simulate human-like interactions. For instance, voice models can generate

speech in the target language while video models display facial expressions and gestures that align

with cultural context, helping students not only learn the language but also understand its social and

cultural nuances.

These AI-driven teachers enable scalable and personalized education in areas where human teachers

are scarce. By adjusting lesson complexity based on the learner’s pro�ciency, virtual teachers can

introduce new vocabulary and improve pronunciation over time. Additionally, they can be

multilingual, supporting low-resource language learners from diverse language backgrounds.

The integration of non-verbal cues like body language and facial expressions in video lessons further

enhances communication, helping students associate spoken words with actions. This immersive

approach aids both comprehension and retention, making virtual teachers a powerful tool for

language acquisition in under-resourced areas.

Learning Buddies for Enhanced Engagement

In addition to virtual teachers, learning buddies—AI agents designed to interact and engage with

students—play a crucial role in fostering motivation and providing ongoing support. Learning buddies

can o�er encouragement, answer questions, and guide students through practice exercises. These AI

agents can hold conversations, giving learners opportunities to practice speaking and listening in

dynamic, real-life contexts[54].

Learning buddies also provide personalized feedback, o�ering corrections when necessary and

reinforcing new concepts. This adaptive approach builds student con�dence and accelerates language

mastery. Furthermore, learning buddies can be customized to re�ect cultural nuances, making lessons

not only linguistically accurate but also culturally relevant, thereby deepening students’ connection to

the language.
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4. Adaptive Learning in Language Models and Education

Adaptive learning in low-resource language education should primarily focus on creating

personalized learning experiences based on individual student knowledge levels and progress. A

foundation model-based system could analyze each learner’s current understanding and mastery of

language concepts to recommend customized learning paths, content, and objectives. This

personalization would ensure that students receive appropriately challenging material and targeted

practice opportunities that align with their learning goals and current capabilities.

Such a system could continuously evaluate student performance to adjust these recommendations

dynamically. When students would demonstrate mastery of certain concepts, the system might

advance them to more challenging material. Conversely, if students were to struggle with particular

aspects, the system could provide additional practice and support in those areas. This dynamic

adjustment would help maintain an optimal learning pace for each student while ensuring thorough

understanding of fundamental concepts.

Beyond individual learning paths, adaptive learning would also encompass the technical evolution of

language models themselves. These models should be able to update and improve their knowledge

base through mechanisms like continuous pre-training and �ne-tuning, particularly important for

low-resource languages where traditional training data might be limited. This dual nature -

personalized education and model evolution - could create an e�ective framework for low-resource

language education that responds to both individual learner needs and evolving linguistic landscapes.

4.1. Content Generation and Adaptation

Model Evolution

Traditional adaptive learning systems face limitations with pre-authored content and �xed question

banks[55]. In contrast, foundation models for low-resource languages should be able to continuously

evolve their knowledge base through interaction with new linguistic data. This evolution would allow

dynamic content generation that could re�ect current language usage patterns and cultural contexts.

Educational Content

The adaptive capability should extend to the generation of varied, contextually appropriate learning

materials that could be adjusted based on learner needs. This would overcome the traditional
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limitation of manual content updates and restricted practice variety[56]. The system could generate

exercises, examples, and explanations in real-time that would maintain cultural relevance and

support progressive language acquisition.

Individualized Content

A foundation model-based system could construct customized learning paths by analyzing each

student’s progress milestones and learning objectives. When a student’s goal would be professional

communication, the content sequence might emphasize relevant vocabulary and formal language

patterns. For basic conversational goals, the path could prioritize common phrases and daily

expressions. Such goal-oriented content sequencing would help ensure that learning materials align

with each student’s speci�c language objectives.

4.2. Feedback Mechanisms

Interactive Guidance

Unlike traditional systems constrained to prede�ned responses[57], foundation models should be able

to provide nuanced, contextual feedback through natural language understanding. This capability

would lead to more sophisticated error analysis and targeted remediation strategies for language

learners.

Cultural Sensitivity

The feedback system should be able to incorporate cultural context awareness. This feature would

ensure that corrections and suggestions align with both linguistic accuracy and cultural

appropriateness. This approach would address the limitation of traditional systems that cannot

recognize or respond to culturally in�uenced language usage patterns.

Personalized Feedback

The feedback mechanism should be able to adapt to each student’s position on their learning path and

current learning objectives. For students working toward reading pro�ciency, feedback could

emphasize character recognition and comprehension strategies. For those focused on speaking skills,

the system might provide more pronunciation guidance. This alignment between feedback and
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learning goals would help students progress more e�ectively toward their target language pro�ciency

levels.

4.3. Student Modeling

Comprehensive Assessment

Traditional modeling approaches often struggle with complex learning trajectories[58][59].

Foundation models should be able to track multiple dimensions of language acquisition at once, from

vocabulary and grammar to pronunciation and cultural understanding. This comprehensive tracking

would create more detailed learner pro�les.

Adaptive Pathways

These systems should be able to analyze patterns in learner interactions and performance to adjust

learning paths for individual needs. This approach would address the traditional limitation of

insu�cient consideration of a�ective states[60]  and motivation in learning. The result would be a

more personalized and engaging educational experience.

4.4. Integration Considerations

Technical Implementation

When integrating foundation models for low-resource language education, scalability could

potentially be a primary concern. The system architecture must support e�cient model deployment

while maintaining quick response times for interactive learning sessions. Additionally, quality control

mechanisms must be implemented to ensure the accuracy and appropriateness of generated content,

particularly crucial for low-resource languages where training data may be limited.

Educational Work�ow

The integration of foundation models must complement existing language teaching methodologies.

This includes developing interfaces that allow educators to monitor and guide the learning process,

ensuring that automated adaptations align with pedagogical goals. Assessment mechanisms need to

balance automated evaluation with human oversight, particularly for nuanced aspects of language

acquisition like cultural competency[61].
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Resource Management

For low-resource language contexts, considerations must be made for environments with limited

technological infrastructure. This includes developing o�ine functionality and optimizing model

performance for resource-constrained settings. The system should be designed to gracefully handle

intermittent connectivity while maintaining learning continuity.

Quality Assurance

Maintaining educational e�ectiveness requires robust quality assurance processes. This includes

automated testing of generated content, collection of user feedback, and regular assessment of

learning outcomes. For low-resource languages, additional veri�cation may be needed to ensure

cultural and linguistic accuracy, potentially involving community experts in the review process.

Community Engagement

Successful integration requires active participation from the language community. This includes

establishing channels for native speakers and cultural experts to provide feedback and validation of

educational content. Such engagement helps ensure that the adaptive learning system remains

aligned with community needs and cultural values while supporting language preservation e�orts.

5. Conclusion and Future Challenges

Incorporating large language models into low-resource language education poses signi�cant

educational challenges and opportunities. One major issue is the development of teaching

methodologies to e�ectively utilize LLM capabilities, such as generating language exercises or

providing feedback. Educators must develop pedagogical strategies that leverage LLM strengths while

addressing their limitations, such as occasional inaccuracies or lack of context-speci�c nuances.

Additionally, there is the challenge of integrating these technologies into existing educational

frameworks in a way that complements traditional teaching methods rather than replacing them. This

integration also requires substantial training for educators, who must become adept at using LLMs

and understanding their potential biases and shortcomings. Furthermore, evaluating the e�ectiveness

of LLMs in improving language competencies in diverse educational settings such as adaptive

learning[62] remains a critical challenge, necessitating ongoing research and adaptation to ensure that

these tools are making a positive impact on learning outcomes.
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